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The clonal expansion, differentiation into effectors and establishing an immunological
memory are crucial components of the adaptive immune response. Following the initial
encounter with a pathogen, clonal CD8 T cell expansion yields at least two distinct
populations of effector cells, short-lived effector cells (SLECs) and memory precursor
effector cells (MPECs). SLECs are the terminally differentiated cells, which play an active
role in pathogen clearance and undergo apoptosis once the pathogen is eliminated. In
contrast, MPECs persist and give rise to self-renewing memory cells. These memory CD8
T cells maintain a state of heightened alertness and are poised to rapidly respond and
swiftly clear the pathogen upon antigen re-encounter. As one of the goals of vaccination
is to induce the development of these memory CD8 T cells, understanding the cellular
and molecular basis of memory cell differentiation is critical to rational vaccine design. It
is clear that memory differentiation is complex and involves multiple interrelated signaling
pathways. It is influenced by factors such as the strength and duration of antigen receptor
signaling and concurrent exposure to cytokines. Several signaling pathways that influence
T cell fate have been recently described, and many culminate in the differential expression
of specific transcription factors. Unfortunately, the mechanisms underlying the coordination
and confluence of these signaling pathways remain largely unknown. In this review, we
will discuss the role of the phosphatidylinositol 3-kinase signaling pathway as a central
signaling node, and the function of Akt as a rheostat in orchestrating the differentiation of
memory CD8T cells.
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INTRODUCTION

CD8 T cells are highly specialized lymphocytes with a remark-
able capacity to selectively target and kill tumor cells and cells
infected with intracellular pathogens. As such, they play an impor-
tant immunologic role in defending against tumors and infection
by pathogenic organisms, particularly viruses and intracellu-
lar bacteria and protozoa. The development and maturation of
antigen-specific CD8 T cells is a complex process involving numer-
ous interrelated signaling pathways. This response has been most
extensively characterized in animal models of acute viral infec-
tion, and this discussion is largely based on the findings from
these models.

Antigen receptor engagement in the presence of appropriate
co-stimulatory signals and exposure to cytokines such as type I
interferons, activate CD8 T cells to undergo clonal expansion and
differentiation into effector cells. At the peak of the T cell response,
the expanded population of CD8 T cells is comprised of at least
two distinct populations of effector cells, the short-lived effec-
tor cells (SLECs) and memory precursor effector cells (MPECs).
SLECs are the terminally differentiated cytotoxic cells active in
pathogen clearance and represent the majority of effector cells.
CD8 T cell-mediated cytotoxicity depends upon recognition of
specific viral antigens presented by class I major histocompatibil-
ity complex (MHC) molecules on the surfaces of infected cells.
Antigen recognition induces the effector CD8 T cells to release

molecules including perforin and granzymes, and cytokines such
as interferon-gamma (IFNy) and tumor necrosis factor-alpha
(TNFa). Upon successful clearance of the pathogen, approxi-
mately 90% of effector cells including SLECs are eliminated by
apoptosis.

The remaining 10% of effector cells represent the MPECs,
which will differentiate into a self-renewing population of mem-
ory CD8 T cells. These memory CD8 T cells do not maintain
a strong cytotoxic capacity, however, they persist for years in a
state of heightened preparedness that enables them to rapidly pro-
liferate and/or develop effector functions upon re-encounter of
pathogens. This secondary response capacity of memory cells is
significantly more rapid than the initial clonal expansion and leads
to swift and expeditious control of the recurrent pathogen (Sal-
lustoetal.,2010; Zhang and Bevan, 2011). Thus, the differentiation
and maintenance of a functional memory CD8 T cell population
provides effective, long lasting immunity.

The goal of vaccination is to prevent disease by pre-
establishment of immunological memory similar to that induced
by natural infection. Clearly, a detailed understanding of the cellu-
lar and molecular basis of memory cell differentiation is critical to
rational vaccine design. Fortunately several important molecules
involved in memory T cell differentiation have been identified
and some have been well-characterized. However, the relation-
ships between the individual molecules and the mechanisms by
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which their signaling is coordinated to ultimately make cell-fate
decisions have been incompletely described or remain unknown.
In this review, we will focus on the phosphatidylinositol 3-kinase
(PI3K)/Akt signaling pathway and how it may integrate multiple
extracellular cues and function as an immunologic rheostat that
is able to spearhead a coordinated complex cellular response to
govern this crucial differentiation of memory CD8 T cells.

PI3K/Akt SIGNALING

Phosphatidylinositol 3-kinase/Akt signaling pathways exist in all
mammalian cells and exert profound effects on multiple diverse
processes including cell proliferation, survival, differentiation,
migration, and metabolism. The importance of PI3K and its
position as a central node in cell signaling pathways has been
further demonstrated by studies which show that aberrant reg-
ulation of PI3K/Akt signaling is pathologic and results in diseases
such as cancer and autoimmunity (Oak and Fruman, 2007;
Jiang et al., 2009).

Phosphatidylinositol 3-kinase are divided into classes I, II, and
111, based on structural and functional differences. Class I PI3Ks
are further classified into class IA PI3Ks (PI3Ka, PI3KB, and
PI3K3) and class IB PI3K (PI3Ky), and they are well-characterized,
while the significance and role of the other PI3K classes remains
largely undetermined (Vanhaesebroeck etal., 2010). The class I
PI3Ks are heterodimeric enzymes comprised of a regulatory sub-
unit (p85) and a catalytic subunit (p110). Class IA PI3K’s place in
the signaling chain is typically downstream of signals originating
from receptor activation. Extracellular signals such as growth fac-
tors and cytokines bind to their receptors and stimulate receptor
tyrosine kinases (RTKs). RTKs activate PI3K, which phospho-
rylates phosphatidylinositol-4,5-bisphosphate (PIP2) to generate
phosphatidylinositol-3,4,5-trisphosphate (PIP3). PIP3 interacts
with pleckstrin homology (PH) domain-containing target pro-
teins such as Akt and phosphoinositide-dependent protein kinase
(PDK1) on the inner leaflet of the plasma membrane.

Akt, also known as protein kinase B (PKB), has three isoforms —
Akt1/PKBa, Akt2/PKBf, and Akt3/PKBy. Aktl is ubiquitously
expressed in various tissues including lymphocytes, whereas Akt2
is abundantly expressed and controls insulin-mediated glucose
metabolism in muscle and adipocytes. Akt3 expression appears
to be restricted to brain and testes (Hers etal., 2011). The kinase
domains of all three isoforms have strong homology within kinase
domains to the members of the protein kinase A, G and C families
(AGC) kinase family (Manning and Cantley, 2007). At the plasma
membrane, the interaction between PH domain of Akt and PIP3
results in important conformational changes in Akt, which enable
subsequent modifications of Akt by PDK1. To achieve full activa-
tion, Akt has to be phosphorylated at T308 and S473 by PDK1 and
mammalian target of rapamycin (mTOR) complex 2 (mTORC2),
respectively (Alessi etal., 1997; Sarbassov et al., 2005; Figure 1).

Regulation of PI3K/Akt signaling interaction can occur via
multiple mechanisms. Phosphatases such as phosphatase and
tensin homolog (PTEN) and SH2 domain containing inositol
5’'-phosphatase (SHIP) work as negative regulators of PI3K sig-
naling by dephosphorylating PIP3 (Sly etal., 2003). Deletion of
these molecules results in the elevated activation of PI3K signaling
(Aman etal., 1998; Stambolic etal., 1998). Moreover, Akt activity

is down-regulated by dephosphorylation at T308 and S473 by pro-
tein phosphatase 2 (PP2) and by the PH domain and leucine rich
repeat protein phosphatases (PHLPP), respectively (Andjelkovic
etal., 1996; Gao etal., 2005).

When fully activated, Akt becomes a powerful signaling
molecule, which translocates from the cell membrane to the
cytosol and nucleus where it can alter a large number of impor-
tant signaling pathways. Akt modulation of these pathways is
accomplished by serine and/or threonine phosphorylation of the
targeted signaling molecules. Several examples common to most
cellsillustrate the potential impact of Akt activation. Akt phospho-
rylation of two negative regulators, tuberous sclerosis complex 2
(TSC2) and proline rich Akt substrate of 40 kDa (PRAS40), leads
to mTORCI1 activation. mMTORCI activation in turn controls pro-
tein synthesis, cell growth and metabolism (Laplante and Sabatini,
2012). Glycogen synthase kinase 3 (GSK3) is another direct sub-
strate of Akt; by inhibitory phosphorylation of GSK3, Akt increases
cellular glycogen synthesis. In addition, nucleic GSK3 regulates cell
survival by phosphorylating cyclins and the transcription factors
c-jun and c-myc (Hers etal., 2011). Apart from modulating the
activities of mTORC1 and GSK3, Akt also phosphorylates and
inactivates forkhead box O (FOXO) transcription factors in the
nucleus thereby dampening the expression of FOXO target genes
involved in proliferation, apoptosis, motility, and metabolism (Li
etal., 2007; Hedrick et al., 2012; Figure 1). The PI3K/Akt pathway
can indirectly control cellular functions by interfacing with other
signaling pathways such as the canonical Wnt/B-catenin pathway,
the nuclear factor kB (NF-kB) pathway, and the Janus kinase/signal
transducers and activators of transcription (JAK/STAT) pathway
(Okkenhaug and Vanhaesebroeck, 2003; Manning and Cantley,
2007; Delgofte etal., 2011).

The preceding examples illustrate mechanisms by which
PI3K/AKkt signaling generally promotes cell growth and survival,
while inhibition of PI3K/Akt signaling can growth and decrease
cell survival. Although it is this association that has made the
PI3K/Akt pathway an attractive target for anti-cancer therapies,
and the proper regulation of many of these signaling pathways is
also important for the generation of T cell responses. Because the
PI3K/Akt signaling pathway is strategically positioned to influ-
ence so many aspects of the T cell response, the elucidation of
its role in CD8 T cells is critical not only to understanding the
immune response, but also to advancing rational vaccine design
and development.

In T cells, the PI3K3 and PI3Ky isoforms are known to play
critical roles during development. Deletion or inactivation of both
isoforms during thymopoiesis results in a block at the CD4 CD8
double negative (DN) stage of T cell development. By contrast,
PI3K3 appears to be the isoform that is important for PI3K sig-
naling in mature T cells (Okkenhaug and Vanhaesebroeck, 2003;
Finlay, 2012). Although the biochemical mechanisms underlying
the activation of PI3K in T cells are not fully elucidated (Chi, 2012),
the PI3K/Akt signaling has important roles in the activation pro-
cess as well as cytokine signaling in peripheral CD8 T cells (Kane
and Weiss, 2003). In CD8 T cells, class IA PI3Ks are primarily
activated by tyrosine kinase-associated receptors such as the T cell
receptor (TCR), co-stimulatory and cytokine receptors. Signaling
triggered by exposure to IL-12 and common gamma chain (yc)
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FIGURE 1 | Activation and function of PI3K/Akt signaling in CD8T cell.
Upon engagement of the TCR by peptide/MHC | complex, PI3 kinase (PI3K) is
activated in CD8T cells. Signals from costimulation, cytokines, and
chemokines can also activate the PI3K. At the plasma membrane, activated
PI3K phosphorylates PIP2 to generate PIP3, which recruit PH
domain-containing proteins such as Akt and PDK1. Full activation of the
Ser/Thr kinase Akt requires phosphorylations by PDK1 and mTORC2. In the
cytosol, Akt phosphorylates and inhibits TSC1/2, a negative regulatory
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complex of mTORC1, which in turn promotes mTORC1-mediated protein
synthesis and cell growth through modulating S6K and 4E-BP. Cytosolic Akt
also inhibits GSK3, and regulates glucose metabolism and the canonical
Whnt/B-catenin pathway. In addition, Akt translocates to the nucleus, and
triggers the nuclear exclusion of FOXO transcription factors that are important
for cell quiescence and apoptosis. AMPK senses cellular energy status by
interacting with ADP/AMP and LKB1 and regulates cellular metabolism by
antagonizing mTORC1-mediated glycolysis.

receptor-related cytokines such as IL-2, IL-7, IL-15, and IL-21
stimulates PI3K/Akt signaling pathway in CD8 T cells (Figure 1).
Among yc cytokines, IL-2 generates high and sustained levels of
PIP3, whereas stimulation of PI3K by IL-15 is relatively weak and
results in low levels of PIP3 (Cornish et al., 2006). In contrast, class
IB PI3K is activated by G protein coupled receptors (GPCRs) such
as chemokine receptors. Additionally, alterations in the cellular
microenvironment that can regulate PI3K/Akt signaling pathway
include the abundance of growth factors and immunomodula-
tory factors, and metabolic cues primarily derived from nutrients.
Upon activation, T cells augment their metabolism to meet the
high-energy needs of cellular processes such as proliferation,
cytokine synthesis and secretion and cell-mediated cytotoxicity.
While it is accepted that PI3K promotes the uptake of glucose
and amino acids and enhance protein synthesis in activated T
cells, the role of Akt in T cell metabolism during expansion
has been questioned by a recent study (Macintyre etal., 2011).
This study suggested that PI3K might regulate T cell metabolism

by Akt-independent mechanisms, however, alterations in CD8 T
cell trafficking and development of effector functions all require
Akt activity. In contrast to Ag- and co-stimulation-mediated
PI3K/Akt activation that strongly prime the initial proliferation
and differentiation program of CD8 T cells, cytokines such as
IL-2, IL-12, IL-15, and IL-21 might shape further differentiation
after activation since each cytokine signaling is likely to work
at distinct differentiation states (Schluns and Lefrancois, 2003;
Cox etal., 2011).

DIFFERENTIATION OF EFFECTOR AND MEMORY CD8 T CELLS

Understanding the differentiation of effector and memory CD8
T cells is an area of intense investigation in immunology. As dis-
cussed in the introduction, at the peak of clonal expansion there are
two populations of effector T cells, the SLECs and MPECs. These
two effector subsets can be identified by the differential expression
of the cell surface molecules CD127 (the IL-7 receptor) and killer
cell lectin-like receptor G1 (KLRG1) (senescence marker). The
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characteristic SLECs phenotype is CD127"°KLRG1H! while the
MPEC phenotype is CD127HKLRG1'C. The SLECs are destined
for deletion upon resolution of the infection and are highly prone
to apoptosis. Because they also have diminished proliferative
potential they are considered to be in a terminally differentiated
state (Joshi etal., 2007; Sarkar etal., 2008). In contrast, MPECs
persist beyond the resolution of the infection and ultimately dif-
ferentiate into long-lived, self-renewing CD8 memory T cells.
Tremendous progress has been made in deciphering the mecha-
nisms underlying the disparate fates of these cells: apoptosis versus
differentiation into memory CD8 T cells.

Differentiation of MPECs and SLECs is regulated by multi-
ple mechanisms including asymmetric cell division, exposure to
cytokines such as IL-2 and IL-12 and the strength/duration of TCR
signaling (Joshi et al., 2007; Sarkar et al., 2007; Jameson and Maso-
pust, 2009; Kalia etal., 2010). It has been reported that exposure
of CD8 T cells to IL-2 or IL-12 promotes terminal differentiation
into SLECs at the expense of MPECs (Joshi et al., 2007; Kalia et al.,
2010). Additionally, it was reported that the duration and intensity
of antigenic stimulation is a key factor that controls the magni-
tude of CD8 T cell response and the differentiation of memory
CD8 T cells (Sarkar etal., 2007; Teixeiro etal., 2009; Zehn etal.,
2009). In recent years, seminal studies from several laboratories
have identified key transcription factors that regulate disparate
fate of SLECs and MPECs. Notably, high levels of T-bet, Blimp-1,
ID2, and XBP-1 promote differentiation of SLECs. By contrast,
high levels of Eomes, Bcl-6, ID3, Mbd2, and Bmi-1 favor differ-
entiation of MPECs (Rutishauser and Kaech, 2010). According
to the current paradigm, the relative levels of the opposing tran-
scription factors (e.g., T-bet and Eomes) and/or their mutually
antagonistic activities (e.g., Blimp-1 and Bcl-6) might control the
differentiation of SLECs and MPECs (Finlay and Cantrell, 2011;
Zhang and Bevan, 2011). From the signaling point of view, apart
from antigen receptor signaling, IL-12 produced by dendritic cells
increases T-bet expression, which promotes terminal differentia-
tion of effector CD8 T cells (Joshi et al., 2007). Moreover, sustained
IL-2 signaling favors the differentiation of SLECs in association
with elevated expression of T-bet and Blimp1 (Kalia etal., 2010).
Eomes is required for sustaining CD8 T cell effector function, but
promotes memory differentiation by antagonizing the effects of
T-bet and increasing the expression of IL-15R (Intlekofer etal.,
2005; Zhou et al., 2010).

These findings are consistent with the hypothesis that it is the
collective signaling of the TCR, the IL-2 receptor, and the IL-12
receptor that alters expression levels of the cell-fate-determining
transcription factors, which in turn govern the differentiation of
memory CD8 T cells. It is important to note, however, that the
complex circuitry underlying this fateful pathway remains poorly
defined, even though its characterization appears to be fundamen-
tal to our understanding of CD8 T cell differentiation. It is clear
that this circuitry must facilitate the integration of signals ema-
nating from diverse receptors and signaling pathways. The TCR,
IL-2 receptor and IL-12 receptor signaling have all been demon-
strated to stimulate the PI3K/Akt signal transduction pathway.
Therefore, PI3K/Akt is a logical target for investigation into the
complex circuitry underlying CD8 T cell differentiation. Never-
theless, a strong case can be made that the cumulative strength of

Akt activation in effector cells, controlled by signaling emanating
from multiple receptors including TCR, IL-2 receptor and IL-12
receptors control the balance between terminal differentiation and
generation of CD8 T cell memory.

ROLE OF PI3K/Akt SIGNALING PATHWAY IN CD8 T CELL
DIFFERENTIATION

Akt appears to be situated in a position to coordinate the con-
vergence of the CD8 T cell-fate-determining pathways, and it has
been clearly demonstrated to regulate diverse cellular processes
impacting CD8 T cell fate. This has generated considerable inter-
est in investigating its roles as well as those of its downstream
effectors, mTOR, FOXOs, and GSK3 in CD8 T cell homeostasis
(Araki etal., 2009; Kerdiles etal., 2009; Ouyang et al., 2009; Rao
etal., 2010, 2012; Sullivan etal., 2012). Macintyre etal. (2011)
examined the role of Akt in controlling the metabolism and devel-
opment of effector functions of CD8 T cells in vitro. These studies
provided important insights into how the strength and duration
of Akt activation might regulate the trafficking and differentiation
of effector CD8 T cells by controlling the cellular transcriptome.
First, they demonstrated that high levels of Akt activation down-
regulate the expression of adhesion molecules, CD62L, CCR7, and
sphingosine-1-phosphate receptor (SIP), thereby redirecting the
trafficking of effector CD8 T cells away from the secondary lym-
phoid tissues into the sites of inflammation. Conversely, low levels
of Akt activation did not down-regulate the expression of these
adhesion molecules and CD8 T cells continued to traffic into the
lymph nodes, and express a transcriptome that resembles the one
present in memory CD8 T cells. Second, it was demonstrated that
proliferation can occur in the apparent absence of Akt, but Akt
activation appears to be essential for development effector func-
tions in activated CD8 T cells (Macintyre etal., 2011). Kim etal.
(2012) also showed that terminal differentiation of CD8 T cells
induced by sustained exposure to IL-2 was associated with higher
Akt activation in vivo. They demonstrated that sustained Akt acti-
vation in vivo invoked a transcriptional program that favored
terminal differentiation of CD8 T cells at the expense of CD8 T
cell memory, consequent to excessive activation of mTOR, loss of
FOXO activity and down-regulation of the Wnt/B-catenin path-
way (Kim etal.,2012). It is unclear how constitutive Akt activation
leads to down-regulation of Wnt pathway effectors Tcfl, Lefl, and
Myc in vivo. Additionally, the effects of sustained Akt activation
on the metabolic state of effector CD8 T cells warrant further
investigation.

Exposure to cytokines such as IL-7 and IL-15 also stimulate
the PI3K/Akt signaling pathway (Barata etal., 2004; Hand etal,,
2010). Therefore, an interesting topic of discussion is the role
of homeostatic cytokines such as IL-7 and IL-15 on the dif-
ferentiation of CD8 T cells. One possible explanation is that
the magnitude of PI3K/Akt signaling triggered by TCR signal-
ing is much higher compared to stimulation with IL-7 and IL-15.
Additionally, signaling triggered by IL-7 or IL-15 might acti-
vate the PI3K/Akt signaling, but the downstream activation of
mTORCI1 might be limited. Second, the phosphorylation sites
on Akt will likely differ depending upon the nature of the stim-
uli, and therefore leads to drastically different outcomes. Third,
the spectrum of signaling pathways triggered by antigen versus
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IL-7/IL-15 are likely to be different and the interplay between var-
ious pathways might dictate the cellular response. It is also worth
noting that IL-7R is rapidly down-regulated by TCR ligation, and
gets selectively re-expressed in memory precursors (Kaech etal.,
2003). Although IL-15RB (CD122) expression is enhanced by acti-
vation, IL-15 signaling may not be strong early in the response
because this subunit also functions as a co-receptor for IL-2 (Kalia
etal., 2010). Further, exogenous administration of IL-7 or IL-15
fails to elicit dramatic effects pertaining to formation of mem-
ory CD8 T cells (Melchionda etal., 2005; Nanjappa etal., 2008).
However, in vitro exposure of naive or memory human CD8 T
cells to IL-15 can induce proliferation and effector functions, in
the absence of TCR signaling (Liu etal., 2002; Alves etal., 2003).
It is worth emphasizing that these studies were performed in
vitro, where naive/memory T cells were exposed to presumably
high and non-physiological concentrations of IL-15 (>10 ng/ml).
Although these studies clearly show that IL-15 at concentrations
of >10 ng/ml can exert effects comparable to that of TCR signaling,
it is unknown whether T cells are exposed to such concentrations
in vivo, due to the limited availability of these cytokines. However,
it should also be noted that specialized T cells do display immedi-
ate effector functions at mucosal sites such as the intestines, where
IL-15 is available at higher concentrations (Fehniger and Caligiuri,
2001). Therefore, we hypothesize that signaling triggered by IL-
15 in naive or memory CD8 T cells can mimic the effects similar
to those exerted by TCR signaling depending upon the concen-
trations of IL-15 in the immunological milieu. And we further
propose that low levels of IL-7 or IL-15 may not exert pronounced
effects on the differentiation program of CD8 T cells. Rather,
they may promote the survival and proliferation of memory
precursors.

REGULATION OF CD8 T CELL MEMORY BY mTOR

One of the important downstream effectors for the PI3K/Akt sig-
naling is mTOR, a serine—threonine kinase that has substantial
sequence homology with the members of the PI3K family. Tra-
ditionally, mTOR is known as a nutrient sensor that regulates
cell growth and protein synthesis, and is selectively inhibited
by the immunosuppressive drug, rapamycin. Cellular mTOR is
present as two distinct complexes: mTORC1 and mTORC2. The
mTORC1 complex is composed of the proteins mTOR, Raptor,
mLST8, PRAS40, and Deptor, and promotes protein translation
through 4E-BP and S6K. The mTORC2 complex is composed of
mTOR, Rictor, mLST8, and mSIN1, and mTORC2 is less sen-
sitive to rapamycin than mTORC1 (Sarbassov etal., 2005). A
heterodimeric complex consisting of TSC1 and TSC2 has been
identified as a negative regulator of mTORCI activity in T cells.
TSC1/TSC2 complex maintains quiescence of naive T cells by reg-
ulating cell size, cell cycle entry, and cell survival (Yang etal,
2011). Initiation of the PI3K/Akt signaling pathway inactivates
TSC1/TSC2 and stimulates the small Ras-related GTPase Rheb,
which in turn directly triggers mTORCI activity (Laplante and
Sabatini, 2009, 2012).

There is evidence that mMTORCI1 might limit the differentiation
of memory CD8 T cells. Studies by Araki etal. (2009) showed
that mTORCI negatively regulates the differentiation of MPECs
and their subsequent differentiation into memory CD8 T cells.

Following an acute lymphocytic choriomeningitis virus (LCMV)
infection, treatment with rapamycin during the expansion phase
promoted MPEC formation and consequently, enhanced the num-
ber of memory CD8 T cells. Alternatively, when rapamycin
treatment was restricted to the contraction phase, the phase of
effector to memory transition was accelerated and the differenti-
ation of central memory CD8 T cells was substantially increased.
This effect appears to be CD8 T cell intrinsic since silencing Rap-
tor expression in CD8 T cells largely recapitulated the effects of
rapamycin treatment on memory formation. Rao etal. (2010)
also reported that inhibition of mTORCI activity by rapamycin
in vitro enhanced the development of MPECs. Furthermore, ter-
minal differentiation of effector cells induced by sustained Akt
activation is at least in part due to hyper-activation of mTOR (Kim
etal.,, 2012). In summary, mTORCI activity promotes terminal
differentiation of effector cells at the expense of memory precur-
sors but the underlying mechanism remains to be determined.
It is proposed that mTOR might promote terminal differentia-
tion of effector cells by increasing the T-bet:Eomes ratio because,
mTORCI1 activation promotes the expression of the transcrip-
tion factor T-bet and also suppresses the expression of Eomes
(Rao etal., 2010; Li etal., 2011). How T-bet drives terminal dif-
ferentiation of effector CD8 T cells and how mTOR modulates
expression of T-bet and Eomes remain to be determined. As com-
pared to mTORCI, relatively little is known about the role of
mTORC2. mTORC2 regulates Akt activation by phosphorylation
at S473 (Sarbassov etal., 2005) and enhances cell survival with-
out activating mTORCI (Chen etal., 2010). Whether mTORC2
has significant roles in orchestrating memory CD8 T cell dif-
ferentiation awaits further investigation. Notably, mTOR is well
known as an integrative metabolic sensor that is also regulated
by 5" AMP-activated protein kinase (AMPK; Powell and Delgoffe,
2010). The role of mTOR in T cell metabolism will be discussed
later.

REGULATION OF CD8 T CELL MEMORY BY FOXO0s

Members of the FOXO family transcription factors are direct sub-
strates of Akt. There are four FOXO members namely FOXO1,
FOXO03, FOX04, and FOXO6. While FOXO1, FOXO3, and
FOXO4 are widely expressed, the expression of FOXO6 is restricted
to the nervous system (Hedrick etal., 2012). Because FOXOs
oppose cell cycle entry and promote apoptosis, they are con-
sidered as tumor suppressors (Paik etal., 2007). Additionally,
FOXOs might promote organismal longevity by detoxifying reac-
tive oxygen species and supporting DNA repair (Salih and Brunet,
2008). Peripheral T cells express FOXO1 and FOXO3, and it is
becoming increasingly clear that these proteins play crucial roles
in the maintenance of peripheral T cell homeostasis (Hedrick
etal., 2012). In their active unphosphorylated form, FOXOs
localize to the nucleus where they promote the expression of
target genes that suppress cell cycle entry or promote apop-
tosis. Activated Akt phosphorylates FOXOs resulting in their
nuclear exclusion and translocation to cytoplasm through inter-
action with the nuclear shuttle, 14-3-3 (Hedrick, 2009; Hedrick
etal., 2012). However, exposure of cells to oxidative stress or
nutrient deprivation can induce nuclear retention of FOXOs,
thereby promoting the transcription of FOXO target genes. In
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addition to Akt, AMPK, c-jun N-terminal kinase (JNK),and MST1
are known to cause posttranslational modification of FOXOs
(Ouyang and Li, 2011).

The role of FOXO1 and FOXO3 in regulating T cell homeosta-
sis has been examined by ablating FOXO1 and/or FOXO3 in mice.
In one study, global loss of FOXO3 led to lymphoproliferative
disease and multi-organ inflammation, however, further studies
have failed to reproduce these results (Lin et al., 2004; Dejean et al.,
2009). Studies of LCMV infection in global and T cell-specific con-
ditional FOXO3 null mice showed that FOXO3 might constrain T
cell responses by both T cell-intrinsic and extrinsic mechanisms
(Dejean etal., 2009; Sullivan etal., 2012). In studies by Dejean
etal. (2009) increased accumulation of CD8 T cells in FOXO3
null mice during an acute LCMV infection was linked to overpro-
duction of IL-6 from FOXO3-deficient dendritic cells. However,
studies by Sullivan etal. (2012) suggested that FOXO3 might also
limit the accumulation of LCMV-specific CD8 T cells by T cell-
intrinsic mechanisms that include BIM-dependent apoptosis. By
virtue of increased accumulation of CD8 T cells during the pri-
mary response, FOXO3 deficiency augmented the magnitude of
CD8 T cell memory without affecting their phenotype or function
(Sullivan etal., 2012).

While the functions of FOXO3 in T cells are largely consistent
with its growth inhibitory properties in other cells, the role of
FOXOL1 in mature T cells is quite unique. FOXO1 controls multi-
ple facets of T cells including trafficking, tolerance, and survival.
First, unlike FOXO3, which promotes apoptosis of T cells (Sullivan
etal., 2012), FOXO1 supports the survival of T cells by inducing
the expression of the IL-7Ra chain, which promotes IL-7-induced
Bcl-2 expression. Additionally, FOXO1 controls T cell trafficking
by promoting the expression of the transcription factor KLF2,
which in turn induces the transcription of molecules involved
in trafficking, CD62L, CCR7, and S1P1 (Kerdiles etal., 2009;
Ouyang etal., 2009). Unlike the seemingly opposing effects on
T cell survival, FOXO1 and FOXO3 co-operatively protect against
autoimmunity. Loss of FOXO1 and FOXO3 in T cells results in
uncontrolled T cell activation and autoimmunity, which is at least
in part linked to defects in the generation of regulatory T cells
(Ouyang and Li, 2011). In addition, disruption of T cell home-
ostasis in the absence of FOXOs could result from dysregulated
expression of p15"k40 p21CP1 and p27KiP! by itself and/or in
association with TGF-B/Smad signaling pathway (Ouyang etal,,
2010; Hedrick etal., 2012). More recently, in vitro studies of T cells
by Rao etal. (2012) showed that FOXO1 might directly induce
Eomes expression, indirectly repress T-bet expression, and pro-
mote memory CD8 T cell differentiation. Rao etal. (2012) also
reported that in vitro-activated FOXO1-deficient CD8 T cells have
diminished ability to survive after adoptive transfer into syngeneic
mice. However, neither do we know how FOXO1 regulates T-bet
expression nor it is clear how FOXO1 might support survival of
memory CD8 T cells. It is worth investigating whether loss of
IL-7R expression, consequent to loss of FOXO1 leads to demise
of FOXO1-deficient memory CD8 T cells. Interestingly the cyclin-
dependent kinase inhibitor p27XiP!, a major target gene for FOXOs
curtails the primary expansion of CD8 T cells and limits the num-
ber of highly functional memory CD8 T cells during an acute
LCMYV infection (Singh et al., 2010). This phenotype has not been

recapitulated either in FOXO3 or FOXOT1 null mice (unpublished
observations; Tejera and Suresh).

CONTROL OF T CELL METABOLISM BY PI3K/Akt SIGNALING
During the phase of antigen-driven clonal expansion, CD8 T cells
proliferate intensively with an estimated doubling time of 4-6 h
(Murali-Krishna etal., 1998; Badovinac etal., 2007). In order to
support such rapid proliferation and effector functions includ-
ing cell-mediated cytotoxicity and cytokine production, activated
CD8 T cells increase uptake of glucose, amino acids, and iron
(Fox etal., 2005), and switch glucose metabolism from fatty acid
oxidation (catabolism) to aerobic glycolysis and glutaminolysis
(anabolism) by mechanisms orchestrated by transcription factor
c-myc consequent to Akt/Erkl1/2 activation (Wang etal., 2011).
PDKI1 but not Akt appears to be required for metabolic pro-
gramming of activated CD8 T cells to aerobic glycolysis. While
aerobic glycolysis may be required for clonal expansion and effec-
tor functions, effector CD8 T cells do switch back to catabolism
during effector to memory transition (Prlic and Bevan, 2009).
The metabolic switch to catabolism might be a necessary event for
generation of CD8 T cell memory because defects in the fatty-acid
oxidation pathway induced by TRAF6 deficiency can dramatically
decrease memory T cell generation (Pearce etal., 2009). Inter-
estingly, TRAF6-deficient CD8 T cells exhibit hyper-activation of
PI3K/AKkt signaling, which suggests a role for this signaling path-
way in regulating fatty acid metabolism and generation of CD8
T cell memory (King et al., 2006). Pharmacological augmentation
of AMPK activation (by metformin treatment) and suppression of
mTORCI (by rapamycin treatment) improve memory formation
from TRAF6-deficient CD8 T cells (Pearce et al., 2009). This study
confirmed another report, which showed that rapamycin treat-
ment during contraction phase accelerated the differentiation of
central memory cells, implicating PI3K/Akt/mTOR pathway in
controlling CD8 T cell metabolism and differentiation of memory
CD8 T cells (Araki etal., 2009). In a recent report, van der Windt
etal. (2012) showed that IL-15 promotes the generation of mem-
ory CD8 T cells by supporting fatty acid oxidation and enhancing
the mitochondrial respiratory capacity of CD8 T cells. While col-
lective evidence support the idea that PI3K/Akt signaling pathway
might regulate cellular metabolism and differentiation of memory
CD8 T cells, further studies are clearly needed to fully decipher the
underlying mechanisms.

CROSS TALK BETWEEN PI3K/Akt AND OTHER SIGNALING
PATHWAYS

Whnt/B-CATENIN SIGNALING PATHWAY

Accumulating data supports the Wnt/B-catenin signaling pathway
might be important for generation and maintenance of CD8 T cell
memory. The expression of the Wnt target genes is dynamically
regulated during a T cell response. Expression of tcf7 (encodes
Tcfl), lefl, and myc is highest in naive and central memory
CD8 T cells, but substantially down-regulated in SLECs (Kim
etal., 2012; Xue and Zhao, 2012). Thus, terminal differentia-
tion into SLECs is associated with the loss of Wnt target gene
expression and high-level expression of these genes correlates
with survival or quiescence (Driessens etal., 2011). Studies that
involved constitutive expression of B-catenin or loss of function
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mutants indicated that clonal expansion of CD8 T cells might
require down-regulation of Wnt/B-catenin signaling but survival
and maintenance of memory CD8 T cells are Wnt/B-catenin-
dependent, especially Tcfl (Jeannet etal., 2010; Zhao etal., 2010;
Zhou etal., 2010). Mechanistically, Tcfl could support CD8 T
cell memory formation by directly inducing the expression of
transcription factor Eomes, which is critical for sustained expres-
sion of the IL-2 receptor B chain (CD122; Zhou etal., 2010).
Whether continued action of Tcfl is required for maintenance
of memory CD8 T cells remains unknown. Studies from Res-
tifo’s group suggested that augmented Wnt signaling consequent
to GSK3p inhibition reduced terminal differentiation of effector
cells and promoted development of memory CD8 T cells with
stem cell-like properties (Gattinoni et al., 2009b). It is GSK3f that
provides a conduit for crosstalk between Wnt signaling and the
PI3K signaling pathway. GSK3 is one of the central regulators of
canonical Wnt signaling pathway and it is a direct substrate for Akt.
Akt phosphorylates and inactivates GSK3p resulting in stabiliza-
tion and nuclear localization of cytosolic B-catenin. Surprisingly,
however, instead of potent activation, constitutively active Akt
resulted in the strong inhibition of the downstream effectors of
the canonical Wnt signaling in effector CD8 T cells (Kim etal.,
2012). The mechanisms underlying the suppression of Wnt/f-
catenin signaling by constitutively active Akt in CD8 T cells are
yet to be determined, but it was recently reported that FOXO1
binds to the intergenic region of Tcfl gene and induces its expres-
sion in regulatory T cells, with the implication that the loss of
FOXO activity might impair the expression of Tcfl in CD8 T cells
(Ouyang etal., 2012).

NF-kB SIGNALING PATHWAY

The nuclear factor kB signaling pathway regulates immune cell
survival and various facets of innate and adaptive immunity (Val-
labhapurapu and Karin, 2009). In an un-stimulated state, NF-kB
family of transcription factors remain in the cytosol as homo- or
hetero-dimers in complexes with the inhibitor of kB (IkB) pro-
teins. Upon exposure to ligands for toll-like receptors (TLRs) or
cytokines such as TNF and type I IENs, IkB is phosphorylated and
degraded by IkB kinases (IKKs). Consequent to the degradation
of IkB, NF-kB re-localizes to the nucleus and alters transcriptional
activity (Vallabhapurapu and Karin, 2009). There is precedent for
regulation of CD8 T cell memory by the NF-kB signaling pathway.
Constrained NF-kB signaling not only diminished clonal expan-
sion of CD8 T cells, but also resulted in defective CD8 T cell
memory (Hettmann etal., 2003). Further, defective NF-kB signal-
ing triggered by a mutant TCR lead to a substantive reduction in
the formation of memory CD8 T cells (Teixeiro etal., 2009). It is
unclear how NF-kB signaling regulates the generation of CD8 T
cell memory. Although debatable, there is evidence that PI3K/Akt
signaling might interact with the NF-kB pathway at multiple levels
(Salminen and Kaarniranta, 2010). For example, Akt potentiates
transactivation activity of NF-kB through IKKf and p38 mitogen-
activated protein kinase (MAPK). And, PDKI, a downstream
kinase of PI3K, directly phosphorylates IKKB and activates NF-
kB signaling. More recently, it was reported that suppression of
Akt during T cell activation reduced NF-kB binding to its target
gene promoters and diminished the expression of TNF and IL-6

(Chengetal., 2011). Therefore, it is possible that PI3K/Akt signal-
ing further tunes the differentiation of CD8 T cells through NF-kB
pathway.

JAK/STAT SIGNALING PATHWAY

The Janus kinase/signal transducers and activators of transcription
signaling pathway is the principal signaling mechanism convey-
ing biochemical signals from many growth factors and cytokines
(Schindler etal., 2007; O’Shea and Plenge, 2012). Stimulation of
this pathway induces dimerization and translocation of STAT to
the nucleus. In the nucleus, STAT functions as a trans-activator
of numerous target genes involved in cell proliferation, differ-
entiation, survival, and migration (Schindler etal., 2007; O’Shea
and Plenge, 2012). There is evidence that cytokines such as IL-7
and IL-15 trigger the JAK/STAT signaling pathway and modu-
late the differentiation and homeostasis of memory CD8 T cells
(Schluns and Lefrancois, 2003; Hand etal., 2010; Tripathi etal.,
2010). There is scant direct evidence that PI3K/Akt signaling
can influence JAK/STAT signaling, but a recent study has sug-
gested that either mTORC1 or mTORC?2 could differentially affect
JAK/STAT signaling through regulating the expression of sup-
pressor of cytokine signaling (SOCS) in mouse primary T cells
(Delgoffe etal., 2011). Significant to memory CD8 T cell differ-
entiation, loss of memory CD8 T cells induced by constitutively
active Akt in CD8 T cells was associated with impaired STATS
signaling in response to cytokines such as IL-2, IL-7, and IL-15
possibly due to hyperactive Akt-mediated inhibition of IL-7R and
IL-2R B chain expression. Conversely, constitutively active STAT5
enhanced the generation and/or survival of memory CD8 T cells
(Handetal.,2010). Thus, it is possible that a balance between STAT
and Akt signaling could determine the survival of memory CD8
T cells.

THERAPEUTIC MODULATION OF THE PI3K/Akt PATHWAY TO
ENHANCE CD8 T CELL MEMORY

It is becoming increasingly clear that vaccines against diseases
caused by complex pathogens such as AIDS, tuberculosis, and
malaria need to elicit potent humoral and cell-mediated immu-
nity. CD8 T cell-dependent protective immunity depends upon
the quantity, quality, and anatomical localization of memory CD8
T cells. Conventional approaches to enhance memory responses
by vaccines include the use of different forms and/or doses of
antigen, adjuvant, and boosting strategies (Sallusto etal., 2010).
Despite decades of research, very few adjuvants are licensed for
use in humans. In the US and Europe, only aluminum salts
(alum), AS04 (aluminum hydroxide in combination with TLR
4 ligand monophosphoryl lipid A [MPL]), and oil-in-water emul-
sions (MF59, AS03, and AF03) have been approved for human
use (Coffman etal., 2010; Nordly etal., 2011; Pulendran and
Ahmed, 2011; Foged etal., 2012). But, none of these adjuvants
are known to induce potent CD8 T cell memory. With an in-
depth understanding of the signaling pathways that regulate CD8
T cell memory, it is conceivable that targeted immunotherapies
could be developed to enhance the quantity and quality of CD8
T cell memory (Gattinoni etal., 2009a). Studies by the Ahmed
and Pearce groups have already demonstrated the feasibility of
utilizing pharmaceutical agents to augment CD8 T cell memory
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FIGURE 2 | A model for orchestration of CD8T cell differentiation by the
PI3K/Akt pathway. Signals resulting from engagement of cell surface
receptors including TCR, co-stimulatory molecules, and cytokine receptors
converge to activate Akt, and the magnitude of Akt activation is a function of
the cumulative signal strength from these receptors. Increase in the
magnitude of Akt activation progressively drives cytotoxic T lymphocytes
(CTLs) toward terminal differentiation. We propose a model where balanced
Akt activation fosters development of effector functions without impeding the
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differentiation of MPECs and their descendent memory CD8T cells. However,
activation of Akt above a certain threshold drives differentiation of CD8T cells
into terminal effectors at the expense of MPECs by paralyzing a multitude of
cell survival mechanisms including incapacitation of FOXO and the
Wnt/B-catenin pathways, and stimulation of the mTOR pathway. Thus, Akt
functions as a cellular fulcrum controlling distinct facets of the program that
governs differentiation of antigen-activated CD8T cells into terminal effector
cells or memory CD8T cells.

in vivo (Araki etal., 2009; Pearce etal., 2009). In studies by Araki
etal. (2009) inhibition of mTORCI activity by rapamycin treat-
ment during expansion phase or contraction phase significantly
improved the generation of memory CD8 T cells in terms of
quantity and/or quality. Likewise, Pearce etal. (2009) showed
that treatment of mice with rapamycin and AMP kinase acti-
vator metformin enhanced the differentiation of memory CD8
T cells by metabolically reprogramming effector CD8 T cells.
Because the amplitude of Akt activation correlated with terminal
differentiation of effector CD8 T cells, Kim et al. explored the pos-
sibility of Akt blockade as a therapeutic strategy to enhance CD8
T cell memory. Treatment of mice with the pan-Akt inhibitor
A-443654 during the expansion phase reduced mTOR activa-
tion and significantly enhanced the number of memory CD8 T
cells. There have been considerable efforts to develop selective
Akt inhibitors as treatment options for cancer. It is challenging
to develop selective Akt inhibitors because, not only does Akt
kinase has three isoforms, but these isoforms are highly homol-
ogous to AGC kinases (e.g., PKA, PKC, and S6K). However,
Merck & Co., Inc. introduced MK2206, an allosteric inhibitor
of Akt. MK2206 possesses low nanomolar potency against all
three Akt isoforms, and has recently entered a Phase I clini-
cal trial in patients with solid tumors. It would be interesting
to assess whether MK2206 can augment CD8 T cell memory to
vaccinations. The use of pharmaceutics to enhance CD8 T cell
memory may be more enticing for the field of adoptive tumor
immunotherapy. For example, tumor-infiltrating lymphocytes
can be reprogrammed by pharmaceutics during in vitro expansion
prior to adoptive transfer into patients (Restifo etal., 2012). Since
transfer of central memory T cells provided superior anti-tumor
effect compared to effector memory or effector T cells, (Gattinoni
etal., 2005; Klebanoff etal., 2005), pharmacological modulation
to promote the differentiation of central memory CD8 T cells
during in vitro expansion would greatly improve the efficacy of
immunotherapy.

CONCLUDING REMARKS

During an immune response, CD8 T cells are exposed to multiple
extracellular signals, temporally and spatially, and the confluence
of these signals not only determines the fate of antigen-activated
CD8 T cells, they shape the quantity and quality of memory
CD8 T cells. In this review, we have discussed how the PI3K
signaling pathway might integrate multiple signals and control
distinct facets of effector and memory differentiation by mod-
ulating specific downstream substrates of Akt (Figure 2). The
emerging consensus from published work is that strong Akt sig-
naling is required for effective development of effector functions
and guiding the effector cells away from the secondary lymphoid
organs. By contrast, less intense Akt signaling might favor the
differentiation of memory CD8 T cells. This forms the basis for
the signal strength model for effector and memory differentiation
(Figure 2). However, this model leads to an unresolved question
how and why only some activated CD8 T cells receive appro-
priate strength of signals and differentiate into memory cells?
First, the duration and intensity of antigen receptor signaling
depends on the: (1) nature and duration of infection; (2) expres-
sion of chemokine receptors (CXCR3 and CCR5) that regulate T
cell/antigen-presenting cell (APC) interactions and the anatomi-
cal localization of the responding cells (Hu etal., 2011; Kohlmeier
etal.,2011; Kurachietal., 2011); (3) the stage of infection at which
naive T cells are recruited to the response (early responders ver-
sus latecomer cells; Badovinac etal., 2004; D’Souza and Hedrick,
2006). Second, the factors described above regulate the exposure
of T cells to IL-2 and IL-12, which in turn promotes heterogene-
ity in the differentiation states. Third, diversification of effector
CD8 T cells may be programmed at the first cell division, which
occurs in an asymmetric manner. It is believed that the daughter
cells that are in close proximity to the APC receives stronger TCR
and co-stimulatory signals due to asymmetric receptor and cellu-
lar components and therefore differentiate into terminal effectors
(Chang etal., 2007, 2011). Interestingly, the development of
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effector functions is closely associated with terminal differentia-
tion, and it is currently unclear how these two processes are linked.
Perhaps, transcription factors like T-bet promotes effector func-
tions and at the same time controls genes that drive terminal differ-
entiation. The molecular mechanisms underlying the T-bet-driven
terminal differentiation of effector CD8 T cells including the iden-
tification of target genes for T-bet warrants further investigation.
By the same token, while mTORCI is known to drive terminal dif-
ferentiation of effector CD8 T cells, the underlying mechanisms are
still elusive. Furthermore, the role of FOXO1 in regulating CD8 T
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