
(Tsumiyama et al., 2009; Shiozawa, 2011, 
2012). In our experiments, the novel T cells 
that result from such overstimulation, i.e., 
aiCD4 T cells, not only could induce B cells 
to generate a large variety of autoantibod-
ies, but also promote final differentiation of 
CD8 T cells into cytotoxic T lymphocytes 
(CTL) via antigen cross-presentation, lead-
ing to the tissue injuries identical to those 
seen in SLE (Tsumiyama et al., 2009). Thus, 
this aiCD4 T cell is functionally indispensa-
ble for the pathogenesis of SLE. However, a 
precise characterization of these cells is still 
in progress, and we report here our recent 
findings on the distinct cell surface markers 
that characterize and identify aiCD4 T cells.

The aiCD4 T Cell anD PD-1-PosiTive 
effeCTor CD4 T Cell
To further characterize the surface marker 
of aiCD4 T cell, we generated aiCD4 T cells 
in BALB/c mice, a strain that is normally not 
prone to autoimmune disease: 8-week-old 
BALB/c mice were repeatedly immunized 
(12×) with 100 μg KLH (Sigma, St. Louis, 
MO, USA), 500 μg OVA (grade V; Sigma), 
25 μg SEB (Toxin Technologies, Sarasota, 
FL, USA), or PBS by means of i.p. injec-
tion every 5 days. This protocol has been 
previously found to generate aiCD4 T cells 
capable of inducing a variety of autoanti-
bodies and pathological lesions identical to 
those seen in SLE (Tsumiyama et al., 2009). 
We found a significant expansion of CD4 
T cells that expressed the PD-1high marker 
(Figure 1A). These PD-1high CD4 T cells 
further expressed CD44highCD62Llow effector 
T cell markers, but not CD44highCD62Lhigh 
memory T cell markers (Figure 1B). In 
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self-organizeD CriTiCaliTy Theory 
anD The Cause of sle
The cause of systemic lupus erythematosus 
(SLE) remains unknown (Fu et al., 2011; 
Perry et al., 2011). A critical question in elu-
cidating the pathogenesis of SLE or autoim-
munity would be how autoreactive clones 
emerge and expand in the host. According 
to the prevailing view of autoimmune dis-
ease, autoreactive clones may come from 
either clones that had escaped negative 
selection in the thymus or clones that have 
been reactivated from tolerance. However, 
clones that would emerge by either process 
would be restricted in their antigen specific-
ity and apparently could not account for the 
broad T cell receptor (TCR) repertoire and 
the more than 100 distinct autoantibody 
specificities found in SLE (Shiozawa, 2012).

We have subsequently developed an 
alternative novel theory, called the self-
organized criticality theory, which proposes 
that autoreactive lymphocyte clones are 
newly generated via de novo TCR revision 
from non-autoreactive clones at peripheral 
lymphoid organs (Tsumiyama et al., 2009). 
We identified a CD4 T cell subset that has 
passed through TCRα but not TCRβ revi-
sion at peripheral lymphoid organ spleen, 
and we named this an “autoantibody-
inducing CD4 T cell” (aiCD4 T cell).

The term “self-organized criticality” 
is derived from systems engineering. The 
theory proposes that systemic autoimmun-
ity or SLE, necessarily takes place when 
the host’s immune system is overdriven 
by repeated exposure to antigen, reaching 
levels that surpass the immune system’s 
stability-limit, i.e., self-organized criticality 

addition, these cells expressed CD27low, 
CD45RBlow, and CD122high markers 
(Miyazaki et al., 2013). We found that 
transfer of these PD-1-positive effector 
CD4 T cells into naïve recipients induced 
the generation of rheumatoid factor (RF) 
and anti-dsDNA antibodies. RF levels in the 
recipients were 39.36 ± 10.92 U/ml (n = 3) 
vs. 11.38 ± 5.21 U/ml (n = 7) in the controls 
(P < 0.0005), while anti-dsDNA antibody 
was 0.43 ± 0.02 AU (n = 3) vs. 0.25 ± 0.03 AU 
(n = 7) (P < 0.01), respectively.

Upon encounter with antigen, naïve 
CD4 T cells normally mature into CD27low, 
CD127low, CCR7low, CD44highCD62Llow effec-
tor cells (McKinstry et al., 2007; Wang et al., 
2007). These effector cells subsequently dif-
ferentiate into memory cells accompanied 
by increased expression of CD27, CD62L, 
CD127, and finally of PD-1 (Duraiswamy 
et al., 2011).

PD-1 belongs to the CD28 superfam-
ily and is expressed on regulatory T cells 
(Treg) (Francisco et al., 2009), T follicular 
helper (Tfh) cells (Haynes et al., 2007), 
memory T cells, and exhausted CD8 T cells 
(Duraiswamy et al., 2011; Jin et al., 2011). 
PD-1 conveys a negative signal that causes 
reduced production of T cell cytokines, 
including IFNγ, TNFα, and IL-2 (Riella 
et al., 2012), and induces T cell tolerance 
(Jin et al., 2011; Riella et al., 2012).

We, however, saw no increase in 
FoxP3+CD25+ Treg upon repeated immu-
nization with antigen in BALB/c mice. 
While CD25-CD4 T cells were increased 
in OVA-immunized mice as compared to 
PBS-treated mice; 80.1 vs. 68.3% (P < 0.01), 
the signal ratio of gene expression under 
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arise predominantly from non-autoreac-
tive B cells that diversify immunoglobulin 
genes via SHM: SHM normally diversi-
fies antibody genes during physiological 
responses to foreign immunogen within 
the microenvironment of the germinal 
center and thus, autoantibody-producing 
B cells are generated de novo at periphery 
(Guo et al., 2010; Weinstein et al., 2012). 
Therefore, T cell-centered disease mecha-
nism seems valid in the pathogenesis of 
systemic autoimmunity.
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ing through CD28 and/or IL-2 receptor 
can overcome PD-1 inhibitory signaling 
(Nurieva et al., 2006; Bertsias et al., 2009). 
In fact, the PD-1-expressing CD4 T cell 
population which we found was signifi-
cantly increased both in NZB/W F1 mice 
(Kasagi et al., 2010) and in the peripheral 
blood of patients with SLE (Liu et al., 2009). 
Since this CD4 T cells induce varieties of 
autoantibodies and pathological lesions 
identical to those seen in SLE upon trans-
fer into naïve recipients (Tsumiyama et al., 
2009), it appears that this PD-1-expressing 
effector CD4 T cell is an activated T cell type 
which has overcome PD-1 inhibition.

role of B Cell: is T Cell-CenTereD 
Disease MeChanisM valiD?
While B cells produce autoantibodies, 
and intrinsic biochemical abnormalities 
in B cell, and T cell as well, can induce 
SLE, studies show that autoantibodies are 
produced from B cells that have under-
gone somatic hypermutation (SHM) with 
affinity maturation and class switching 
(Weinstein et al., 2012). Autoantibodies 

microarray analyses of the CD4 T cell of 
the mice immunized 12× with OVA rela-
tive to PBS-treated mice was 0.98 for FoxP3, 
1.11 for Erg-2, and 1.29 for LAG3, and thus, 
the finding indicates that aiCD4 T cell is 
distinct from regulatory CD4 T subsets. 
Further, while Tfh markers, B cell leukemia/
lymphoma 6 (Bcl6), inducible T cell co-
stimulator (ICOS), and chemokine (C-X-C 
motif) receptor 5 (CXCR5), were also not 
significantly increased under microarray 
analyses, further studies should be required 
concerning the relationship between aiCD4 
T cell and Tfh or exhaust T cell.

The cells that are expanded upon 
repeated immunization with antigen are 
the effector CD4 T cells uniquely express-
ing memory PD-1 marker. This effector 
CD4 T cell population would be unique in 
that despite expression of the PD-1 marker 
it shows increased production of IL-2 and 
IL-6 (Miyazaki et al., 2013). Production of 
IL-2 should normally be suppressed when 
PD-1 is expressed (Latchman et al., 2001; 
Riella et al., 2012), however, as shown by 
several studies, sufficiently strong signal-

Figure 1 | Pathogenesis of SLe and aiCD4 T cell. BALB/c mice were repeatedly injected i.p. with 100 μg 
of keyhole limpet hemocyanin (KLH), 500 μg of OVA, 25 μg of staphylococcal enterotoxin B (SEB), or PBS 
every 5 days. Adjuvants were not used. (A,B) Flow cytometry analyses of CD4 T cells following 12× 
repeated immunization with antigens (lower). Cells were stained on ice in the dark for 30 min with PerCP 
Cy5.5-conjugated anti-CD4 antibody (RM4-5), APC-conjugated anti-CD62L antibody (MEL-14), PE-
conjugated anti-PD-1 antibody (J43) and anti-Vβ8 TCR antibody (F23.1), or FITC-conjugated anti-CD44 
antibody (IM7). Samples were analyzed using a BD PharMingen FACSCalibur instrument. Effector and 
memory functions of PD-1high CD4 T cells were determined by expression of CD44highCD62Llow and 
CD44highCD62Lhigh markers, respectively.
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