
and antigen coverage maximal. Theoretical 
arguments dictate that maximal immune 
cover of possible foreign pMHC requires 
each TCR to recognize huge numbers of 
different peptides (Mason, 1998; Sewell, 
2012). This theory is now supported up by 
direct experimental evidence that shows a 
single TCR can cross-recognize millions of 
pMHC molecules as well or better than the 
native antigen (Sewell, 2012; Wooldridge 
et al., 2012; Ekeruche-Makinde et al., 2013). 
Curiously, this extensive T-cell cross-reac-
tivity is strictly compartmentalized based 
on peptide length (Ekeruche-Makinde 
et al., 2013).

An interesting consequence of the low 
antigen affinity and high antigen cross-
reactivity characteristics of TCRs is that 
many, and perhaps all, cognate antigens 
could potentially be improved upon. 
Through rational structural modifications 
of native blueprint antigens we now know 
it is possible to engineer “optimal fit anti-
gens” which exhibit logarithmic increases 
in affinity and immunogenicity. Compared 
with the native antigens, if these optimal 
antigens prove more effective at stimulating 
antigen-specific T-cell populations during 
experimental priming then the compounds 
may fundamentally redefine how we think 
about vaccine design.

ImprovIng T-Cell epITopes
T-cell epitopes can be optimized by: (i) 
improving antigen affinity for MHC; (ii) 
improving antigen affinity for TCR; and (iii) 
improving antigen pharmacology through 
synthetic biology. Enhancing the stabil-
ity of the epitope within the MHC cleft is 
the simplest engineering strategy as MHC 
anchoring preferences have been deter-
mined from MS elution data (Rammensee 
et al., 1995) resulting in MHC-binding data-
bases and MHC-binding prediction algo-
rithms (Rammensee et al., 1999; Wang et al., 
2011). In theory, the replacement of buried 
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InTroduCTIon
T-cells recognize small peptide fragments 
(p) cradled in multiple major histocompat-
ibility complex (MHC) molecules, termed 
human leukocyte antigens (HLA) in humans. 
These membrane-integral pMHC molecules 
are present on surface of all nucleated cells 
and allow T-cells to detect aberrant intracel-
lular activity, be this infection with micro-
organisms or abnormal host biochemistry 
such as neoplastic division. Scanning of 
pMHC molecules occurs via the αβ T-cell 
receptor (TCR), a clonotypic, heterodi-
meric, and membrane-integral molecule on 
the T-cell surface (Miles et al., 2011a). TCRs 
engage pMHC molecules via six highly flex-
ible complementarity determining region 
(CDR) loops and, upon productive docking 
with a pMHC molecule, the TCR triggers a 
myriad of intracellular T-cell signaling cas-
cades (Bridgeman et al., 2012). The binding 
strength (or affinity) between a TCR and 
a cognate pMHC is relatively weak across 
known biological systems with monomeric 
“dwell times” (or half-lives) typically meas-
ured in seconds or microseconds at physi-
ological temperatures (Miles et al., 2010; 
Bridgeman et al., 2012; Smith et al., 2012). 
This is in contrast to numerous other bio-
logical interactions such as antibodies (van 
der Merwe and Davis, 2003), interleukins 
(Morton et al., 1994), lipoproteins (Misra 
et al., 2001), and structural membrane pro-
teins (Matte et al., 2012) which have half-
lives measured in hours-to-days. Overall, 
TCR/pMHC interactions are fleeting even 
by the dynamic standards of cell surface 
interactions (van der Merwe and Davis, 
2003). The evolutionary rationale for this 
striking functional divide can only be spec-
ulated upon but likely pertains to the pri-
mary function of T-cells. T-cells must scan 
large numbers of pMHC on multiple cells 
in series in order to identify and eliminate 
threats quickly. Effective immunity requires 
that TCR scanning time must be minimal 

suboptimal anchor residues with optimal 
residues for MHC-binding will produce a 
more stable pMHC complex and improved 
recognition of peptide. Recent studies have 
shown that things are not straightfor-
ward and this simple strategy for antigen 
improvement requires careful evaluation. 
We now know that anchor residue-modified 
peptides can have minimal or no improve-
ment on stability in the MHC cleft (Miles 
et al., 2011b). Additionally, previous work 
has shown that MHC-binding strength 
shows little correlation with immunogenic-
ity (Assarsson et al., 2007). We have recently 
shown that anchor residue-modified pep-
tides can substantially alter TCR binding in 
ways that are difficult to predict and thereby 
prime T-cells with altered TCR repertoires 
(Ekeruche-Makinde et al., 2012). These 
repertoire effects have clinical relevance as 
it was found that vaccination with anchor 
residue-modified peptides was less effective 
than vaccination with natural peptides at 
priming tumor-specific T-cells in patients 
(Speiser et al., 2008).

T-cell epitopes can also be improved by 
optimizing contact interface between the 
peptide and TCR. In its simplest form this 
can be achieved by scanning recognition of 
a monosubstituted analog library (MAL) 
(Burrows et al., 1992, 1995; Zaremba et al., 
1997; Tangri et al., 2001; Kjer-Nielsen et al., 
2003; Burrows, 2004; Bulek et al., 2012). 
MALs substitute one of all available proteo-
genic amino acids across each position of a 
peptide backbone. While this approach can 
rapidly identify optimal antigens it is expen-
sive as it requires the manufacture a unique 
defined analog library for each epitope 
examined. Combinatorial peptide librar-
ies (CPLs) provide more flexible approach 
for the identification of optimal ligands 
(Borras et al., 2002). These very large, 
 mixture-based compound libraries are 
synthesized in positional scanning format 
so that just one position along the peptide 

www.frontiersin.org June 2013 | Volume 4 | Article 133 | 1

OpiniOn Article
published: 05 June 2013

doi: 10.3389/fimmu.2013.00133

http://www.frontiersin.org/Immunology/about
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org/T_Cell_Biology/10.3389/fimmu.2013.00133/full
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=JohnMiles&UID=47201
http://www.frontiersin.org/
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/T_Cell_Biology/archive
mailto:john.miles@qimr.edu.au


glycines (peptoids) where the side chains 
are appended to the nitrogen atom of the 
peptide backbone (Gocke et al., 2009).

Why opTImIze T-Cell epITopes?
We know that the number of antigen-specific 
T-cells within the host has fundamental rel-
evance for disease control. For example the 
number of virus-specific T-cells generated 
during primary infection shows an inverse 
correlation with viral load (Ogg et al., 1998; 
Bharadwaj et al., 2001) and, in multiple 
cancer vaccine trials, the number of tumor-
specific T-cells circulating within a patient 
and at tumor site/s correlates with clinical 
response (Lonchay et al., 2004; Rosenberg 
et al., 2004). While T-cell numbers alone 
do not determine disease outcome per se, 
global numbers are central in tipping con-
trol toward the host. With this in mind, 
engineering potent new compounds aimed 
at amplifying defined subsections of cellular 

cially engineering a compound to mimic 
a peptide (a peptidomimetic). The motive 
behind this strategy is that proteogenic 
amino acid-based polypeptides are sus-
ceptible to acid degradation and rapid 
proteolytic cleavage and have half-lives 
of less than 5 min in the presence of pro-
teases (Guichard et al., 1994) or human 
serum (Stemmer et al., 1999). Replacing 
proteogenic amino acids with synthetic 
subunits generates resilience to proteases 
and has potential to vastly improve com-
pound shelf life and in vivo bioavailabil-
ity during prophylactic and therapeutic 
applications. Many synthetic subunits 
can be substituted for proteogenic amino 
acids to impede proteolysis. These include 
D-amino acids (Bartnes et al., 1997), 
β-amino acids (Webb et al., 2005), psi-
bonded amino acids (Stemmer et al., 
1999), and the shifting of the R group by 
one atom to create poly-N-substituted 

backbone is a fixed amino acid and all other 
positions are degenerate, with degenerate 
positions containing any one of 19 proteo-
genic amino acids (cysteine is excluded to 
reduce disulfide bond formation within 
the compound mixtures). Scanning a CPL 
across a T-cell clone can quantitatively 
map which residue/s are preferred by the 
TCR along a peptide backbone even if true 
antigen specificity of the clone is unknown. 
Replacing native residues with preferred 
residues identified by CPL can significantly 
increase epitope affinity and immunogenic-
ity (see table below). The advantage of CPL 
scanning is that the same compound library 
can be used for any T-cell from any system 
although it important to use a library of 
correct peptide length (Ekeruche-Makinde 
et al., 2012).

An alternative strategy for T-cell 
epitope optimization focuses on improv-
ing compound pharmacology by artifi-

Table 1 | Examples of T-cell epitope optimization.

Species Disease Model Ag Epitope MHC Modification Functional improvement Reference

Human EBV EBNA 3A FLRGRAYGL B*0801 MAL-directed 

substitution

100 fold increase in sensitivity Burrows et al. (1992)

Human CMV pp65 NLVPMVATV A*0201 CPL-directed 

substitution

1,000 to 10,000-fold increase in 

sensitivity

La Rosa et al. (2001)

Mouse N/A Ovalbumin SIINFEKL H-2Kb β-amino acid 

insertion

500% more stable during serum 

digestion

Webb et al. (2005)

Mouse LCMV glycoprotein KAVYNFATM H-2Db Psi bond 

insertion

20-fold more stable during protease 

digestion 

Stemmer et al. (1999)

Mouse keratitis IgG2a YFMYSKLRVQKSC I-Ad D-amino acid 

retro-inverso

As active in vivo as the proteogenic 

peptide

Mézière et al. (1997)

Human cancer MAGE/CEA various A*0201 MAL-directed 

substitution

Up to 10,000-fold increase in sensitivity Tangri et al. (2001)

Human cancer gp100 various A*0201 MHC-anchor 

substitution

More numbers of T-cells recovered after 

in vitro prime

Parkhurst et al. (1996)

Human cancer PSA VISNDVCAQV A*0201 MAL-directed 

substitution

Better able to induce T-cell activation Terasawa et al. (2002)

Human cancer CEA YLSGANLNL A*0201 MAL-directed 

substitution

1,000-fold increase in sensitivity Zaremba et al. (1997)

Human HIV Gag TLNAWVKVV A*0201 CPL-directed 

substitution

130% increase of T-cells recovered after 

in vitro prime

Blondelle et al. (2008)

Human cancer survivin ELMLGEFLKL A*0201 MHC-anchor 

substitution

Induces stronger T-cell responses in 

30% of donors

Bernatchez et al. (2011)

Human cancer Melan A AAGIGILTV A*0201 CPL-directed 

substitution

500% increase in TCR/pMHC-binding 

affinity

Ekeruche-Makinde et al. 

(2012)

Human diabetes preproinsulin ALWGPDPAAA A*0201 CPL-directed 

substitution

100 to 1,000-fold increase in sensitivity Ekeruche-Makinde et al. 

(2013)

MAL, monosubstituted analog library; CPL, combinatorial peptide library.
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synthetic epitope shows that it can produce 
strong responses when given orally and that 
the T-cells induced against this compound 
protect humanized mice against a lethal 
challenge with influenza. Further studies 
are required in order to see whether such 
an approach can be extended to other T-cell 
epitopes.

In summary, optimization of T-cell 
epitopes can be achieved using a number of 
different techniques. Whether the resultant 
compounds can be used as effective pro-
phylactic or therapeutic vaccines in humans 
remains to be determined. However, such 
approaches may allow the precise target-
ing of the most effective T-cell clonotypes 
(Ekeruche-Makinde et al., 2012) in vivo and 
could have the potential to change the way 
we build vaccines and immunotherapies in 
the future.
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of rational vaccine design and therapeutic 
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1992; Zaremba et al., 1997; Tangri et al., 
2001; Terasawa et al., 2002), CPL-based 
(La Rosa et al., 2001; Blondelle et al., 2008; 
Ekeruche-Makinde et al., 2012; Wooldridge 
et al., 2012), and synthetic ligand-based 
(Mézière et al., 1997; Stemmer et al., 1999; 
Webb et al., 2005) T-cell epitope optimiza-
tion across mice and humans. Collectively, 
this work demonstrates that T-cell epitopes 
can be readily optimized across both foreign 
and self peptide “blueprints” to increase 
sensitivity to T-cells and/or increase com-
pound stability. Both MAL-based and CPL-
based platforms appear equally effective at 
generating optimized ligands and have been 
used to increase antigen sensitivity between 
100- and 10,000-fold relative to the native 
epitope blueprint. It is of particular interest 
to note that it is not just self self-derived 
epitopes that can have their immuno-
genicities amplified logarithmically. One 
CPL study (La Rosa et al., 2001) generated 
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blueprint from human cytomegalovirus 
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tion of peptidomimetics. To date, such com-
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