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Innate immune responses direct the nature and specificity of downstream adaptive
responses in autoimmune diseases. One of the strongest markers of innate immu-
nity is the up-regulated expression of interferon (IFN) and IFN-responsive/stimulated
genes (IRGs/ISGs). While multiple IRGs are induced during the innate phase of host
responses, transcriptome data suggest unique IRG-signatures for different diseases. Sjo-
gren's syndrome (SjS) is characterized by chronic immune attacks against exocrine glands
leading to exocrine dysfunction, plus strong up-regulated expressions of IFN IRG tran-
scripts. Genome-wide transcriptome analyses indicate that differentially expressed IRGs
are restricted during disease development and therefore define underlying etiopathological
mechanisms. Here we review the innate immune-associated IFN-signature of SjS and show
how differential gene expressions of IRG/ISG sets interact molecularly and biologically to
identify critical details of SjS etiopathogenesis.
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INTRODUCTION

SjS — GENERAL CHARACTERISTICS

Clinical presentation

Sjogren’s syndrome (SjS) is a chronic systemic human autoim-
mune disease, yet one characterized primarily by an immune-
mediated reduction and destruction of lacrimal, meibomian, and
salivary gland function resulting, respectively, in dry eye (kera-
toconjunctivitis sicca/xerophthalmia) and/or dry mouth (stom-
atitis sicca/xerostomia) diseases (Jonsson et al., 2000; Hansen
et al., 2003; Fox, 2005; Manthorpe et al., 2006; Fox et al., 2008).
However, in addition to the apparent primary sites of autoim-
munity in SjS, multiple tissues can develop pathologies includ-
ing the lungs, kidneys, GI tract, skin, vasculature, bladder, and
vagina. Interestingly, as many as 20% of SjS patients exhibit
various neuropathies, including sensory, peripheral, cranial, and
myelopathic complications (Delalande et al., 2004), plus various
cognitive impairments such as dementia, lack of concentration,
memory loss, and various psychiatric disorders (ranging from
depression to anxiety). Depression, loss of energy, and memory
impairment, often noted in patients during clinic visits (Mali-
now et al., 1985; Belin et al., 1999; Valtysdottir et al., 2000), is
referred to as “mental fogginess,” while involvement of the mus-
culature can lead to fibromyalgia-like symptoms and chronic
fatigue (Fox, 2005; Manthorpe et al., 2006). Fatigue is consid-
ered the most prevalent complaint and believed to be due to
high levels of Interferon (IFN) (Iannuccelli et al., 2012). Increased
IEN levels, in turn, activate multiple IFN-responsive/stimulated
genes (IRGs/ISGs) involved in innate and adaptive immune
activities, defining a specific SjS-associated “IFN signature.” The
IFN-signature of SjS patients has been reviewed recently by

Dr. Rénblom and colleagues (Nordmark et al., 2012; Yao et al.,
2012).

SjS — the cross-over autoimmune disease

An overwhelming number of published literature supports the
concept that SjS is a lymphoproliferative disorder in which B
lymphocyte populations, while initiating as a polyclonal response,
selectively expand temporally into monoclonal B cell populations
that in about 5-10% of patients eventually transform to mucosal-
associated lymphoid tissue (MALT)-associated B cell lymphomas
(Isaacson and Du, 2004). In a small subset of patients, there is a
gradual progression from low-grade MALT lymphomas to high-
grade lymphomas (De Vita et al., 1997), thus putting the patient
at risk for a life-threatening prognosis. Transformation of B cells
is thought to be the consequence of constant antigenic stimula-
tion of B cells, possibly in conjunction with the inactivation of
molecular systems, like p53, and concomitant activation of bcl2
(Masaki and Sugai, 2004). While SjS is not considered a lethal dis-
ease in the absence of B cell lymphoma formation, patients have
an increasingly diminished quality of life as the disease progresses
(Voulgarelis and Moutsopoulos, 2003; Ansell et al., 2011).

Role of T and B lymphocytes in SjS

Despite the importance of B lymphocytes and autoantibodies,
there is little doubt that clinical SjS is an autoimmune disease
that involves both T cell and B cell participation. All autoim-
mune diseases appear to require activation of T cells, whether by
self-antigens or environmental antigens that mimic self-antigens.
However, the clinical manifestations of many autoimmune dis-
eases, including SjS, rely on the production of autoantibodies by B
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cells, regulated by T lymphocytes. Nevertheless, whether T and B
cells effect different clinical manifestations, at distinct times during
development and onset, is still under study. Nevertheless, histol-
ogy suggests that in SjS T cells tend to dominate the glandular
lesions early and late while B cells tend to dominate at an inter-
mediate phase (Nguyen et al., 2007; Nguyen and Peck, 2009). B
cell development is stringently regulated by several mechanisms,
including receptor editing, apoptosis, and anergy, providing many
opportunities for populations of autoreactive B lymphocytes to
escape tolerance-inducing mechanisms (Bemark etal., 2012). Such
autoreactive B cells can become hyper-proliferative, capable of
evading apoptosis, sensitive to activation, and eventually mature
to produce autoantibodies (Poe et al., 2001; Niiro and Clark, 2002).
In addition, hyper-proliferation of B lymphocytes contributes to
an approximately 4- to 17-fold increase in the production of
gamma-globulins compared with normal individuals (Pourmand
et al., 1999). This polyclonal and monoclonal proliferations of
autoreactive B lymphocytes lead to a state of hypergammaglob-
ulinemia characterized by the production of organ-specific and
organ-non-specific autoantibodies corresponding, for the most
part, to the progression of disease development (Sawalha and
Harley, 2004).

SjS — an IFN-signature autoimmune disease

One fascinating feature of SjS autoimmunity in both humans and
animal models of SjS is the reported high levels of IFN, both IFN-
a/p and IEN-y (Hjelmervik et al., 2005; Gottenberg et al., 20065
Kawakami et al., 2007; Spachidou et al., 2007; Perez et al., 2009;
Kimoto et al., 2011; Peck et al., 2011). Although elevated levels of
the IFNs are often associated with viral infections, there remains
little proof to date that SjS is a viral-based disease. This is despite
recent observations that genes encoding TLR3, TLR7, TLRY, and
factors in both the TLR- and IFN-signaling pathways are markedly
up-regulated prior to the disease onset, i.e., the innate immune
phase, and apparently independent of detectable adaptive autoim-
munity (Wakamatsu et al., 2007; Devauchelle-Pensec et al., 2010;
Obermoser and Pascual, 2010; Peck et al., 2011). Furthermore, SjS-
susceptible mice expressing non-functional Ifny or IfnyR genes fail
to develop any signs of a SjS-like disease (Perez et al., 2009; Kimoto
et al,, 2011), while mice expressing a non-functional IfnaRI gene
fail to develop the clinical disease (Cha et al., 2004). Considering
these observations in SjS-susceptible mouse models, the elevated
levels of plasma IFNs in SjS patients and the reported activa-
tion of multiple IRGs/ISGs seen in microarray studies (Cha et al.,
2002a; Dimitriou et al., 2002; Ohlsson et al., 2002; Toniato et al.,
2002; Wang et al., 2008; Raterman et al., 2012), SjS, like systemic
lupus erythematosus (SLE) (Yang et al., 2009) has been designated
an autoimmune disease characterized by an “IFN-signature.” As
stated above, this feature has been implicated as a major under-
lying molecular process for the high incidence of fatigue plagued
patients.

THE IFN-SIGNATURE OF S;jS

THE SjS MOUSE MODEL

Despite extensive efforts to define the genetic, environmental,
and/or immunological basis for human S;jS, the underlying eti-
ology remains poorly defined. This is due, in part, to the fact that

patients are currently diagnosed only after onset of overt clinical
disease, sometimes as many as 10years post-onset. In addition,
patients present with multiple disease phenotypes, when consid-
ering associated pathologies beyond the three major diagnostic
criteria (i.e., anti-nuclear autoantibodies, leukocytic infiltration of
exocrine glands, and decreased saliva and/or tear flow rates) (Vitali
etal.,2002; Shiboski et al., 2012), also remain poorly defined. In an
attempt to better characterize the nature of SjS autoimmunity, an
ever-increasing variety of mouse models exhibiting various aspects
of SjS have been identified and studied extensively, especially as
a means to investigate events associated with early-stage disease
(Killedar et al., 2006; Delaleu et al., 2011). Unfortunately, the vast
majority of mouse models advanced to study SjS exhibit a disease
resembling more of a SLE than SjS phenotype, developing cellu-
lar infiltrates of organs but with limited evidence of concomitant
sicca syndrome. Nevertheless, two mouse strains, the NOD/ShiLt]
mouse (Humphreys-Beher et al., 1994; Cha et al., 2002b) and
its congenic strain C57BL/6.NOD-AeclAec2 (Humphreys-Beher
et al., 1994; Cha et al., 2002b), have been shown to closely mimic
both the generalized SjS phenotype of humans and most of its sec-
ondary disease manifestations, as detailed elsewhere (Nguyen etal.,
2007). These two mouse strains have been particularly important
in studies demonstrating the importance of IFN in the patho-
genesis of SjS (Cha et al., 2001, 2004) as well as defining an
IFN-signature (Peck et al., 2011; Peck and Nguyen, 2012).

The IFN-signature of NOD/ShiLtJ and C57BL/6.NOD-Aec1Aec2 mice

Previous publications by Cha et al. (2001, 2004) reported that
high levels of IFNy are detected in NOD/ShiLt] and NOD-derived
congenic C57BL/6.NOD-AeclAec2 mice as early as the time of
birth. If these SjS-susceptible mice expressed a non-functional
Ifny or Ifnyr encoding gene, they failed to develop any aspect
of SjS-like disease, revealing an absolute requirement for Ifny in
development and onset of SjS. Nevertheless, how Ifny plays such
an important role in promoting disease in these mice remains
quite speculative. In an attempt to define an IFN-signature for SjS-
like disease, and one that is translatable for human §;jS, follow-up
studies have recently been carried out in order to analyze tem-
poral gene-expression profiles generated for both salivary and
lacrimal glands isolated from C57BL/6.NOD-AeclAec2 mice for
known IFN-encoding IRGs/ISGs (Peck and Nguyen, 2012). Analy-
ses have focused heavily on genes belonging to a limited number
of IRG/ISG sub-families, including TIr, Irf, Ifi, Ifr, and Trim genes.
The most obvious observation drawn from these analyses is the
fact that only a specific subset of genes in each ISG sub-family are
up-regulated, while many other genes are either neutral or down-
regulated. A second observation is the fact that, of the genes whose
expressions are up-regulated, one subset showed optimal expres-
sion during the innate immune stage of disease, while a second
subset showed optimal expression during the adaptive immune
phase of disease. Rarely, do individual IRGs/ISGs exhibit a bipha-
sic response correlating to both the innate and adaptive immune
responses. Despite these differential gene expressions, there were
no direct correlations identified between the time of optimal gene
expression and the expected type of IFN, but this may be due in
part to the fact that multiple IRGs/ISGs are activated by both type
I and type IT IFN.
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Cell-autonomous biological processes defined by the SjS
IFN-signature

The number of genes being routinely added to the Interferome
database (Rusinova et al., 2013), together with their array of func-
tions, underscores the fact that IRGs/ISGs are not merely activated
or suppressed during development and onset of SjS-like disease,
but also act as both positive and negative feedback regulatory
molecules to ensure maximum host defenses against microbial
infections while preventing hyperreactivity leading to unwanted
host injury. Furthermore, the IFNs can no longer be viewed as
purely anti-viral molecules as IFNs are a central player in innate
immunity that is part of the general inflammatory response to
injury. Prolonged activation of IFN signaling is critical in deal-
ing with chronic infections, not only for activating an adaptive
response, but also for orchestrating cooperative anti-microbial
processes between IRGs/ISGs and autophagic factors that opsonize
cytosolic pathogens or disrupt compartmentalized pathogens to
facilitate efficient killing in autophagolysosomes (Macmicking,
2012). To this end, unique inducible molecular mechanisms have
evolved in mammalian hosts to counter the many schemes used
by microorganisms to gain entry into host cells and organs.
Considering the multitude of functions displayed by IRG/ISG
family proteins, one can hypothesize that global transcriptome
data should distinguish between the different IFN-induced cell-
autonomous effector biological processes used to kill and/or clear
specific pathogens. The first consideration in such an analysis is
whether the pathogen is compartmentalized, e.g., in phagocytic
vacuoles or pathogen-containing inclusion bodies, or residing
freely as a cytosolic pathogen. The second consideration is whether
the make-up of an IFN-signature profile at the transcription level
can identify, first and foremost, a specific molecular mechanism,
then a specific pathogen, even though the function(s) of many
IRGs/ISGs remain unknown. To date, our transcriptomic analyses
strongly support the concept that the exocrine tissues are mount-
ing an anti-viral host response and not a defensive response against
bacteria or parasites (Figure 1).

Identification of a candidate etiological agent for SjS defined by the
IFN-signature

As presented in our previous papers (Peck et al., 2011; Peck
and Nguyen, 2012), analyses of global temporal transcriptome
data collected during development of SjS-like disease in the
C57BL/6.NOD-AeclAec2 model of primary SjS defined an IFN-
signature that could be used to model molecular events and their
biological processes underlying SjS. Although there is little proof
to date that human §;jS is a viral-based disease, multiple lines of
evidence clearly point to the possible role of a dsRNA viral eti-
ology in our mouse models: (a) an up-regulated expression of
Tlr3 and Tlr4, two genes encoding pathogen-recognition receptors
(PPRs) that signal through Traf3 via Trif and/or through Traf6
via a Trif-Trim23 complex to activate NF-«kp and Irf3/Irf7 tran-
scription of pro-inflammatory cytokines including IFN, (b) the
up-regulation of Ifih], encoding Mda-5, with a concomitant down-
regulation of Ddx58, encoding Rig-1, (¢) the up-regulation of the
IEN-responsive factors Irf3, Irf7, Irf8, and Irf9 critical for tran-
scription of a vast variety of genes, and (d) the down-regulation
of Trim27, Trim30, and Trim40 with concomitant up-regulation

of Trim8, Trim21 (encoding Ro52), Trim25, and Trim56, whose
proteins impact viral replication and regulate aspects of innate
immunity. While additional genes exist within each of these gene
families that also exhibit differential expressions (Jefferies et al.,
2011), the genes mentioned point directly to two important con-
cepts: the first questions whether SjS might be a viral-induced
autoimmunity, while the second suggests that the cytokine storm
exhibited in this disease is under the direction of regulatory Trim
molecules.

With respect to the first point, the three activated pathogen-
recognition receptors (PRRs) in our model (T1r3, Tlr4,and Mda-5)
are receptors involved in the recognition of dsRNA viruses. We
have not found any other PRR (or class of PRRs) to be acti-
vated, including Nod, Nalp, Ipaf, Naip, Rage, Rxfpl, and Dai
receptors (Peck et al., 2011; Peck and Nguyen, 2012). Of par-
ticular interest, however, is the fact that Mda5 (Ifih1), but not
Rigl (Ddx58), is up-regulated coordinately with Tlr3. Rig-1 tends
to recognize viruses of the Paramyxoviridae family (e.g., mumps,
measles, respiratory syncytial and parainfluenza viruses), while
Mda-5 tends to recognize viruses of the Picornaviridae family (e.g.,
coxsackie, encephalomyocarditis, and rhinoviruses) or Reoviridae
family (e.g., rotavirus). It would be intriguing to know if SjS
patients, especially those with chronic fatigue and anti-SSA/Ro
and/or anti-SSB/La autoantibodies, have antibodies to viruses of
these latter two virus groups.

The second point, that Trim molecules may be directing
both the molecular mechanisms underlying the cytokine storm
observed in SjS patients and the transition from an enhanced
innate response to an adaptive autoimmune response, is strongly
supported by the Trim gene-expression profile present in the
exocrine glands (Jefferies et al., 2011). In essence, the three Trim
molecules (Trim27, Trim30, and Trim40), whose gene expressions
are down-regulated, function to suppress the signal transductions
of the Tlr4, TIr3, and Mda5 signaling pathways at various sig-
naling points. In contrast, the genes encoding Trim21, Trim23,
Trim25, and Trim56, four molecules whose functions are to up-
regulate the TIr3, TIr4, and Mda5 pathways at different signal-
ing steps, are each up-regulated. In addition, the gene encoding
Trim8, whose function is to suppress the action of the Socs (Sup-
pressor of cytokine synthesis) molecules (Toniato et al., 2002)
is strongly up-regulated. Taken as a whole, this profile indicates
up-regulation of pathways leading to strong transcription of pro-
inflammatory cytokines, IFNs and molecules known to activate
adaptive responses (e.g., IL6, IL12p40, Rantes, CD40, CD80, and
CD56). Not surprising, then, is that the innate phase of SjS tran-
sitions to an adaptive immune phase, but this data still raises a
question regarding whether or not viruses, known to have strong
interactions with Trim molecules, are responsible for the temporal
differential gene-expression profiles observed at the transcriptome
level.

Comparison between mouse and human SjS-associated
IFN-signatures

One encouraging aspect of transcriptome data thus far pub-
lished for SjS, although still limited, is the fact that genes used
to establish the IFN-signatures in both mouse and humans over-
lap (Table 1). This is true even though the specific underlying
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FIGURE 1 | Scheme depicting the interactive roles of interferon, Trim,
and Socs molecules regulating the innate response in SjS-susceptible
C57BL/6.NOD-Aec1Aec2 mice. (A) The IFN-signature observed during
the early pre-clinical phase of SjS in the exocrine glands of
C57BL/6.NOD-AecTAec2 mice strongly suggests an autonomous cell
response against a virus. Multiple IFN-responsive genes known to
interfere or regulated viral replication at each step are up-regulated (shown
in red). Whether this viral infection is capable of circumventing the innate
response remains a viable question, as many viruses are able to regulate
the innate response to their advantage, including interactions with Socs1
and Socs3. (B) A slowly progressing chronic infection would lead to
autonomous cell responses by both membrane-associated and
cytoplasmic pattern-recognition receptors (PRRs), in this case, TLR3, TLR4,
and MDA-5, each initiating cellular responses via the TRIF signal
transduction pathway. At the same time, signal transductions following
activation of the Ifna/B receptor involves the Jak/Tyk-Stat1/Stat2 pathway.
Irf9 acts as a transcription factor that is involved in the activation of Trim
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(Socs1, Socs3)

v v

iNOS / CD40
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molecules, many of which are E3-like ubiquitinating molecules known to
interact at multiple points of viral infections, thus functioning as
anti-microbial factors. Two major regulators of the INFaf signaling pathway
and the IFN-signature are Socs1, molecules that interfere with the
activation loop of Jak kinase, and Trim8 that thereby preventing
phosphorylation of Stat molecules. Trim8 functions as an inhibitor of
Socs1, promoting continuation of IFN-signaling. Similarly, Trim21 stabilizes
the function of Irf3 through blocking its interaction with Pin1, thereby
promoting IFN-signaling. Genes encoding molecules that function to
inhibit the innate response (Socs1, Trim27 Trim30, and Trim40) are shown
to be down-regulated (green), while genes encoding factors that function
to generally activate innate responses are shown to be up-regulated (red).
Failure to either eliminate the etiological agent or overcome its ability to
regulate the host's innate response, most likely establishes the
environment for activation of the adaptive response associated with overt
clinical disease. This scheme is consistent with the strong IFN-signature
observed in SjS and other rheumatic diseases, such as SLE.

Table 1 | Comparison between mouse and human SjS-associated
IFN-signature genes.

Gene family Mouse Human
IFN-induced lgtp, ligp1
GTPase
IFR ifrg15
IFIT [fit1, Ifit3 IFIT1, IFIT2, IFIT4
IFITM [fitm2, Ifitm3 IFITM1, IFITM3
IRF Irf1, Irf3, Irf6, Irf7  IRF7
Irf8, Irf9
ISG/ISGF 1sg20/1 ISGR3 (STAT1a), ISG20, ISG56K
IFI/IFIH Ifi35, Ifi47, IFI4 (OAS1), OAS2, IFI10
Ifi202b, 1fi205, (IP10/CXCL10), IFI16, IFI27 IFI30,
Ifih1 IFI35, IFI44, IFI-78K (MX1), VIPERIN,

SAMHD1
Antiretroviral BST-2 (TETHERIN), APOBE

defense

etiologic agents are suspected to be different. An additional con-
founding issue is that each inbred mouse model represents a single
genetic background; whereas the human disease is heterogeneous

both genetically and phenotypically. Furthermore, the disease
time-points being analyzed are clearly not the same. Nevertheless,
the IRGs/ISGs that have thus far been reported as differentially
expressed in human §jS patients by several groups (Hjelmervik
et al., 2005; Gottenberg et al., 2006; Wakamatsu et al., 2007;
Emamian et al., 2009; Perez et al., 2009; Devauchelle-Pensec et al.,
2010; Kimoto et al., 2011) include IRF7, MX1, GIP2, GIP3, OASI,
OAS2, PKR, IFIl6, IFI27, IFI30, IFI35, IF144, 1SG20, ISG56K,
IFITI, IFIT2, IFIT4, IFITM1, IFITM3, IP10/CXCL10, APOBEC3,
SAMHDI, TETHERIN, VIPERIN, and STAT1a. The majority of
these are also represented in the differentially expressed genes up-
regulated in the exocrine glands of the C57BL/6.NOD-AeclAec2
mice (Peck and Nguyen, 2012). At the same time, the num-
bers of IRGs/ISGs up-regulated and differentially expressed in SjS
patients most likely represent only a fraction of the total possible
IRGs/ISGs. Thus, this overlapping set of differentially expressed
genes must be considered an important subset of responsive
genes that we would hypothesize point to specific etiopathological
processes.

Despite the fact that a significant number of SjS patients, if
tested during clinic visits, can present with elevated levels of plasma
IFN, the human transcriptome data indicate that few, if any, genes
encoding an IFN per se exhibited up-regulation as compared to
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normal, healthy individuals (Hjelmervik et al., 2005; Emamian
et al., 2009). In contrast, transcriptome data indicate that at the
same time multiple IRGs/ISGs are up-regulated, a fact published
firstby Hjelmervik et al. (2005) using human minor salivary glands
(huMSGs), then by Emamian et al. (2009) using peripheral blood
mononuclear cells (PBMCs), and replicated in the exocrine glands
of SjS C57BL/6.NOD-AeclAec2 mice. This observation suggests
that, in the starting salivary gland tissue, there may be limited num-
bers of plasmacytoid dendritic cells (pDCs), which are a major
source of IFNs. Although it can be argued that these data result
from the fact that IFN quickly binds to their target receptors, we
have interpreted these results to suggest that the earliest disease
stage(s) actually occur(s) outside of the targeted exocrine glands
where pDCs are likely to occur and in higher numbers, and/or
the type 1 IFN expression highly relevant for innate immunity is
rapidly replaced by the type 2 IFN expression strongly associated
with adaptive immunity. Alternatively, if the etiological agent does
turn out to be a virus, then one cannot rule out the possibility that
the source of IFN in SjS, besides pDCs, is the autonomous innate
response by the glandular epithelium per se involving Ifna5 (Peck
et al., 2011; Peck and Nguyen, 2012).

While it is natural to focus on the many similarities in the IFN-
associated gene sets differentially expressed in human SjS patients
and SjS-susceptible C57BL/6.NOD-AeclAec2 mice, there are also
important major differences. A few that stand out include expres-
sion profiles for MxI, Irf8, Ifi202b — Ifi205 encoding the p200
family molecules, and the three IFN-inducible genes, Ifi27, Ifi30,
and Ifi44. One might expect a difference in MxI expression, as
laboratory mouse strains, especially C57BL/6], which are thought
to carry a non-coding MxI gene (Stacheli and Sutcliffe, 1988).
On the other hand, the Irf8 gene, which encodes a factor that
is involved in myeloid differentiation and Fas-mediated apopto-
sis as well as B cell development and transcriptional regulation
of germinal center formation (Wang and Morse, 2009), deserves
special attention due to its highly up-regulated expression in the
C57BL/6.NOD-AeclAec2 mice. Our earlier studies postulated that
myeloid cells enter the exocrine glands during the early innate
response (8—12 weeks of age) in response to Fas-FasL-mediated
apoptosis of acinar tissue, while B cells enter the salivary glands
transiently during the adaptive immune phase (post-16 weeks of
age). Interestingly, the temporal expression profile of Irf8 showed a
bimodal profile in line with this hypothesis. The inability to detect
an up-regulated expression of IRF8 in SjS patients is an inter-
esting aspect to examine further. This is because binding of the
transcriptional factor PU.1 to Irf8 leads to up-regulation of OAS1
and/or OAS2, two molecules that can bind and degrade dsRNA
viral RNA (Rogozin et al., 2003), and are highly up-regulated in
SjS patients. In contrast, the p200 molecules, encoded by the Ifi200
family of genes, are known to sense cytoplasmic DNA, leading
to the formation and activation of inflammasomes with sub-
sequent production of anti-nuclear antibodies (Choubey et al.,
2010). Although there was an Ifi202b up-regulated gene expres-
sion in the exocrine glands of C57BL/6.NOD-AecIAec2 mice, we
have not found evidence for activation of inflammasomes in these
mice, based on gene expressions of PRRs, in contrast to their
comparative SjS-non-susceptible C57BL/6] partner (Peck and
Nguyen, 2012). Lastly, whereas IFI27, IFI30, and IFI44 have been

consistently found to be up-regulated in SjS patients (Hjelmervik
et al., 2005; Emamian et al., 2009; Devauchelle-Pensec et al., 2010;
Kimoto et al., 2011), these three Ifi genes with distinct functions
were not found to be differentially expressed in the exocrine glands
of C57BL/6.NOD-AeclAec2 mice. Considering IFI44 is associated
with HCV and RSV infections, we would contend that this differ-
ence between humans and mice lies in the fact that the underlying
etiological agent(s) of SjS in these two species is different and
invokes different environmental triggers. Interestingly, IFI44L was
identified as a marker gene in RA (Raterman et al., 2012). Thus,
differentially expressed genes common to both species probably
indicate activation of similar pathways of immunopathological
processes more important than individual genes. This highlights
the fact that both similarities and differences in the IFN-signatures
will be critical to understanding S;jS.

PERSPECTIVES

Despite efforts to define an environmental, genetic, and/or
immunopathological basis for SjS, the underlying etiology remains
poorly defined with little consensus in the field. This is, in part,
due to the fact that patients are currently diagnosed only after the
onset of overt clinical disease, and then showing the presence of
multiple disease phenotypes when considering associated patholo-
gies beyond the three major diagnostic criteria. However, tran-
scriptome studies that are beginning to define a “disease-specific
IFN-signature profile” appear to offer a viable approach, if not an
absolute answer, for developing hypotheses for further testing. To
this end, we believe that the IFN-signature of the C57BL/6.NOD-
AeclAec2 mouse model points directly to a cytoplasmic dsRNA
viral etiology and a dysregulated innate immune response giving
rise to an autoimmune inflammatory pathology. Support for these
concepts lies in the observations that: (a) the three activated PRRs
in our model (TIr3, TIr4, and Mda-5) are receptors involved in
activating the IFN-based innate response against dsRNA viruses;
(b) the genes associated with cell-autonomous immune effector
mechanisms exhibiting up-regulated expressions generally defines
an anti-cytoplasmic viral response; and (c) the expression of spe-
cific Trim and Socs molecules known to regulate the IFN pathway
remain in a balance favorable for activating, not down-regulating,
innate immunity. Taken as a whole, this overall IFN profile indi-
cates up-regulation of pathways leading to strong transcription of
IFNs, pro-inflammatory cytokines, and molecules that are known
activators of adaptive responses (e.g., IL6, IL12p40, Rantes, CD40,
CD80, and CD56). The result is a prolonged innate phase of SjS
that favors transitions to an adaptive immune phase rather than
resolution.

The unique temporal changes exhibited by IFN-responsive
genes involved in molecular and biological processes reveal dif-
ferential expressions of selected subsets of genes. Detection of
which differentially expressed genes are crucial to specific mol-
ecular processes and which genes are merely normal responses
remains complicated. Any measurement at one time point of dis-
ease development is a serious weakness of applying transcriptome
data analysis to human autoimmune diseases; but no doubt, rep-
resents an incomplete picture. This still defines critical elements of
the etiopathological processes. Studies using the C57BL/6.NOD-
AeclAec2 mouse model of primary SjS document the fact that
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there are multiple IRGs/ISGs that are not differentially expressed,
and that this lack of gene-expression is not due to disease phase-
restricted expressions. This observation, therefore, invokes a need
to consider both up-regulated and down-regulated genes in defin-
ing a disease-specific IFN-signature. In conclusion, there is a
need to determine both the similarities and differences in IFN-
signatures between diseases within a single species in order to
establish how an environmental trigger might circumvent natu-
rally built-in mechanisms that are in place to prevent diseases,
and if a specific IFN-signature points to the underlying etiological
agent.

GENERAL COMMENTS

Considering the significant number of IRGs/ISGs, together with
the biological pathways regulated by these genes, one should not
be surprised that a disease such as SjS demonstrates a restricted
and, most probably, a unique transcriptomic profile. At the same
time, the specific genes that are observed to be up-regulated, plus
those that are either silent or down-regulated, appear to iden-
tify molecular pathways and biological processes that point to
a specific etiology, and possibly the etiological agent underlying
disease per se. While much of the data discussed in the current
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