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Diabetic patients often have ulcers on their lower-limbs that are infected by multiple biofilm-
forming genera of bacteria, and the elimination of the biofilm has proven highly successful in
resolving such wounds in patients.To that end, antimicrobial peptides have shown potential
as a new anti-biofilm approach.The single human cathelicidin peptide LL-37 has been shown
to have antimicrobial and anti-biofilm activity against multiple Gram-positive and Gram-
negative human pathogens, and have wound-healing effects on the host.The combination
of the anti-biofilm effect and wound-healing properties of LL-37 may make it highly effective
in resolving polymicrobially infected wounds when topically applied. Such a peptide or its
derivatives could be a platform from which to develop new therapeutic strategies to treat
biofilm-mediated infections of wounds. This review summarizes known mechanisms that
regulate the endogenous levels of LL-37 and discusses the anti-biofilm, antibacterial, and
immunological effects of deficient vs. excessive concentrations of LL-37 within the wound
environment. Here, we review recent advances in understanding the therapeutic potential
of this peptide and other clinically advanced peptides as a potential topical treatment for
polymicrobial infected wounds.
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INTRODUCTION
The goal of this review article is to explore and analyze in-depth
the recent published literature and ongoing clinical trials that have
focused on the potential of the antimicrobial peptide (AMP) LL-
37 to be used in infected wound treatment, especially as a potential
topical treatment. We are especially concerned with the treatment
of wounds that may contain multiple, biofilm-forming organisms
(polymicrobial infections). Many significant technical and clinical
advances have been made in this area, and we saw a need for an
overview of the current state of the art. In addition, we sought
to link the effects of LL-37 on the pathogen with its concomitant
effects on the host in the infected wound model system, as this
potentially may be a synergistic activity that illustrates the benefits
of LL-37 (or derivatives) as a potential therapeutic agent for the
topical treatment of infected wounds. Finally, we sought to iden-
tify some of the remaining challenges that exist in bringing such a
treatment to patients.

Bacterial biofilms inhibit wound healing and promote infec-
tion. Opportunistic pathogens, such as Pseudomonas aeruginosa
and Staphylococcus aureus are able to infect open wounds such as
chronic diabetic foot ulcers (Johnson et al., 2007; James et al., 2008;
Murray, 2008a,b; Ressner et al., 2008; Wolcott et al., 2008, 2010a;
Brown et al., 2010; Fisher et al., 2010). These organisms have a
prodigious ability to produce biofilm that makes eliminating them
from wounds extremely challenging. The immune system can be
ineffective against the infections as a result of poor circulation par-
ticularly in diabetic patients. Antibiotics can be ineffective due to
lack of penetration through the biofilm or due to colonization

by resistant strains and poor circulatory delivery of systemic
antibiotics. The result can be chronically infected wounds with
polymicrobial bacterial populations that threaten the lives and
limbs of patients (Lopez-Leban et al., 2010). The current approach
to controlling these severe infections in diabetic patients includes
performing 70,000 lower-limb amputations every year in the USA
(Figure 1) (Wolcott et al., 2010a). With 26 million (and rising)
diabetics in the US, these life-threatening infections are likely to
increase. There are few new antibiotics in the drug-development
pipeline that are effective against Pseudomonas and Staphylococ-
cus within these wounds. A combination approach of wound-care
management (debridement), systemic antibiotics, plus the use of
topical anti-biofilm agents (e.g., xylitol) has been shown to reduce
the ability of the biofilm to persist (Wolcott and Rhoads, 2008;
Lopez-Leban et al., 2010; Wolcott et al., 2010a,b,c) and has been
shown to be one effective approach to healing these wounds. Once
the biofilm collapses, the infecting bacteria are unprotected and
then cleared by the immune system and antibiotics. AMPs are a
potential new topical therapeutic agent to include in this combi-
natorial approach particularly due to their anti-biofilm activity at
low concentrations. Humans make a single cathelicidin AMP, LL-
37, which has both antimicrobial and anti-biofilm properties and
can eradicate preformed biofilms in vitro (Overhage et al., 2008;
Dean et al., 2011a,b). Thus, there is great interest of LL-37 as a
potential therapeutic for polymicrobial infected wounds. In this
review, we will survey recent research on the host and pathogen
targets of this peptide, and its potential for use in the treatment of
polymicrobial infected wounds.
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Duplantier and van Hoek LL-37 and polymicrobial infected wounds

FIGURE 1 | Prevalence of diabetes in the US (red) and the number of
lower-limb amputations. Between 15 and 25% of diabetics will develop
diabetic foot ulcers in their lifetime. Diabetics often suffer from severe,
chronic infections of those ulcers (James et al., 2008; Wolcott et al., 2008,
2010a; Fisher et al., 2010) leading to as many as 70,000 lower-limb
amputations per year in the United States (Wolcott et al., 2010a). These

biofilm-associated infections and their sequelae greatly contribute to the
healthcare cost for diabetic patients; as much as $174 billion is spent
annually on diabetes in the United States (Mikkelsen et al., 2011). With
almost 26 million diabetics (8.3% of the population) in the US currently
and the number expected to rise, the number of these life-threatening
infections is likely to increase.

BIOFILMS IN WOUNDS
Bacteria prevailingly exist within biofilms – sessile communi-
ties of microorganisms that synthesize and surround themselves
with a slimy, hydrated polymeric matrix attached to a solid sur-
face. Biofilm-forming bacteria (while in the planktonic state) go
through an initial “twitching” stage where they explore a sur-
face prior to attachment in a Type IV-pili dependent manner.
Once irreversibly attached, the bacteria begin to grow, differen-
tiate and excrete a hydrated polymeric matrix within which a
micro-colony of bacteria is formed (Figure 2). The micro-colony
then uses quorum-sensing molecules to communicate from cell to
cell. While embedded in this matrix, bacteria exhibit an altered
phenotype with respect to growth rate and gene transcription
(Costerton et al., 1995; Wolcott et al., 2010b). The transition of
planktonic bacteria from a free-swimming mode (using flagella
in the case of Pseudomonas) to the formation of (and growth
within) a biofilm environment attached to a surface is described
in Figure 2 and has been well reviewed (Monds and O’Toole,
2009; Abee et al., 2011; Mikkelsen et al., 2011; Petrova and Sauer,
2012). Once within a biofilm, bacteria can thrive as they are pro-
tected from the immune system, nutrient deprivation, changes in
pH, and antimicrobial agents (Monds and O’Toole, 2009). Growth
within the biofilm eventually reaches its maximum and is followed
by dispersion of the bacteria from the mature biofilm, believed to
be induced, in part, by short-chain fatty acid signaling molecules
such as cis-2-decenoic acid (Davies and Marques, 2009).

Chronic infected wounds may result from pressure sores,
venous leg ulcers, diabetic foot ulcers, burns, surgical site

FIGURE 2 |The biofilm life cycle. (1) Free-floating (planktonic) bacteria
encounter a submerged surface and within minutes can become attached.
They begin to produce slimy extracellular polymeric substances (EPS) and
start to colonize the surface. (2) EPS production allows the emerging
biofilm community to develop a complex, three-dimensional structure that
is influenced by a variety of environmental factors. Biofilm communities can
develop within hours. (3) Biofilms can propagate through detachment of
small or large clumps of cells, or by a type of “seeding dispersal” that
releases individual cells. Either type of detachment allows bacteria to attach
to a surface or to a biofilm downstream of the original community.
[Biofilms: The Hypertextbook (http://www.hypertextbookshop.com/
biofilmbook/v004/r003/index.html). Used with permission from Montana
State University Center for Biofilm Engineering].

infections, combat wounds, and other factors, suffer from per-
sistent inflammation and are often infected with strong biofilm-
forming bacteria (James et al., 2008). Adding to the complexity is
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Duplantier and van Hoek LL-37 and polymicrobial infected wounds

the finding that these infections are often composed of multiple
microbial species attacking host cells, and thus antibiotic therapy
that target specific bacteria becomes ineffective (Dowd et al., 2008).
Moreover, the emergence of multi-drug-resistant strains of wound
containing bacteria such as S. aureus (e.g., methicillin-resistant S.
aureus, MRSA, and Acinetobacter baumannii) has intensified the
need for new treatments.

Growing evidence supports the hypothesis that the presence of
biofilm actively prevents the healing of these wounds (Figure 3)
(Wolcott et al., 2010b). While physical debridement can assist the
healing of chronic infected wounds, anti-biofilm approaches in
combination with anti-inflammatory and antimicrobial therapy
may promote more rapid healing in a broad range of chronic
wound patients (Wolcott et al., 2009; Ammons, 2010). Wolcott
and Dowd have shown in mouse models and human patients
that elimination of biofilm from a wound promotes wound heal-
ing (James et al., 2008; Wolcott et al., 2008, 2010c; Dowd et al.,
2009; Fisher et al., 2010; Lopez-Leban et al., 2010). The use of

multiple concurrent strategies to treat these wounds is most effec-
tive, combining physical debridement, systemic antibiotics, and
topical treatments that reduce biofilm. Once the biofilm collapses,
the host immune system and the systemic antibiotics are able to
combat the unprotected bacteria, the infection resolves, and the
wound heals (Wolcott and Rhoads, 2008; Lopez-Leban et al., 2010;
Wolcott et al., 2010a,b,c), even though diabetic patients often have
impaired wound healing as part of the disease process.

Thus, the use of an anti-biofilm agent may represent an effective
strategy to treat chronic infected wounds by enabling innate and
adaptive immunity, as well as concomitant treatment with existing
antibiotics to become more effective.

ANTIMICROBIAL PEPTIDES
Antimicrobial peptides are essential components of human innate
immunity and contribute to the first line of defense against infec-
tion (Zasloff, 2002). There are currently over 1480 known AMPs
with antibacterial, anticancer, antiviral, and antifungal activities

FIGURE 3 | Bacteria in the wound are protected by biofilm. [Image used with permission from Biofilms Made Easy, 2010, Vol. 1, Issue 1, published on
Wounds International (http://www.woundsinternational.com/pdf/content_8851.pdf)].
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(Wang et al., 2009). In general, many of these AMPs are cationic,
amphipathic, between 12 and 100 amino acids in size, are struc-
turally diverse and are capable of binding to and disrupting the
membranes of microbes (Yeaman and Yount, 2003; Hurdle et al.,
2011). AMPs can inhibit cell wall, nucleic acid, and protein biosyn-
thesis (Brogden, 2005) and are chemotactic for many leukocytes,
drawing them to the site of infection or inflammation. They
have also been shown to be capable of binding and neutralizing
lipopolysaccharides (LPS), promoting angiogenesis and wound
healing, and exerting anti-tumor activity. Even though AMPs have
co-evolved with bacteria over millions of years, bacteria have sur-
prisingly not developed wide-spread resistance, providing AMPs
with a potentially attractive advantage over existing antimicrobial
agents.

CATHELICIDINS
The cathelicidin family of AMPs, named by the ability to inhibit
the protease cathepsin-L, is a large and diverse group of peptides
containing a conserved N-terminal domain called the cathelin
domain. Cathelicidins can be found in their precursor form in
the granules of natural killer T cells, neutrophils, and in the
mucosal epithelia of the lungs, with the functional antimicro-
bial cathelicidin peptide generated through proteolytic removal
of the cathelin domain as part of the secretion process (Bals,
2000). This class of peptides has been shown by us and many
other researchers to be antimicrobial against many human bac-
terial pathogens (Amer et al., 2010; de Latour et al., 2010; Dean
et al., 2011a,b; Jiang et al., 2011; Kanthawong et al., 2012). The
sequence diversity of cathelicidins resides in the active peptide
following cleavage of the conserved N-terminus, and thus cathe-
licidins are structurally conserved AMPs containing amphipathic
α-helices without sequence conservation.

In humans, the cathelicidin gene encodes an inactive
18 kDa precursor protein (Hcap-18) that releases the active C-
terminus 37 amino acid peptide LL-37 (LLGDFFRKSKEKIGKE-
FKRIVQRIKDFLRNLVPRTES) upon processing. Overviews of
the structural properties, expression, cellular and tissue distrib-
ution, and antimicrobial, chemotactic, and immunomodulatory
activities of this intriguing class of peptide have been published
(Durr et al., 2006; Kai-Larsen and Agerberth, 2008; Burton and
Steel, 2009; Nijnik and Hancock, 2009; Mendez-Samperio, 2010;
Jacobsen and Jenssen, 2012; Vandamme et al., 2012). This review
will focus on the recent reports of LL-37 and its interactions with
bacteria, biofilm, and host cells making it a potentially effective
agent for the treatment of chronic non-healing wounds.

LL-37 PEPTIDE
LL-37 STRUCTURE
In order to begin to understand how LL-37 interacts with biofilms,
bacteria, and host cells, it is important to consider its features
and secondary structure. Fifty-four percent of LL-37’s residues are
hydrophilic with 11 basic and 5 acidic,giving it a net positive charge
of +6 at physiological pH. In aqueous solution LL-37 exhibits a
circular dichroism spectrum that is consistent with a disordered
structure (see Table 1, entry A). However, in membranes where
the environment is lipophilic, many of the amino acids are able
to form intramolecular hydrogen bonds (backbone N–H groups

donate a hydrogen bond to the backbone C=O groups that are
four amino acids earlier in the sequence) locking the secondary
structure into an α-helix (Dean et al., 2011a).

A characteristic feature of the LL-37 α-helix is its amphipathic
nature, illustrated by the helical wheel and molecular model dia-
grams in Table 1, entries B and C, respectively. The secondary
structure, while viewing into the coil, reveals a lipophilic side and
a polar side that is positively charged (cationic) at physiological pH
(7.4). In efforts to more accurately approximate the conformation
of LL-37 in membranes, the three-dimensional NMR structure
was elucidated in dodecylphosphocholine micelles (Porcelli et al.,
2008). Under these conditions, both the N- and C-termini were
unstructured and solvent exposed, and the N- and C-terminal
helixes were hinged at K12, supported by a hydrophobic cluster
formed by I13, F17, and I20, and a salt bridge between K12 and
E16 (see Table 1, entry D). The hydrophilic face of LL-37 was
exposed to the water phase and the hydrophobic face was buried
in the micelle hydrocarbon region. In a similar fashion, a three-
dimensional triple-resonance NMR spectroscopy study of LL-37
in SDS micelles was performed (Wang, 2008). Under these con-
ditions a curved amphipathic helix-bend-helix motif was found
that spanned residues 2-31, and the C-terminal tail was disordered
(Table 1, entry E). The extent of α-helicity appears to correlate with
the antibacterial activity of LL-37 against both Gram-positive and
Gram-negative bacteria (Johansson et al., 1998).

Structural information along with structure activity relation-
ships around LL-37 and its smaller fragment derivatives continue
to emerge. For a comprehensive review of the sequence and bioac-
tivity of published native fragments and synthetic analogs of LL-37
(see Burton and Steel, 2009). A number of these smaller peptidic
analogs have similar antimicrobial activities compared with LL-
37, but are less cytotoxic and more stable in the presence of serum
(Ciornei et al., 2005), and thus may be useful tools for evaluating
AMPs in the treatment of chronic infected wounds.

LL-37 ENDOGENOUS LEVELS
The LL-37 peptide is produced by proteolytic cleavage (Pro-
tease 3) of hCAP-18 that exists at high concentrations in the
granules of neutrophils (40 µM or 630 µg 109 cells) (Sørensen
et al., 1997, 2001). However, in skin the serine proteases SCTE
(stratum corneum tryptic enzyme, kallikrein 5), SCCE (stra-
tum corneum chymotryptic enzyme, kallikrein 7), and kallikrein-
related peptidase-8 (KLK8) were shown to control activation of
hCAP-18 and influence further processing to smaller peptides
with alternate biological activity (Yamasaki et al., 2006; Eissa et al.,
2011). In support of this finding, doxycycline and other matrix
metalloproteinase inhibitors were recently found to inhibit the
generation of LL-37 from hCAP-18 in keratinocytes, a process
dependent on kallikrein activity (Kanada et al., 2012). The phys-
iological concentration of LL-37 varies within different tissues
and cells, and is often altered at sites of infection. For exam-
ple, LL-37 levels were significantly elevated in serum specimens
from multiply injured patients (0.02∼0.04 vs. 0.002 µM for con-
trols) (Lippross et al., 2012), and LL-37 was highly expressed in
the skin of psoriasis patients (Reinholz et al., 2012). More rel-
evant to chronic infected wounds, LL-37 expression was lower
in keloid and atopic dermatitis patients compared with normal
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Duplantier and van Hoek LL-37 and polymicrobial infected wounds

Table 1 | Secondary structure of LL-37.

LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES LL-37 sequence

A LL-37 in aqueous media has no defined conformation

B Helical wheel diagram for LL-37 showing the region 12–29 as an

amphipathic helix. N- (residues 1–11) and C- (residues 30–37) termini

residues are unstructured (Burton and Steel, 2009)

C View of AMP looking through the coil showing its amphipathic nature LL-37

structure from PDB 2K6O. Image generated using MacPyMol

D NMR structure of LL-37 in dodecylphosphocholine micelles showing the

angle between the two helical domains and the break point centered at

K12 (Porcelli et al., 2008)

E NMR structure of LL-37 in SDS micelles with hydrophobic side chains

labeled. The helical bend is indicated by an arrow, and the three structural

regions are labeled with Roman numerals I, II, and III (Wang, 2008)

(Park et al., 2009), and in the epidermis of diabetic foot ulcers and
chronic venous ulcers LL-37 had little to no expression compared
to healthy skin (Rivas-Santiago et al., 2012). This later data may
imply that part of the issue contributing to the chronic infection
present in non-healing wounds may be the low levels of the innate
immune system peptide LL-37.

Unbound LL-37 levels in the wound are regulated by a bal-
ance of expression, degradation, and serum (or wound exudate)

protein binding. Adding to the complexity, the pathogen itself,
through LPS found in the outer membrane of Gram-negative bac-
teria can induce the expression of LL-37. This induction occurs
via interaction at the toll-like receptor 4 (TLR4) and through
subsequent release of cytokines such as IL-4, IL-5, IL-1β, and
TNF-α. As a counteraction, LL-37 in turn can bind to LPS and pre-
vent its interaction with lipopolysaccharide-binding protein (LBP)
and the co-receptor CD14, thus neutralizing the effect of LPS
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(Nagaoka et al., 2001; Yoshioka et al., 2008). In general, the release
of the LL-37 peptide in the wound is a physiological response to
host/pathogen induced TLR and NOD-like receptor (NLR) signals
(Thoma-Uszynski et al., 2001).

LL-37 antibacterial activity was found to be unaffected by
the presence of 50% serum, citrate-plasma, or EDTA-plasma.
However, heparin-plasma and wound fluids that contain gly-
cosaminoglycans (GAGs) (e.g., dermatan sulfate) attenuated the
antibacterial effects of LL-37. These effects could be abrogated
by the addition of polycationic polysaccharides (e.g., chitosan)
that form complexes with GAGs (Baranska-Rybak et al., 2006).
In infected wounds, bacteria such as P. aeruginosa were able to
release GAGs from connective tissues and block the bactericidal
actions of LL-37. In addition, P. aeruginosa elastase is a secreted
protease that has been shown to further deactivate LL-37 by cleav-
ing it at many of the amino acid junctions (Schmidtchen et al.,
2002). Within host cells, mast cell activation by LL-37 results in the
release of mast cell protease (β-tryptase) that degrades and inac-
tivates LL-37. However, in this case as a counter-regulation, the
platelet-derived chemokine, CXCL4, protects LL-37 from cleavage
by β-tryptase by antagonizing the heparin component required
for the integrity of the active tetramer of β-tryptase (Schiemann
et al., 2009).

Noteworthy, since protease cleavage typically occurs between
natural amino acids, the incorporation of unnatural amino acids
can be used as a strategy to improve metabolic stability. For exam-
ple, the unnatural enantiomer d-LL-37 (in which each amino acid
is in the d-configuration) was found to be resistant to trypsin
degradation (Figure 4) (Dean et al., 2011a). In ex vivo experi-
ments, LL-37 was degraded by trypsin, but its susceptibility to
trypsin was diminished in the presence of wound fluid up to 24 h

(Gronberg et al., 2011). Thus, the protein binding of LL-37 in
wound fluid may protect it from protease degradation. Regardless,
there may be significant benefit to using protease-resistant analogs
of LL-37 in vivo to prolong the effective half-life. To that end, we
have performed in vivo studies using the wax moth caterpillar
and demonstrated an increased survival of Pseudomonas infected
caterpillars following d-LL-37 treatment (Figure 6) (Dean et al.,
2011a). These results suggest that d-LL-37 may be more effective
at rescuing caterpillars from Pseudomonas infection, likely due to
its improved protease resistance.

In leukocytes and keratinocytes, the mechanisms regulating LL-
37 production have been linked to vitamin D3. Induction of LL-37
by 1,25-dihydroxyvitamin D3 requires the intracellular vitamin
D receptor (VDR), as well as the steroid receptor coactivator 3
(SRC3) and histone acetylation (Schauber et al., 2008). Thus, the
host/pathogen response to the regulation of LL-37 is complex.

LL-37 MECHANISM OF INTERACTION WITH MICROBIAL MEMBRANES
LL-37 has broad-spectrum antimicrobial activity against both
Gram-negative and Gram-positive bacteria (Durr et al., 2006)
including drug-resistant strains (Saiman et al., 2001; Zaiou et al.,
2003; Schittek et al., 2008). AMPs, and LL-37 in particular, have
a different mode of action compared to conventional antibiotics
as its size, shape, lipophilicity, and cationic nature interacts with
the lipophilic and anionic nature of LPS, a component of the outer
membrane of most Gram-negative bacteria (Figure 5). Using fluo-
rescence microscopy, the antimicrobial activity of LL-37 attacking
the Gram-negative bacteria E. coli was recently dissected into
stages (Sochacki et al., 2011). The first stage was binding to the
outer membrane and its LPS and O-antigen layers, which quickly
saturate. At 8 µM, LL-37 binding saturated the outer membrane

FIGURE 4 | Chirality affects LL-37 susceptibility to proteases. (A) The
spectra for l- and d-LL-37 (125 µM) exhibit significant helical character in
10 mM sodium phosphate buffer (pH=7.4). As expected, the spectrum for
d-LL-37 (•) is the mirror image of that of the l-peptide (◦). The spectra for both
d- and l-LL-37 (� and n respectively) become more intense when the peptides
are in 50% TFE in 10 mM phosphate buffer (pH=7.4), consistent with the
peptides exhibiting more helical character in the presence of these

membrane-mimics. These results are consistent with what has been reported
in the literature for these peptides. (B) d-LL-37 demonstrated resistance to
degradation by trypsin. Peptides (18 µg) were dissolved in water (90 µL) with
either water or 0.05% trypsin (10 µL) and incubated (37 °C, 1 h). Ten
microliters of aliquots were separated on SDS-PAGE, and a silver stain was
performed. Lane 1, LL-37; Lane 2, LL-37 with trypsin; Lane 3, d-LL-37; Lane 4,
d-LL-37 with trypsin. (Figure from Dean et al., 2011a, used with permission).
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within 1 min. Translocation across the outer membrane and access
to the periplasmic space correlated in time (5–25 min later) with
the halting of growth, which may occur because of LL-37 inter-
ference with cell wall biogenesis. As shown in Figure 5, after
membrane association there are several proposed models of how
the AMP may induce bacterial killing (for an overview see Brog-
den, 2005). In the barrel-stave model, the LL-37 peptides would
attach, aggregate, and insert into the inner membrane bilayer with
the hydrophobic side of the peptide aligning with the lipid core
region and the hydrophilic side forming the interior region of
the pore (Table 1, B and C). In the Toroidal model, the attached
LL-37 peptides would aggregate and bend the lipid monolayers
continuously through the pore so that the core would become
lined by the head groups of both the inserted peptides and the
lipid monolayer. In the carpet model (micelle formation), the
LL-37 peptides would disrupt the membrane by orienting par-
allel to the surface of the lipid bilayer and form an extensive
layer or carpet. In all cases, the interaction would result in pores
being formed within the inner membrane followed by bacterial
lysis.

LL-37 and its LL-31 truncated analog (lacking the 6 C-terminus
residues) exhibited a strong killing effect against Burkholderia
pseudomallei (Kanthawong et al., 2012). The percentage of α-
helical structure as determined by circular dichroism was similar

for LL-37 vs. LL-31. In this study, the killing of B. pseudomallei
(as well as B. thailandensis) was shown to be caused by dis-
ruption of membrane as measured by freeze-fracture electron
microscopy of bacterial cells. Both peptides exhibited stronger
antimicrobial activity against B. pseudomallei in biofilm compared
to ceftazidime, a cephalosporin antibiotic that is used clinically
for initial melioidosis treatment. This result is consistent with
LL-37’s ability to permeabilize and/or to form pores within the
cytoplasmic membrane.

In recent studies, LL-37 has also been shown to have specific
binding interactions with the outer membrane lipoprotein Lpp
in Enterobacteriaceae (Chang et al., 2012). Lpp is composed of
trimeric α-helices (in aqueous solution) (Shu et al., 2000), and
although proposed to act as a barrier against antibiotics, there is
evidence that LL-37 binds and internalizes Lpp. The crystal struc-
ture of Lpp provides an explanation for assembly and insertion
of the lipoprotein molecules into the outer membrane of Gram-
negative bacteria. The authors suggest that the susceptibility of
bacteria to an AMP is not strictly correlated with the presence
of Lpp on bacteria, as the bactericidal activities were blocked
by anti-Lpp antibodies. As specific receptors and mechanisms
for which LL-37 interacts with bacteria are gradually becoming
understood, it is clear that further research is warranted in the
area.

FIGURE 5 | Overview of the broad-spectrum of cellular interactions
associated with antimicrobial peptides. In addition to exerting
antimicrobial activity by disrupting bacterial membranes, peptides may
also bind to specific target proteins within microbial cells and activate the

innate immune system. The binding of peptides to cell-surface LPS
molecules and proteolysis contribute to bacterial resistance to AMPs
(From Marsh et al., 2009, reproduced by permission of the Royal Society
of Chemistry).
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FIGURE 6 |Treatment of P. aeruginosa-infected G. mellonella. d-LL-37
significantly prolonged the survival of G. mellonella infected with 1×103 CFU
P. aeruginosa. Non-infected control groups consisted of a PBS injection, 5 µg
Ciprofloxacin injection, 10 µg LL-37 injection, or a 10 µg d-LL-37 injection. All
non-infected groups fare similarly to the PBS only group (data not shown). The
non-infected PBS only group experienced the highest survival rate and was

significantly different from all other groups (p-value < 0.002). The infected
group without treatment failed to survive beyond 24 h. A single dose of 5 µg
ciprofloxacin, or 10 µg of either d- or l-LL-37 was found effective when
compared to the infected control group (p-value < 0.01), but not different from
each other overall. At 48 h d-LL-37 was found to be more effective than l-LL-37
(p-value < 0.04). (Figure from Dean et al., 2011a, used with permission).

Finally, for some AMPs, there is a mechanism by which the pep-
tide can penetrate the bacterial cell and potentially act directly on
intracellular targets, though primarily to be nucleic acids (DNA
or RNA) (Takeshima et al., 2003; Lan et al., 2010; Madani et al.,
2011). Recent studies suggest that LL-37 may be able to be a
cell-penetrating peptide as well (Zhang et al., 2010; Hoyer et al.,
2012).

LL-37 ANTI-BIOFILM ACTIVITY
One of our long term goals is to discover new treatments for
polymicrobial infected wounds, which are often biofilm-mediated
(Edwards and Harding, 2004). These wounds are most often
infected with multiple bacteria (polymicrobial) and usually pro-
duce a large amount of biofilm as part of the pathology of
the infection. New treatments for non-healing infected chronic
wounds are a high need, especially in light of emerging antibiotic
resistant organisms.

The mechanism by which LL-37 carries out its anti-biofilm
effect is unknown for the case of S. aureus, and is suggested as the
dysregulation of biofilm regulatory systems and quorum-sensing
in P. aeruginosa (Overhage et al., 2008). Thus, several mechanisms
for anti-biofilm activity are possible. For example: prevention of
twitching and/or the initial attachment; membrane perturbation
leading to an SOS response (Coenye, 2010); and blocking intra-
cellular quorum-sensing molecules. Interestingly, LL-37 potently
inhibited the formation of bacterial biofilms, including S. aureus
(Dean et al., 2011b), and P. aeruginosa in vitro at concentrations
(0.5 µg/ml) far below that required to kill or inhibit bacterial
growth (MIC 64 µg/ml) (Overhage et al., 2008; Dean et al., 2011a).
In this example the anti-biofilm activity was demonstrated to be
mediated in three ways: (a) reduction of the initial attachment
of P. aeruginosa cells to the surface; (b) promotion of twitching
by stimulating the expression of genes related to type IV pilus

biosynthesis and function (increased surface motility would cause
bacteria to wander across the surface instead of forming biofilms);
and (c) down-regulation of key components of the Las and Rhl
systems (quorum-sensing systems of P. aeruginosa). The ability of
LL-37 to inhibit biofilm formation, especially at physiologically
relevant concentrations, is a promising feature with regards to the
treatment of chronically infected wounds.

The connection between biofilm formation and hard-to-
heal wounds was demonstrated in a murine cutaneous wound
model where Staphylococcal biofilms were shown to delay re-
epithelialization. In this experiment, the disruption of the
quorum-sensing system through the addition of RNAIII inhibit-
ing peptide (RIP) (breaking the cycle of biofilm signaling) restored
normal wound healing (Schierle et al., 2009). It is important to
point out that even though RIP is neither bactericidal nor bacte-
riostatic (Kiran et al., 2008), it reduced the ability of bacteria to
survive within the host. In other words, “when the biofilm col-
lapses, the once protected bacterial community can be targeted by
the immune system and by antibiotics, allowing complete recovery
of the otherwise non-healing wound” (Wolcott et al., 2011). With
respect to the LL-37 peptide, in addition to its ability to be anti-
biofilm and antimicrobial, it plays an important role in regulating
the balance of pro- and anti-inflammatory molecules both under
homeostatic conditions and during bacterial or endotoxin chal-
lenge (Mookherjee et al., 2006). LL-37 peptide thus demonstrates
broad-spectrum antimicrobial and anti-biofilm properties (Over-
hage et al., 2008; Dean et al., 2011a,b), making it a strong candidate
to develop into a topical therapeutic for infected combat or burn
wounds or chronic, non-healing wound such as diabetic ulcers.

Methods for screening new molecules for anti-biofilm activity
in an in vitro model of an infected wound are available. For
example, the Lubbock chronic wound biofilm model is an
in vitro multispecies biofilm model that simulates the functional
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characteristics of chronic pathogenic biofilms (Sun et al., 2008).
Visually, as well as by electron microscopy, this model is mor-
phologically similar to actual chronic wound biofilms and shows
promise as a tool for discovering new anti-biofilm agents.

It may be more appropriate to refer to these peptides as
“anti-biofilm peptides” rather than “AMPs,” reflecting our current
understanding of the potential role of biofilms in infection. Incor-
poration of anti-biofilm peptides or their synthetic derivatives in
therapeutic topical applications may improve outcomes for infec-
tions ranging from chronic wounds, burns, implanted medical
devices, and pneumonia.

LL-37 INTERACTION WITH HOST CELLS
The interactions of LL-37 with host cells are numerous and
complex and not completely understood. LL-37 was shown to
have a chemotactic effect on inflammatory cells, and depending
on its concentration has shown a remarkable ability to mod-
ulate their effects. As previously mentioned, hCAP-18/LL-37 is
stored predominantly in human neutrophil granules, but also
in T cells, monocytes, lymphocytes, natural killer cells, B cells,
and mast cells. In wounds, LL-37 is secreted in wound fluid and
sweat, and is upregulated in response to infection. It is inter-
esting that at different concentrations LL-37 can have opposing
effects on host cells. For example, LL-37 exposures that were
at or below ∼1 µM enhanced neutrophil survival and increased
fibroblast migration and proliferation. In contrast, higher con-
centrations were cytotoxic (enhanced apoptosis) and amplified
an acute inflammatory response (Oudhoff et al., 2010). Reported
activities and effects of LL-37 at particular concentration levels

are shown in Figure 7. As development of these peptides con-
tinues it is important to view the overall effects of LL-37 at
0.2 ∼1 µM, concentrations at which wound-healing effects are
observed.

In addition, shorter peptides may also prove useful to retain
antimicrobial activity and potentially have less host-toxicity. The
cathelicidin LL-37 and shorter derivatives were tested for toxicity
(oto-toxicity, primary skin irritation/corrosion, acute eye irrita-
tion, and toxicity by repeated dose administration in rats), and
no toxicity was found for P60.4, a 24aa acetylated and amidated
peptide derivative of LL-37 (Nell et al., 2006).

Mechanistically, LL-37 has been shown to use formyl protein
receptor like 1 (FPRL-1), a cell surface GPCR, to chemoattract
human peripheral blood neutrophils, monocytes, and T cells (Yang
et al., 2000). The suppression of neutrophil apoptosis below 1 µM
was shown to occur through the activation of FPRL-1 and P2× 7,
and antagonists of these receptors attenuated the suppression
(Nagaoka et al., 2006). By direct activation of the P2× 7 receptor,
LL-37 stimulated IL-1β secretion from monocytes (Elssner et al.,
2004). In line with the P2× 7 receptor mechanism, LL-37 induced
pore formation and release of intracellular ATP as evidenced by
the uptake of the fluorescent nucleic acid dye, YO-PRO-1. Known
inhibitors of the P2× 7 receptor (KN04, KN-62, and oxidized
ATP) inhibited IL-1β processing and release induced by LL-37
in a dose-response fashion. It was noted that this effect did not
appear to be due to increased endogenous ATP since (a) this
increase in response to LL-37 was only in the 100–200 nM ATP
range (mM ATP levels are needed to activate IL-1β release) and
(b) apyrase, which catalyzes the hydrolysis of ATP, completely

antimicrobial (0.02 - 16 uM)

block apoptosis neutrophils (0.002 ~ 2 uM)

angiogenic (0.011 - 1 uM)

chemotactic (0.1 - 11 uM)

endotoxin bind (0.2 - 11 uM)

histamine release (>0.2 uM)

wound healing  (0.2-1 uM)

dentritic cell function (1-11 uM)

LTB4 release (3 - 11 uM)

apoptosis on epithelial, smooth muscle, T-cells (6 - 11 uM)

cytotoxic (>13 uM)

anti-biofilm (0.001 - 1 uM)

FIGURE 7 | Effective concentrations for the various, different activities of LL-37. (Data from Kai-Larsen and Agerberth, 2008). The green box indicates the
wound-healing concentration range of LL-37.
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inhibited exogenously added ATP (5 mM), but did not block
IL-1β release from LL-37 stimulated cells (Wewers and Sarkar,
2009).

On a molecular level, LL-37’s ability to insert deeply into host
cell membranes may support the hypothesis that the functional
interaction between LL-37 and P2× 7 involves transmembrane
segment-mediated binding. This may also explain the finding that
d-LL-37 has similar activity to LL-37 in modulating the P2× 7
receptor (Tomasinsig et al., 2008) and at inhibiting Pseudomonas
biofilm formation (Dean et al., 2011a), especially since the
hydrophobic environment of the membrane allows for specific
interactions to be formed between polypeptides irrespective of
their chirality.

In the presence of Gram-negative bacteria, LL-37 was able to
interact directly with LPS to reduce its binding to LBP, MD2, or
other components of the TLR4 receptor complex, thus reduc-
ing activation of the downstream pathway (Scott et al., 2000).
LL-37 also inhibited LPS-induced translocation of the NF-kB
subunits p50 and p65, and selectively modulated gene tran-
scription, completely inhibiting certain pro-inflammatory genes
(p50, TNFAIP2) and reducing the expression of others (TNF-α)
(Bowdish et al., 2004). LL-37 was also shown to directly trig-
ger MAPK pathways that can in turn impact pro-inflammatory
pathways. In other reports, LL-37 has been shown to activate
mast cells via mas-related Gene X2 (MrgX2, a novel GPCR)
(Subramanian et al., 2011), and may act as a functional lig-
and for CXCR2 on human neutrophils (Zhang et al., 2009).
Thus, LL-37 has a diverse and potentially advantageous immune-
modulating effect on host cells within the wound environ-
ment.

LL-37 AND WOUND HEALING
The resistance of chronic wounds to heal has been shown to be
associated with the presence of multispecies pathogenic biofilms.
As previously stated, once biofilm is broken down, the underlying
bacterial colonies can be targeted by the immune system as well
as by antibiotics, potentially allowing recovery of the otherwise
non-healing wound. LL-37 is capable of performing all of these
functions (anti-biofilm, antimicrobial, immune-modulating), and
when administered topically, can potentially avoid the many
hurdles of systemic peptide delivery.

An intriguing aspect of LL-37 with respect to skin wounds
is its interaction with keratinocytes. Keratinocytes, the pre-
dominant cell type found in the epidermis, form barriers
against microbial pathogens during wound closure, and ker-
atinocyte migration is an important step in skin wound heal-
ing. Growth factors important to wound healing (IGF-1 and
TGF-α) induced the expression of hCAP-18/LL-37 in human
keratinocytes (Sørensen et al., 2003) and the P2× 7–SFK–Akt–
CREB/ATF1 signaling pathway activated by LL-37 in keratinocytes
was established (Nijnik et al., 2012). In a Boyden chamber assay,
LL-37 (1 µg/ml) induced the maximum level of keratinocyte
migration, and this was shown to progress via EGFR trans-
activation (Tokumaru et al., 2005). LL-37 was also found to
protect human keratinocytes from apoptosis via the activation
of the COX-2 pathway (Chamorro et al., 2009). hCAP-18 is

strongly expressed in healing skin epithelium, and treatment
with antibodies raised and affinity purified against LL-37 inhib-
ited re-epithelialization (wound closure) in a concentration-
dependent manner (Heilborn et al., 2003). Adenovirus-mediated
LL-37 gene transfer was found to promote wound healing
in diabetic ob/ob mice by increasing the re-epithelialization
rate and granulation tissue formation (Carretero et al., 2008).
In vivo, cathelicidin-deficient mice were shown to be more
susceptible to group A Streptococcus infection compared to
normal mice, supporting the involvement of epithelial cell-
derived cathelicidin in host immune defense (Braff et al.,
2005).

Fibroblasts, another epidermal cell, also play a key role in tissue
repair because they change their phenotype during the late phase
of repair and begin to proliferate and synthesize large amounts of
extracellular matrix which is crucial for wound resolution. LL-37
can induce fibroblast proliferation, and the stimulation of fibrob-
last growth by LL-37 was inhibited by KN-62 (P2× 7R antagonist),
supporting a role for the P2× 7R pathway (Tomasinsig et al., 2008)
in this process.

In other models, LL-37 stimulated the healing of mechani-
cally induced wounds in monolayers of human epithelial lung
cells (NCI-H292 cells) (5 µg/ml) and in differentiated primary
airway epithelium (1 µg/ml). These effects were shown to be
mediated through epidermal growth factor receptor, a GPCR,
and MAP/extracellular signal-regulated kinase (ERK) (Shaykhiev
et al., 2005). Similar signaling was reported within oncology
research, where LL-37 was found to have affinity to the insulin-like
growth factor 1 receptor (IGF-1R) resulting in phosphorylation
of IGF-1R with downstream signaling of the mitogen-activated
protein kinase/ERK pathway (Girnita et al., 2012). In summary,
LL-37 induces signal transduction in the host cells that may con-
tribute to the cellular processes involved in promoting wound
healing.

CLINICAL DEVELOPMENT
The use of topical cationic peptides to treat bacterial infection
has precedent and in recent years there have been a number
of AMPs entering clinical trials. For example, the peptide omi-
ganan (MBI 226), a 12-residue amide derivative of indolicidin
(a cathelicidin isolated from bovine neutrophils), is in late-stage
development as a topical antimicrobial for the prevention of local
catheter-site infections (Ross et al., 2007). Peptide mimetics of
AMPs (Flemming et al., 2009) have also progressed into clinical tri-
als. Lytixar (LTX 109) is a synthetic antimicrobial peptidomimetic
currently in phase II trials for the topical treatment of infections
of multi-resistant bacterial strains (Isaksson et al., 2011). Another
example, PMX-30063, is a defensin mimetic that is currently being
evaluated in patients with acute bacterial skin infections (Mor-
risey et al., 2012). PMX-30063 showed potent activity against the
Gram-positive bacteria tested, particularly Staphylococci, and the
activity was unaffected by resistance to existing antibiotics, includ-
ing MDR Staphylococci. Lactoferrin, another AMP, has shown
efficacy against Pseudomonas biofilms (Kamiya et al., 2012). Treat-
ment of Pseudomonas biofilm with lactoferrin in combination
with xylitol led to both structural disruption of the preformed

Frontiers in Immunology | Molecular Innate Immunity July 2013 | Volume 4 | Article 143 | 10

http://www.frontiersin.org/Molecular_Innate_Immunity
http://www.frontiersin.org/Molecular_Innate_Immunity/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Duplantier and van Hoek LL-37 and polymicrobial infected wounds

biofilm, as well as a reduction of viable bacteria through mem-
brane permeabilization (Ammons et al., 2009, 2011). The RIP
has shown effectiveness against severe polymicrobial infections
(Lopez-Leban et al., 2010). Although no data has yet been pub-
lished, LL-37 itself is currently in early development for the treat-
ment of hard-to-heal wounds and a clinical study in venous leg
ulcer patients is scheduled (Development Program LL-37, 2012).
Thus, the use of peptides as a therapeutic approach for chronic
infected wound treatment is beginning to be explored in the clinic,
and this novel approach will hopefully lead to new and effective
therapies for these difficult to treat conditions. Incorporation of
anti-biofilm peptides or their synthetic derivatives in therapeutic
topical applications may improve outcomes for infections rang-
ing from chronic wounds, burns, implanted medical devices, and
pneumonia.

CONCLUSION AND DEVELOPMENT CHALLENGES
Novel treatments for chronic wounds, pneumonia, and med-
ical implant-associated infections are critically needed. These
infections are often characterized by polymicrobial infections
mediated by biofilm-forming bacteria, including P. aeruginosa
(James et al., 2008). Desired characteristics of a novel ther-
apeutic for these wounds would include a broad-spectrum,
anti-biofilm treatment that is capable of withstanding the
host environment, including protease and wound-exudate
secretions.

Overall, LL-37 and other AMPs (Chalekson et al., 2002; Hirsch
et al., 2009) appear to be promising for the treatment of chroni-
cally infected wounds since their anti-biofilm properties coupled
with the combination of host and pathogen effects should act
in harmony to expose and clear the underlying bacteria, and
the peptide interaction with keratinocytes and fibroblasts should
encourage wound closure. Proteolytic cleavage and systemic tox-
icity are two concerns with the development of peptides, but in
the case of wound treatment, topical administration should lower
these hurdles, especially in light of LL-37’s demonstrated stability
in wound exudate. We previously demonstrated the effectiveness

of d-LL-37 to inhibit biofilm formation of S. aureus and P. aerug-
inosa, two common pathogens found in chronic infected wounds
(Dean et al., 2011a,b). d-LL-37 represents a potential therapeutic
candidate by being a protease-resistant peptide that is effective
in inhibiting biofilm formation, increasing the rate of twitch-
ing motility, and possesses potentially wound-healing properties
toward the host, illustrating its potential to be developed as top-
ical treatments against biofilm-forming bacteria in skin wounds.
The concentration-dependent effects of LL-37 ranges from anti-
biofilm and an ability to block neutrophil apoptosis at low nM
levels, to antimicrobial and chemotactic effects at 0.1∼ 10 µM
levels, to cytotoxic effects at levels above 10 µM. Thus, a chal-
lenge to the development of AMPs for the treatment of chronic
wounds may lie in defining the optimal efficacious concentrations
of the peptide within the wound environment. The design of new
peptides with a larger therapeutic index between wound-healing
properties and eukaryote cytotoxicity is warranted, and indeed
this is one direction that the field is going. Other hurdles to mar-
ket that remain for AMP therapeutics include cost-of-goods and
the design of AMPs with pharmacokinetic properties that main-
tain optimal drug exposure levels at the target site of infection. To
that end, since AMP therapeutics may be effective as an add-on to
current therapy, they should also be evaluated for their effective-
ness in the presence of standard antibiotics (Brandenburg et al.,
2012). It is clear that the data to date for LL-37 as a potential
treatment for infected wounds is encouraging. The use of multi-
ple concurrent strategies to treat these wounds is likely to be most
effective, combining physical debridement, systemic antibiotics,
and topical treatments such as peptides that are able to reduce
biofilm.
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