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Oxidative stress and inflammation in the vascular wall are essential mechanisms of ath-
erosclerosis and vascular dysfunctions associated with risk factors such as metabolic
diseases, aging, hypertension, etc. Evidence has been provided that activation of the
vascular endothelial cells in the presence of the risk factors promotes oxidative stress
and vascular inflammatory responses, leading to acceleration of atherosclerotic vascular
disease. Increasing number of studies from recent years demonstrates that uncoupling of
endothelial nitric oxide synthase (eNOS), whereby the enzyme eNOS produces detrimental
amount of superoxide anion O−2 instead the vasoprotective nitric oxide (NO·), plays a critical
role in vascular dysfunction under various pathophysiological conditions and in aging. The
mechanisms of eNOS-uncoupling seem multiple and complex. Recent research provides
emerging evidence supporting an essential role of increased activity of arginases including
arginase-I and arginase-II in causing eNOS-uncoupling, which results in vascular oxidative
stress and inflammatory responses, and ultimately leading to vascular diseases.This review
article will summarize the most recent findings on the functional roles of arginases in vas-
cular diseases and/or dysfunctions and the underlying mechanisms in relation to oxidative
stress and inflammations. Moreover, regulatory mechanisms of arginases in the vascula-
ture are reviewed and the future perspectives of targeting arginases as therapeutic options
in vascular diseases are discussed.
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INTRODUCTION
Atherosclerotic cardiovascular disease and vascular complications
associated with risk factors such as diabetes mellitus, hypercho-
lesterolemia, hypertension, aging, etc., remain the most important
challenge for our society (Sidney et al., 2013). Mechanisms of
pathogenesis of atherosclerosis are complex interplay between
bloodstream cells and arterial wall components that leads to a
chronic state of vascular oxidative stress and inflammation (Hans-
son and Hermansson, 2011). In the past decades, unambiguous
evidence has been provided that heightened oxidative stress and
vascular wall inflammation are the key mechanisms for initiation
and progression of atherosclerosis and vascular diseases associated
with the risk factors (Hansson and Hermansson, 2011). Oxida-
tive stress not only chemically modifies native LDL to the highly
atherogenic oxidized LDL which is readily taken up by infiltrated
macrophages in the intima of the vascular wall, resulting in foam
cell formation, but also causes vascular cell damage that trig-
gers inflammatory responses in the vascular wall and facilitates
pathogenesis of vascular diseases, leading to rupture of lipid-
rich vascular lesions, the life-threatening events, such as acute
myocardial infarction and stroke (Faxon et al., 2004; Hansson and
Hermansson, 2011). Therefore, elucidation of mechanisms under-
lying oxidative stress and inflammations in the vascular wall will
have important impact in understanding atherosclerosis and vas-
cular diseases associated with cardiovascular risk factors and will
eventually lead to novel and effective therapeutic modalities.

OXIDATIVE STRESS, INFLAMMATION, AND VASCULAR
DISEASE
Oxidative stress is characterized with the excessive production of
oxidant molecules that overwhelm the anti-oxidant defense sys-
tems, resulting in oxidative damage (Lonn et al.,2012). The oxidant
molecules include radicals and non-radicals may cause damage of
DNA, proteins, and lipids, leading to alterations in cellular func-
tions or cell death (Lonn et al., 2012). Reactive oxygen species
(ROS) such as superoxide anion (O−2 ), hydrogen peroxide (H2O2)
and nitric oxide (NO·) are important signaling molecules involved
in the regulation of vascular functions, including vascular relax-
ations, inflammatory responses, and cell proliferation (Sundaresan
et al., 1995; Yang and Ming, 2006b; Murphy et al., 2011). Under
physiological conditions, the production of these molecules is spa-
tially and temporally regulated, participating in the maintenance
of homeostasis of vascular functions (Sundaresan et al., 1995; Yang
and Ming, 2006b). Multiple enzymes involved in oxidative stress
within the vascular wall can be stimulated or up-regulated in the
presence of cardiovascular risk factors, leading to excessive pro-
duction of ROS and cellular damage (Lonn et al., 2012). O−2 is
the parent ROS molecule produced by the one electron reduction
of oxygen catabolized by various enzymes including NADPH oxi-
dase, cyclooxygenase, lipoxygenases, cytochrome P450 enzymes,
enzymes in the mitochondrial electron transport chain (Yang and
Lüscher, 2002), and also endothelial NO· Synthase (eNOS, see
below). O−2 is then dismuted by superoxide dismutase (SOD) to
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Yang and Ming Arginase and vascular disease

H2O2 which is either detoxified to H2O by peroxiredoxins, glu-
tathione peroxidases, and catalase or metabolized to the powerful
oxidant molecules such as hydroxyl radical (OH·), peroxynitrite
(ONOO−· ), and hypochlorous acid (HOCl) through enzymatic or
non-enzymatic reactions. For detailed description on ROS gen-
eration and reaction as well as the role of oxidative stress in
pathogenesis of atherosclerosis, please refer to the review article
(Lonn et al., 2012).

Chronic vascular inflammation is the fundamental mecha-
nism of vascular diseases associated with variety of risk fac-
tors, contributing to pathogenesis of atherosclerosis and plaque
rupture, leading to acute coronary syndromes (Hansson and
Hermansson, 2011). Macrophages, T cells and other immune
cells, pro-inflammatory cytokines are found in the atheroscle-
rotic lesions. Innate as well as adaptive immune responses are
identified in atherosclerosis (Hansson and Hermansson, 2011).
At the cellular and molecular levels, oxidative stress, vascular
inflammation, as well as endothelial cell dysfunction which is
mainly reflected by decreased vasoprotective endothelial NO·

bioavailability intertwine with each other, represent the major
mechanisms leading to exaggerated atherosclerosis in the pres-
ence of risk factors (Lonn et al., 2012). Because of the com-
plex interaction among these events, it is not easy to delineate
their causal relationship in the pathogenesis of vascular diseases.
Under physiological conditions, in the absence of risk factors,
the endothelial cells express negligible levels of adhesion mole-
cules such as ICAM-1 and VCAM-1 for inflammatory cells and
low levels of the coagulation enzyme tissue factor (Viswambha-
ran et al., 2004; Ming et al., 2009, 2010), whereas in the presence
of the risk factors, these molecules are up-regulated in the cells,
which may enhance monocyte–endothelial cell interaction and
activation of coagulation cascade, participating in the initiation
and progression of atherosclerotic plaque formation and throm-
bus formation (Camici et al., 2006). The role of inflammation
and underlying mechanisms in atherogenesis and atherothrom-
bosis are comprehensively reviewed by many articles (Faxon et al.,
2004; Hansson and Hermansson, 2011; Lonn et al., 2012). In
this review article, we will mainly discuss the role and mecha-
nisms of the enzyme arginase in vascular endothelial dysfunction,
oxidative stress, and inflammation in the pathogenesis of vascular
diseases.

ENDOTHELIAL DYSFUNCTION AND eNOS-UNCOUPLING
The endothelium regulates vascular functions by multiple mech-
anisms (Yang and Lüscher, 2002). It is well established that the
decreased bioavailability of the vasoprotective endothelial NO·

molecule best reflects dysfunctional endothelium or endothelial
dysfunction under pathological conditions and in the presence
of risk factors (Forstermann and Sessa, 2012). It represents one
of the most important early markers and mechanisms of cardio-
vascular disease and also predicts the future atherosclerotic disease
progression (Schachinger et al., 2000). The endothelial NO· is pro-
duced by the eNOS from the semi-essential amino acid l-arginine
in the presence of oxygen and co-factors such as reduced nicoti-
namide adenine dinucleotide phosphate (NADPH), flavin adenine
dinucleotide (FAD), flavin mononucleotide (FMN), and tetrahy-
drobiopterin (BH4). Electrons from NADPH are transferred in

trans from the carboxyl terminal reductase domain of one eNOS
monomer, via the flavins FAD and FMN, to the heme in the
amino-terminal oxygenase domain of the other monomer, where
BH4, oxygen, and l-arginine are bound (Figure 1). At the heme
site, the electrons activate O2, so that l-arginine is oxidized to
l-citrulline and NO·. Due to the nature of the electron transfer
in trans, only eNOS dimer, but not the monomer, is functional
in catalyzing NO production. This process, especially the elec-
tron transfer from FMN to heme is facilitated by calmodulin
binding to eNOS. An increase in intracellular Ca2+ concentra-
tion in the endothelial cells upon agonist stimulation enhances
calmodulin binding affinity to eNOS, promoting flow of electron
transfer and NO· production (Forstermann and Sessa, 2012). In
addition to intracellular Ca2+ concentration, eNOS also requires
co-factor BH4 for enzyme activity. Deficiency in BH4 or inactiva-
tion of BH4 by oxidative stress has been show to destabilize eNOS
dimer and decreases NO· production (Crabtree and Channon,
2011). Interestingly, under this condition“eNOS-uncoupling”may
occur – that is, uncoupling of NADPH oxidation and NO· syn-
thesis, with oxygen instead of l-arginine as terminal electron
acceptor, resulting in the formation of O−· instead of NO· from
eNOS (Forstermann and Sessa, 2012) (Figure 1). Evidence has
been shown that eNOS-uncoupling plays an important part in
endothelial dysfunction in many diseases including atheroscle-
rosis, hypertension, myocardial ischemia/reperfusion injury, dia-
betes mellitus, as well as aging (please refer to the review article
by Kietadisorn et al. (2012). The concept to improve endothelial
function under these conditions have been evolved from increasing
eNOS gene expression to restoring or recoupling eNOS func-
tion, since eNOS gene expression are not decreased and even
enhanced in the majority of the conditions. For example, eNOS
expression in atherosclerotic arteries and arteries from diabetes
mellitus as well as in arteries from aged animals is usually com-
pensatorily increased or not changed (Cosentino et al., 1997;
van der Loo et al., 2000; d’Uscio et al., 2001; Ming et al., 2004;
Desrois et al., 2010; Rajapakse et al., 2011). Hence, elucidation
of mechanisms of eNOS-uncoupling becomes essential for future
therapeutic intervention to improve endothelial function in the
clinical settings.

The mechanism of eNOS-uncoupling seems multiple and
includes oxidation of the co-factor BH4, decreased intracellular
availability of the substrate l-arginine either due to increased
arginase activity or accumulation of endogenous methylarginines
such as asymmetric dimethyl-l-arginine (ADMA) that competes
with l-arginine for eNOS binding (Forstermann and Sessa, 2012).
Moreover, S-glutathionylation of eNOS has been proposed as yet
another mechanism of eNOS-uncoupling (Chen et al., 2010). In
this review article, we will focus on the roles of arginase in eNOS
dysfunction.

ARGINASE PROMOTES eNOS-UNCOUPLING, OXIDATIVE
STRESS, AND INFLAMMATION
In humans and mammals, there are two isoforms of arginases:
arginase-1 (Arg-I) and arginase-II (Arg-II), which is encoded by
two separate genes. The human Arg-I gene which maps to chro-
mosome 6q23, encodes a 322 amino acid protein (Dizikes et al.,
1986a,b; Sparkes et al., 1986). The human Arg-II gene which maps
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Yang and Ming Arginase and vascular disease

FIGURE 1 | Schematic illustration of mechanisms of eNOS in catalyzing
NO·or O·−

2 production. eNOS monomer consists of an N-terminal
heme-containing oxygenase domain, a C-terminal flavin-containing reductase
domain and a regulatory CaM-binding linker sequence. Monomer can bind to
CaM, but not co-factor BH4 or substrate L-arginine. (A) A functional eNOS is a
homodimer and transfers electron from NADPH from the reductase domain
of one monomer, via FAD and FMN, to the heme in the oxygenase domain of
the other monomer, where BH4, oxygen, and L-arginine are bound. At the
heme site, the reduction of Fe3+ to Fe2+ facilitates oxygen binding to the heme
group to form a transient Fe4+-O2 complex that is further reduced to form a
hydroxylating heme-Fe4+-oxo species, which in turn oxidizes L-arginine to NO·

and L-citrulline. Due to the nature of the electron transfer in trans, only eNOS
dimer, but not the monomer, is functional in catalyzing NO· production. The
binding of CaM to eNOS, upon an increased intracellular Ca2+ concentration in

response to agonist stimulation, facilitates the electron transfer from NADPH
to both flavins (FAD and FMN) as well as to the heme and ultimately the NO·

production. (B,C) Under pathological conditions that cause BH4 deficiency or
L-arginine depletion, “eNOS-uncoupling” occurs – that is, uncoupling of
NADPH oxidation and NO· synthesis, with oxygen instead of L-arginine as
terminal electron acceptor, resulting in the formation of O−2 instead of NO·

from eNOS. eNOS-derived O−2 production mainly comes from uncoupled
eNOS dimer (B), whereas monomer has only a limited capacity to reduce
molecular oxygen to O−2 (C). For simplicity and clarity, the flow of electrons in
trans is only shown from one monomer to the other monomer. The diagram is
not to scale and is made based on these publications (Griffith and Stuehr,
1995; Abu-Soud et al., 1997; Vasquez-Vivar et al., 1998). CaM, calmodulin;
BH4, tetrahydrobiopterin; NADPH, nicotinamide adenine dinucleotide
phosphate; FAD, flavin adenine dinucleotide; FAM, flavin mononucleotide.
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to chromosome 14q24.1, encodes a 354 amino acid protein (Gotoh
et al., 1996, 1997; Vockley et al., 1996) The two enzymes have
similar structural properties, enzyme characteristics and share
more than 50% of homology of their amino acid residues, with
100% homology in those areas critical to enzymatic function
(Gotoh et al., 1996; Morris Jr. et al., 1997; Vockley et al., 1996). Arg-
I is a cytosolic enzyme abundantly expressed in liver (Haraguchi
et al., 1987). It hydrolyzes l-arginine to urea and l-ornithine, is
the sixth and final enzyme of the hepatic urea cycle responsible
for elimination of excessive nitrogen generated primarily by the
metabolism of amino acids which are derived from the food intake
or from endogenous protein catabolism (Crombez and Ceder-
baum, 2005). Arg-I knockout mice exhibited severe symptoms
of hyperammonemia, and died between postnatal days 10 and
14 (Iyer et al., 2002). Arg-I deficiency due to gene mutation has
been identified and characterized in humans. These patients reveal
urea cycle disorder, hyperargininemia and exhibit neurologically
based clinical symptoms in early childhood, including progres-
sive neurologic impairment, development retardation, and hepatic
dysfunction associated with cirrhosis and carcinoma (Crombez
and Cederbaum, 2005; Tsang et al., 2012). Although this enzyme
is largely confined to the liver, it is also present in many extra-
hepatic tissues such as stomach, pancreas, and lung (Choi et al.,
2012). Arg-I gene expression is inducible by a variety of stimuli.
Upregulation of Arg-I has been reported in macrophages upon
stimulation by cAMP, IL-4, and TGF-β (Morris, 2000) and Arg-I
expression is increased in aging vasculature of rats (White et al.,
2006). Unlike Arg-I, Arg-II is a mitochondrial enzyme and most
abundantly expressed in kidney and widely expressed in many
extrahepatic tissues such as brain, prostate, intestine, and pan-
creas (Gotoh et al., 1996; Vockley et al., 1996; Choi et al., 2012)
and is inducible in other organs and cells including macrophages
and vascular endothelial cells (Ming et al., 2012; Yepuri et al.,
2012). As compared to Arg-I, the function of Arg-II is not well
characterized. Studies in the vascular endothelial cells suggest
that these two isoforms share similar functions, i.e., metaboliz-
ing l-arginine to urea and l-ornithine, whereby enhanced Arg-I
or/and Arg-II limits l-arginine bioavailability for NO· production,
leading to endothelial dysfunction (Xia et al., 1996; Kim et al.,
2009).

This hypothesis, however, requires confirmation by further
experimental evidence. Given that the concentration of l-arginine
in adult human and mouse plasma (0.1 mmol/L) as well as intra-
cellular l-arginine concentration (0.05–0.2 mmol/L) far exceed
the K m of eNOS (2–20 µmol/L) (Morris Jr., 2002), a real intra-
cellular l-arginine depletion does not seem present. Yet acute l-
arginine supplementation in patients and animals has been shown
to enhance NO· production and endothelium-dependent relax-
ations, despite sufficiently high concentrations of l-arginine in the
extracellular space, a situation known as “arginine paradox” (Kurz
and Harrison, 1997). This finding led to several hypotheses of
“relative” intracellular l-arginine deficiency. One hypothesis pro-
poses that there might be different intracellular l-arginine pools
for NO· production (Topal et al., 2006; Closs et al., 2000). While
exogenous l-arginine seems channeled to eNOS to produce NO·,
the putative intracellular l-arginine pool is not freely exchange-
able with the extracellular l-arginine, it is however accessible to

eNOS and arginase (Topal et al., 2006; Closs et al., 2000). This
model could explain the “l-arginine paradox” and the observa-
tion that inhibition of arginase stimulates NO· production and
overexpression of Arg-I or -II suppresses NO· production in the
endothelial cells, which is associated with only a mild reduction
in intracellular l-arginine concentration (11–25% decrease) even
in the presence of high extracellular concentration of l-arginine
(0.4 mmol/L) (Li et al., 2001). Yet it is highly speculative. Another
explanation is a“relative”intracellular deficiency of l-arginine that
could be resulted from the increased levels of ADMA, the endoge-
nous eNOS inhibitor, which blocks intracellular l-arginine utility
by eNOS to produce NO· (Antoniades et al., 2009). It is assum-
able that an increase in arginase activity in the presence of ADMA
in endothelial cells would further significant limit intracellular l-
arginine bioavailability for eNOS to produce NO·, although the
intracellular l-arginine concentration is only mildly decreased. If
the hypothesis of the “relative l-arginine deficiency” is true, sup-
plementation of l-arginine aiming to enhance endothelial NO·

production and to treat vascular disease may not work. Too much
l-arginine may even cause harmful effects due to production of
other undesired metabolites from l-arginine (Dioguardi, 2011).
Indeed, a randomized, double-blinded, placebo-controlled study
in patients with acute myocardial infarction, the VINTAGE MI
study, demonstrates that 6 months oral l-arginine supplemen-
tation (3 g three times a day on top of standard postinfarction
therapy) does not have any benefits on vascular stiffness and
left ventricular ejection fraction, but increases mortality (Schul-
man et al., 2006). In line with this result, another clinical study
in patients with peripheral artery disease, the NO-PAIN study,
shows decreased NO· production and shortened walking distance
in patients receiving l-arginine supplementation as compared to
the placebo group (Wilson et al., 2007). The impact of l-arginine
supplementation, particularly chronic supplementation for treat-
ment of cardiovascular diseases does not seem beneficial, it is
rather detrimental and should not be recommended in the clinical
settings.

The underlying mechanisms of the detrimental effects of
chronic l-arginine supplementation in patients are not clear.
Several hypotheses have been discussed. As aforementioned, too
much l-arginine may lead to exaggerated production of undesired
metabolites through arginase, such as l-proline and l-ornithine
which is further metabolized to polyamines (Durante et al., 2001;
Wei et al., 2001; Yang and Ming, 2006a). l-proline is an essential
component for collagen synthesis and polyamines are impor-
tant factors supporting vascular smooth muscle cell proliferation
(Durante et al., 2001; Wei et al., 2001; Yang and Ming, 2006a).
These effects of arginase-derived products may be involved in
vascular intimal thickening and vascular stiffness associated with
vascular injury and aging (Durante et al., 2001; Wei et al., 2001;
Yang and Ming, 2006a; Marinova et al., 2008). The effects of the
l-arginine metabolites through arginase in endothelial cells are
not clear. Strong evidence shows that elevated arginase expres-
sion and/or activity in endothelial cells limit NO bioavailabil-
ity through eNOS-uncoupling, leading to oxidative stress and
vascular inflammatory responses (see discussion below).

The role of arginase including type-I and type-II isozyme in
decreased endothelial NO· production is well documented (please
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see review articles: Yang and Ming, 2006a; Vanhoutte, 2008). This
effect of arginase has been demonstrated being the consequence
of eNOS-uncoupling (Ming et al., 2004; Romero et al., 2008; Kim
et al., 2009; Scalera et al., 2009; Shin et al., 2012; Yepuri et al.,
2012). Since endothelial NO· is an important anti-inflammatory
molecule and suppresses expression of adhesion molecules such
as VCAM-1, ICAM-1 (Lee et al., 2002), a positive association
between plasma arginase level or peripheral blood mononuclear
cell arginase level and soluble VCAM-1 and ICAM-1 is demon-
strated in patients with sickle cell anemia and overweight sub-
jects (Morris et al., 2005; Kim et al., 2012). In cultured human
endothelial cells, genetic inhibition of Arg-II prevents ICAM-1
and VCAM-1 upregulation upon persistent insulin stimulation
to mimic the hyperinsulinemia condition (Giri et al., 2012) and
decreases their expression in senescent endothelial cells (Yepuri
et al., 2012), demonstrating that Arg-II plays a role in endothelial
inflammatory responses. This conclusion is further confirmed by
the fact that overexpression of Arg-II gene in the non-senescent
human endothelial cells enhances VCAM-1 and ICAM-1 levels
(Yepuri et al., 2012). Importantly, our study further shows that
in senescent human endothelial cells and aortas of old mice,
the Arg-II (but not Arg-I) gene expression and activity is aug-
mented and genetic silencing or ablation of Arg-II in senescent
human cells or in old mice recouples eNOS function, leading
to inhibition of oxidative stress and decrease in adhesion mol-
ecule expression in vitro cell culture and in vivo mouse aging
models, resulting in decreased monocyte-endothelial interaction

(Yepuri et al., 2012). Moreover, this study shows that inhibition
of Arg-II gene is able to prevent or reverse endothelial senes-
cence phenotype markers in the aging models (Yepuri et al.,
2012), demonstrating the causal role of Arg-II in cardiovascular
aging. The detrimental role of Arg-II in atherosclerotic vascular
disease has also been recently evidenced in mice either with sys-
temic deficiency of Arg-II (Ming et al., 2012) or in endothelial
specific Arg-II transgenic mice (Vaisman et al., 2012). Enhanced
endothelial arginases thus represent an important mechanism in
inducing eNOS-uncoupling and the associated oxidative stress and
inflammation in vasculature contributing to the development of
vascular diseases (Figure 2). Elucidation of the regulatory mech-
anisms of arginases in the vasculature would provide rationales
for the development of new drugs for treatment of cardiovascular
disorders.

REGULATORY MECHANISM OF ARGINASES IN VASCULAR
DISEASES
Studies investigating regulatory mechanisms of arginase gene
expression and enzymatic activity so far are limited to Arg-I in
murine macrophages (for details please refer to the most recently
published review article by Pourcet and Pineda-Torra, 2013).
There is little information available regarding the upstream reg-
ulatory mechanisms involved in gene expression and enzymatic
activity of arginases in vascular cells. A few stimuli have been
shown to upregulate arginase gene expression and/or enzymatic
activity. It has been reported that transgenic expression of IL-13

FIGURE 2 |The signaling mechanisms involved in upregulation of
vascular arginase expression/activity in vascular endothelial cells (EC).
Various cardiovascular risk factors such as hyperinsulinemia, aging,
hyperglycemia, hypoxia, etc., upregulate Arg-I or/and Arg-II expression/activity
through signaling pathways including p38MAPK, mTORC1-S6K, Rho/ROCK,

and JAK/STAT6, leading to eNOS-uncoupling that ultimately causes vascular
oxidative stress and inflammation contributing to the development of vascular
diseases. Moreover, the mutual positive regulation between S6K1 and Arg-II
gene expression accelerates oxidative stress and inflammation through
eNOS-uncoupling.
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in the lung of mouse, the T-helper type 2 cell effector cytokine,
causes pulmonary arteriole remodeling and subsequently pul-
monary hypertension, which is associated with enhanced expres-
sion of both Arg-I and Arg-II in the lung (Cho et al., 2013).
Genetic deletion of Arg-II gene in this mouse partly prevents
IL-13-induced pulmonary hypertensive phenotypes, suggesting
the involvement of Arg-II (Cho et al., 2013). The study sup-
ports the notion of human studies showing that increased Arg-II
expression in pulmonary endothelial cells is associated with pul-
monary arterial hypertension (Xu et al., 2004). Whether inhibition
of Arg-II reveals therapeutic effect in human pulmonary hyperten-
sion remains to be investigated and depends on the development
of specific Arg-II inhibitors. In contrast to Arg-II, the role of
Arg-I in this context is not known. The mechanisms of IL-13-
induced Arg-II expression are not clear. In human pulmonary
arterial smooth muscle cells, hypoxia is capable of inducing Arg-
II expression, which is inhibited by cAMP (Chen et al., 2012).
In contrast to this study, Wei et al. (2000) shows that cAMP,
besides JAK/STAT6 upregulates Arg-I (not Arg-II) in rat aor-
tic smooth muscle cells upon stimulation by IL-4 or IL-13. It
is not clear whether this could be explained by the different
biological properties of smooth muscle cells of different origins
or species or the different stimuli used in their experimental
settings.

Moreover, the GTPase RhoA and its down-stream kinase ROCK
have been shown to upregulate arginase activity with or with-
out augmentation of the corresponding gene expression of the
isozymes. Oxidative stress, such as hydrogen peroxide (H2O2)
and peroxynitrite increase Arg-I gene expression in porcine coro-
nary arterioles (Thengchaisri et al., 2006). An increase in Arg-II
but not Arg-I expression has been suggested to play a role in
women with preeclampsia, which is also mediated by peroxynitrite
(Sankaralingam et al., 2010). Interestingly, in both cases, Rho-
ROCK is the signaling mechanism involved in Arg-I in porcine
and Arg-II in human endothelial cells (Thengchaisri et al., 2006;
Chandra et al., 2012). The importance of Rho-ROCK pathway
in the regulation of arginase gene expression and activity is also
demonstrated by other studies including ours with the stim-
uli such as thrombin (Ming et al., 2004), oxidized LDL (Ryoo
et al., 2011) and hyperglycemia (Romero et al., 2008; Toque et al.,
2013). The fact that statins inhibit arginase activity in endothelial
cells involving Rho/ROCK pathway could one of the mechanisms
contributing to the beneficial effects of the drugs in treatment
of cardiovascular disease (Ming et al., 2004; Holowatz et al.,
2011).

In addition, p38MAPK (mitogen-activated protein kinase) is
also implicated in regulation of arginase expression and activity
in endothelial cells. p38MAPK is a member of the superfamily
of MAPKs which serves as cellular a stress sensor for a vari-
ety of cellular stresses including hyperglycemia, oxidative stress,
and inflammatory cytokines (Denise et al., 2012). It has been
demonstrated that activation of the p38MAPK in macrophages
increases arginase activity and expression of Arg-I (Stempin
et al., 2004) and Arg-II (Liscovsky et al., 2009). This seems
to be true in bovine and rat aortic endothelial cells for Arg-
I expression (Zhu et al., 2010) and in human endothelial cells
and mouse penile tissues for Arg-II expression in response to

angiotensin-II (Toque et al., 2010) and persistent exposure to
insulin (Giri et al., 2012). Moreover, in vivo treatment of hyperten-
sive mouse induced by angiotensin-II infusion with a p38MAPK
inhibitor prevents elevation of Arg-II expression and activity
and enhances endothelium-dependent relaxation (Toque et al.,
2010).

Most recently, we have demonstrated a crosstalk between S6K1
(40S ribosomal protein S6 Kinase-1) and Arg-II in endothelial
cells (Yepuri et al., 2012), which are importantly involved in vas-
cular aging. Our previous study showed that S6K1 activity is
persistently high in senescent human endothelial cells and in the
aortas of old rodents, which plays a causal role in age-associated
eNOS-uncoupling and endothelial senescence (Rajapakse et al.,
2011). Interestingly, overexpression of a constitutively active
S6K1 mutant upregulates Arg-II (not Arg-I) gene expression and
arginase activity in non-senescent cells by stabilizing Arg-II mRNA
(Yepuri et al., 2012). Conversely, silencing S6K1 in senescent cells
reduces Arg-II gene expression and activity and genetic or pharma-
cological inhibition of S6K1 in senescent cells or in old rat aortas
decreases Arg-II gene expression and activity,demonstrating a crit-
ical role of hyperactive S6K1 in up-regulating Arg-II gene expres-
sion resulting in enhanced arginase activity in endothelial aging.
Furthermore, our study also shows that silencing Arg-II gene in
senescent endothelial cells inhibits S6K1 activity and Arg-II gene
knockout in mouse abolishes age-associated hyperactive S6K1 in
the aortas, demonstrating a feedforward cycle between S6K1 and
Arg-II is present in vascular endothelial aging. Interruption of this
crosstalk either by inhibition of S6K1 or Arg-II can recouple eNOS
function, leading to reduced oxidative stress, improved NO· pro-
duction, inhibition of endothelial adhesion molecule expression,
monocyte-endothelial cell interaction, and cell senescence mark-
ers in aging. Thus, the mutual positive regulation between S6K1
and Arg-II gene expression accelerates endothelial aging through
eNOS-uncoupling, leading to oxidative stress and inflammation
(Yepuri et al., 2012). The results suggest that interruption of S6K1-
Arg-II crosstalk may represent a promising therapeutic strategy to
decelerate vascular aging and age-associated cardiovascular dis-
eases. Future work shall investigate the exact mechanisms how
S6K1 stabilizes Arg-II mRNA, and how Arg-II activates S6K1
in the endothelial cells. The signaling mechanisms that regulate
vascular arginase expression/activity are also summarized in the
Figure 2.

PERSPECTIVES OF TARGETING ARGINASE IN
CARDIOVASCULAR DISEASES
Arginase-II as therapeutic target in cardiovascular diseases has
shown promising beneficial effects in genetic modified mouse
models. Systemic deficiency of Arg-II reduces systemic and vas-
cular inflammations in mice fed high cholesterol diet and high fat
diet, and improves endothelial function in aging, reduces athero-
sclerosis, and improves insulin sensitivity and glucose homeostasis
(Ming et al., 2012; Yepuri et al., 2012). Conversely, endothelial spe-
cific Arg-II transgenic mice on ApoE−/− background show acceler-
ated atherosclerosis (Vaisman et al., 2012). Although some studies
implicate that targeting Arg-I is also of therapeutic relevance in
cardiovascular diseases, the firm evidence is lacking, which is
due to the fact that systemic Arg-I deficient mouse exhibited
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Table 1 | Available arginase inhibitors.

Name (references) Chemical class Isoform-selectivity Inhibitory mechanism

α-Difluoromethylornithine (DFMO)

(Selamnia et al., 1998 )

L-Ornithine analog Non-isoform-selective

K i=3.9±1.0 mM for arginase in HT-29

homogenate

Poor arginase inhibitor

(commonly used as a specific

ODC irreversible inhibitor)

L-Ornithine (3Reczkowski and Ash,

19941; Colleluori and Ash, 2001;
2Colleluori et al., 2001)

More potent in inhibiting hepatic

arginase1 K i=1 mM for Arg-I3

K i > 10 mM for hArg-II2

Competitive inhibition

L-Valine (Colleluori et al., 2001) Branched-chain amino acid Non-isoform-selective K i=0.4 mM for

hArg-II

Non-competitive

L-Norvaline (Colleluori et al., 2001) An analog of L-valine K i=0.4 mM for hArg-II Non-competitive

Nω-Hydroxy-L-arginine (NOHA)

(Boucher et al., 1994; Buga et al.,

1996; 5Custot et al., 1997; 4Baggio

et al., 1999; Cox et al., 2001)

Nω-OH-based arginine

analog

More potent in inhibiting hepatic

arginase4 K i=10 µM for rArg-I5

K i=1.6 µM for hArg-II1

Competitive inhibitor. (an

intermediate in NO synthesis,

acts also as a substrate for

the NOS)

Nω-Hydroxy-nor-L-arginine

(nor-NOHA) (Custot et al., 1997)

Nω-OH-based arginine

analog

K i=0.5 µM for rArg-I5 K i=51 nM for

hArg-II1
Competitive inhibitor

S-(2-boronoethyl)-L-cysteine (BEC)

(6Kim et al., 2001)

Boronic acid-based

arginine analog

Non-isoform-selective.

K i=0.4–0.6 µM for rArg-I6

K i=0.31 µM for hArg-II1

Competitive inhibitor

2(S)-amino-6-boronhexanoic acid

(ABH) (7Baggio et al., 1999; 8Van

Zandt et al., 2013)

Boronic acid-based

arginine analog

More potent in inhibiting extrahepatic

arginase7: K i=190 nM for hepatic Arg.

K i=18–50 nM for extrahepatic

non-isoform-selective8: K i=1.45 µM

for hArg-I K i=1.92 µM for hArg-II

Competitive inhibitor

(R)-2-amino-6-borono-2-(2-(piperidin-

1-yl)ethyl)hexanoic acid (compound

9) (Van Zandt et al., 2013)

Aminoethylene ABH

analog (α,α-disubstituted

amino acid-based)

Non-isoform-selective: K i=223 nM for

hArg-I K i=509 nM for hArg-II

N/A

Ki, the inhibitor constant; ODC, ornithine decarboxylase; rArg-I, rat arginase-I; hArg-II, human arginase-II; N/A, not available. None of these inhibitors are really isoform-

specific, although some of the inhibitors, such as nor-NOHA, have been reported to be more potent against one of the isoform in one study, but not in the other

study. It is also to notice that the Ki is not always determined for both of the isoforms in the same study. In this case, the reference (the superscript number in italic)

is given for the two Ki.

severe symptoms of hyperammonemia, and died between post-
natal days 10 and 14 (Iyer et al., 2002), and endothelial spe-
cific Arg-I knockout mouse is not available, yet, and the studies
are solely dependent on the pharmacological inhibitors which
inhibit both isoforms of arginases (The chemical characteristics
and pharmacological effects of available arginase inhibitors are
summarized in the Table 1). Nevertheless, the therapeutic poten-
tial of targeting arginases with these inhibitors has been proved
in a number of experimental models of cardiovascular disease
as discussed (Yang and Ming, 2006b; Pernow and Jung, 2013).
Small scale human studies with local administration of arginase
inhibitors investigating vascular endothelial functions as primary
end point showed promising results in improving skin blood flow
in elderly human subjects (Stanhewicz et al., 2012), in hyperten-
sives (Holowatz and Kenney, 2007), and in patients with coronary
artery disease and type 2 diabetes (Shemyakin et al., 2012). These
inhibitors could theoretically inhibit liver Arg-I and may lead to
hyperammonemia, although this side effect has not been reported

in animals treated with arginase inhibitors for studies designed to
investigate the role of arginase in vascular disease (Bagnost et al.,
2010). It is clear that isoform-specific arginase inhibitors should
be developed.

It is however, interesting to notice that pharmacological agents
that target arginase indirectly through blockade of signaling trans-
duction pathways that regulate arginase gene expression or activ-
ity show beneficial effect on vascular functions. Early studies
demonstrate that statins which inhibit arginase activity through
inhibition of the small G protein or GTPase RhoA improves
endothelial function (Ming et al., 2004; Holowatz et al., 2011).
Similarly, pharmacological and genetic inhibition of ROCK, the
down-stream kinase of RhoA, showed similar inhibitory effects
on arginase activity and endothelial dysfunction in atheroscle-
rotic, diabetic, and angiotensin-II-induced hypertensive animal
models (Ming et al., 2004; Shatanawi et al., 2011; Yao et al.,
2013). Moreover, rapamycin and resveratrol which are capable
of inhibiting mTORC1-S6K1 signaling pathway can also inhibit
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arginase activity and recouples eNOS function in aging animal
models (Rajapakse et al., 2011; Yepuri et al., 2012). Further-
more, p38MAPK inhibitors have been shown to improve endothe-
lial function also through inhibition of eNOS-uncoupling in
endothelial cells or mouse aortas exposed to glucosamine (Wu
et al., 2012) or inhibition of arginase in the corpora cavernosa
from angiotensin-II-treated mice (Toque et al., 2010). Recently,
a small clinical study has also showed that p38MAPK inhibitors
improves endothelial function and reduces systemic and vascular
inflammation in patients with hypercholesterolemia and coronary
artery disease (Cheriyan et al., 2011; Elkhawad et al., 2012). With

all these pharmacological inhibitors one can not precisely assess
how much of the effects is really attributable to the inhibition
of arginase activity. Depending on the functions of the signaling
pathways in cardiovascular diseases, the off-target effects of these
drugs could be of great therapeutic relevance in cardiovascular
diseases.
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