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CD4+ CD25+ Foxp3+ regulatory T (Treg) cells are essential to the balance between pro-
and anti-inflammatory responses.There are two major subsets ofTreg cells, “natural”Treg
(nTreg) cells that develop in the thymus, and “induced” Treg (iTreg) cells that arise in the
periphery from CD4+ Foxp3− conventional T cells and can be generated in vitro. Previous
work has established that both subsets are required for immunological tolerance. Addi-
tionally, in vitro-derived iTreg cells can reestablish tolerance in situations where Treg cells
are decreased or defective. This review will focus on iTreg cells, drawing comparisons to
nTreg cells when possible. We discuss the molecular mechanisms of iTreg cell induction,
both in vivo and in vitro, review the Foxp3-dependent and -independent transcriptional land-
scape of iTreg cells, and examine the proposed suppressive mechanisms utilized by each
Treg cell subset. We also compare the T cell receptor repertoire of the Treg cell subsets,
discuss inflammatory conditions where iTreg cells are generated or have been used for
treatment, and address the issue of iTreg cell stability.
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INTRODUCTION
Early insights into the existence of a subset of T cells capable of
exhibiting dominant tolerance, or suppression of other cells in
a paracrine manner, came from work done in neonatal thymec-
tomy models. Neonatal thymectomy of newborn mice between
days 2 and 4 of life resulted in various organ-specific T cell-
mediated autoimmune diseases that could be prevented by CD4+

CD25+ T cells (Nishizuka and Sakakura, 1969; Sakaguchi et al.,
1982, 1995; Asano et al., 1996). The discovery of mutations in the
X chromosome-encoded gene Foxp3 in human patients suffering
from immune dysregulation, polyendocrinopathy, enteropathy, X-
linked (IPEX) syndrome and in the mutant scurfy mice led to
recent advances in regulatory T (Treg) cell biology (Chatila et al.,
2000; Bennett et al., 2001; Brunkow et al., 2001; Wildin et al.,
2001). Expression of the forkhead/winged helix transcription fac-
tor Foxp3 ultimately identifies Treg cells and is essential for the
acquisition of suppressive function (Lin et al., 2007; Zheng and
Rudensky, 2007). Conditional deletion of Foxp3 via retroviral
expression of Cre in mature Treg cells resulted in the loss of Treg
cell suppressive function and the gain of effector T cell properties,
suggesting that continuous expression of Foxp3 is required for
maintenance of the Treg cell phenotype (Williams and Ruden-
sky, 2007). Furthermore, in a system where Treg cells express
the human diphtheria toxin receptor, chronic diphtheria toxin-
mediated ablation of Treg cells resulted in death from lympho-
and myeloproliferative disease, confirming the continued need for
Treg cells throughout the lifespan of normal mice (Kim et al.,
2007).

These CD4+ CD25+ Foxp3+ Treg cells, which account for
∼10% of peripheral CD4+ T cells, are essential to the balance
between pro- and anti-inflammatory responses at mucosal sur-
faces. There are two subsets of Treg cells, “natural” Treg (nTreg)
cells and “induced” Treg (iTreg) cells. While nTreg cells develop as
a distinct lineage in the thymus, iTreg cells arise from peripheral

naïve conventional T (Tconv) cells and can be generated in vitro
(Curotto de Lafaille and Lafaille, 2009). The focus of this review
is iTreg cells, their mechanisms of generation, transcriptional pro-
files, TCR repertoires, potential for immunotherapy, and their
stability in vivo.

IN VIVO AND IN VITRO GENERATION OF iTREG CELLS
CD4+ Tconv cells isolated from lymphoid organs and peripheral
blood can be induced to express Foxp3 in vitro by T cell activation
in the presence of TGF-β1 and IL-2 (Chen et al., 2003; David-
son et al., 2007). Following these important observations, several
studies documented the development of functionally suppressive
iTreg cells in vivo, either in a tolerogenic setting or arising during
inflammation (Table 1). The emergence of iTreg cells has been
observed in cases where antigens are encountered in the absence
of optimal costimulation. This includes antigen delivery through
intravenous injection (Thorstenson and Khoruts, 2001) and con-
tinuous infusion minipumps (osmotic pumps) (Apostolou and
von Boehmer, 2004), or by the administration of non-depleting
anti-CD4 antibodies (Cobbold et al., 2004). Oral administration
of antigen leads to the development of iTreg cells that are func-
tionally suppressive in a mouse model of asthma and are required
to establish oral tolerance (Mucida et al., 2005; Curotto de Lafaille
et al., 2008). Suboptimally activated dendritic cells support iTreg
cell development. For example, dendritic cells targeted with low
dose antigens by anti-DEC-205 (dendritic and epithelial cells,
205 kDa, multilectin endocytic receptor) antibodies (Kretschmer
et al., 2005) and tolerogenic dendritic cells, residing in the small
intestine lamina propria and mesenteric lymph node (Coombes
et al., 2007; Sun et al., 2007), promote iTreg cell generation. In
addition, several studies have demonstrated that the commen-
sal microbiota contribute to iTreg cell development (Round and
Mazmanian, 2010; Atarashi et al., 2011; Geuking et al., 2011).
Alternatively, iTreg cells can be generated during states of chronic
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Table 1 | Models generating in vivo-derived iTreg cells.

Model Time point Location % of CD4+ cells

that are iTreg cells

Reference

IV injection of low dose peptide antigen following

transfer of CD4+ T cells from RagKO TCR

transgenic mice into unirradiated BALB/c mice

8 days after IV injection of Ag Spleen ∼20–25 Thorstenson and

Khoruts (2001)

Peptide delivery via osmotic pump implanted in

RagKO TCR transgenic mice

14 days after implant of

continuous delivery system

Spleen ∼20–25 Apostolou and von

Boehmer (2004)

Non-depleting anti-CD4 antibodies during skin

grafting onto RagKO TCR transgenic mice

7 days after challenge with

second graft

Skin graft ∼50 Cobbold et al. (2004)

Homeostatic proliferation after transfer of Tconv

cells into T-B monoclonal mice

1 month Peripheral blood ∼10 Curotto de Lafaille

et al. (2004)

Antigen delivery to dendritic cells using

anti-DEC-205 antibodies following transfer of CD4+

T cells from RagKO TCR transgenic mice

14 days post injection Pooled spleen, MLN,

inguinal LN

∼15 Kretschmer et al.

(2005)

Oral tolerance established in a model of allergic

airway inflammation using T-B monoclonal mice;

oral OVA followed by immunization and intranasal

challenge

2 days post intranasal

challenge

Lung and BAL ∼10 Mucida et al. (2005),

Curotto de Lafaille

et al. (2008)

T cell transfer model of colitis ∼100 days post induction MLN ∼9 Haribhai et al. (2009)

Establishment of oral tolerance after transfer of

CD4+ T cells from RagKO TCR transgenic mice

during helminth infection

7 days post infection MLN and Peyers

patch

∼50 Grainger et al. (2010)

Treatment of Foxp3-deficiency with nTreg plus

Tconv cells

50-day-old mice PLN ∼1 Haribhai et al. (2011)

Transfer of CD4+ T cells from RagKO TCR

transgenic mice to RagKO mice expressing the

cognate antigen in the pancreas

Diabetes onset Pancreatic LN ∼20 Thompson et al.

(2011)

MCA-38 colon adenocarcinoma tumor 2 weeks post tumor

injection

Tumor infiltrating

lymphocytes

∼45 Weiss et al. (2012)

Experimental autoimmune

encephalomyelitis – chronic stage

20–30 days post EAE onset Spinal cord ∼10–15 Weiss et al. (2012)

Transfer of retinal protein specific CD4+ T cells

from RagKO TCR transgenic mice to the eyes of

WT hosts

8 days post injection Eye ∼30 Zhou et al. (2012)

This table documents model systems where in vivo-derived iTreg cells form, the time point and location that the iTreg cells were observed, the percentage of CD4+

T cells that developed into iTreg cells, and the reference. BAL, bronchoalveolar lavage; EAE, experimental autoimmune encephalomyelitis; MLN, mesenteric lymph

node; OVA, ovalbumin; pLN, peripheral lymph node.

inflammation. Examples where chronic inflammation may sup-
port iTreg development include mouse models of asthma (Curotto
de Lafaille et al., 2008; Weiss et al., 2012), colitis that occurs dur-
ing T cell expansion in a lymphopenic environment (Haribhai
et al., 2009), adoptive transfer immunotherapy for the treatment
of Foxp3-deficiency (Haribhai et al., 2011), and infection with
intestinal parasites (Grainger et al., 2010). The extent of iTreg
cell development in locations other than mucosal tissues is not
as well documented. However, recently iTreg cell development has
been demonstrated to occur locally in immune privileged sites
such as the spinal cords of mice with experimental autoimmune

encephalomyelitis (Weiss et al., 2012) and in the eye (Zhou et al.,
2012; McPherson et al., 2013). Tissue-specific Foxp3 induction has
also been demonstrated in response to a neo-self antigen restricted
to the pancreas (Thompson et al., 2011). These data generally sup-
port the biological relevance of the mechanisms that generate and
sustain iTreg cells.

Multiple signaling pathways converge to influence the efficiency
of iTreg cell generation. Specific TCR affinity and TCR-derived
signals, costimulatory molecules, and cytokines promote optimal
in vivo iTreg cell development. Low doses of high affinity ligands
promote iTreg cell generation by creating a decreased aggregate
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TCR stimulation as compared to Tconv cells (Kretschmer et al.,
2005; Gottschalk et al., 2010). Strong CD28 costimulation (Sem-
ple et al., 2011) and CTLA-4 blockade (Zheng et al., 2006) are
detrimental to de novo induction of Foxp3 whereas activation of
Tconv cells under conditions of suboptimal costimulation pro-
motes the induction of Foxp3. Furthermore, signaling via the
programed death (PD) 1-PD-ligand (PD-L) pathway promotes
both the induction and maintenance of iTreg cells (Francisco et al.,
2009). TCR-dependent activation of the PI3K-AKT-mTOR axis is
an important negative regulator of peripheral Treg cell differentia-
tion. AKT inhibits Foxo proteins, which normally facilitate Foxp3
induction (Kerdiles et al., 2010; Ouyang et al., 2010). Therefore,
enhancing AKT signaling, either by overexpression (Haxhinasto
et al., 2008) or by deletion of negative regulators of AKT, such as
phosphatase and tensin homolog (PTEN) (Sauer et al., 2008) or
the E3 ubiquitin ligase Cbl-b that degrades the regulatory sub-
unit of PI3K (Wohlfert et al., 2006; Harada et al., 2010), adversely
impacts iTreg cell development. Alternatively, inhibition of PI3K
or mTOR enhances iTreg cell development (Battaglia et al., 2005;
Sauer et al., 2008). Blockade of signals through the C3aR and
C5aR complement receptors also decreases signaling through
the PI3K-AKT-mTOR pathway thereby enhancing autoinduc-
tive signaling by TGF-β1 to generate iTreg cells (Strainic et al.,
2013).

Both TGF-β1 and IL-2 are required for iTreg cell induction.
TGF-β1 signaling promotes the binding of NFAT and Smad3 to
the conserved non-coding sequence-1 (CNS1) enhancer and ulti-
mately stimulates histone acetylation and Foxp3 induction (Tone
et al., 2008). These data are further supported by the observation
that CNS1 deletion impairs iTreg cell generation in gut-associated
lymphoid tissues (Zheng et al., 2010). TGF-β1 also limits DNA
methyltransferase I recruitment to the Foxp3 locus, a molecule that
normally functions to prohibit promiscuous Foxp3 induction after
TCR stimulation (Josefowicz et al., 2009). IL-2 is likewise required
for iTreg generation in vitro (Davidson et al., 2007). In vivo, IL-2
has a role in Treg cell survival (D’Cruz and Klein, 2005), prolifera-
tion (Fontenot et al., 2005a), and stability (Chen et al., 2011) there-
fore a role for in vivo induction has been more difficult to parse
out. Perhaps in support of a role for induction, cells in the periph-
ery that are poised to develop into iTreg cells require only IL-2 for
Foxp3 induction (Schallenberg et al., 2010). IL-2 also functions to
limit the polarization of activated CD4+ T cells into the Th17 lin-
eage (Laurence et al., 2007). Similar to IL-2, all-trans retinoic acid
restricts reciprocal Th17 polarization (Xiao et al., 2008). CD103+

gut-derived tolerogenic dendritic cells, which play an important
role in the generation of iTreg cells serve as a source of retinoic
acid (Coombes et al., 2007). Activation of the aryl hydrocarbon
receptor by the ligands 2,3,7,8-tetrachlorodibenzo-p-dioxin and 2-
(1’H-indole-3’-carbonyl)-thiazole-4-carboxylic acid methyl ester
supports the generation of functional, stable iTreg cells by pro-
moting both the generation of retinoic-acid producing tolerogenic
dendritic cells and demethylation of the Foxp3 promoter (Quin-
tana et al., 2008, 2010; Singh et al., 2011). In summary, antigenic
TCR stimulation with low dose/high affinity ligands, suboptimal
costimulation, TGF-β1, IL-2, and retinoic acid all facilitate the
induction of Foxp3 expression in peripheral CD4+ Tconv cells
in vivo.

TRANSCRIPTIONAL LANDSCAPE AND FUNCTION OF iTREG
CELLS VERSUS nTREG CELLS
The pivotal role of the X-linked gene Foxp3 in the identity of a
Treg cell prompted investigation into the Foxp3-dependent and
-independent programs of the Treg cell transcriptional signature.
Mice possessing an altered Foxp3 locus, in which DNA encoding
EGFP was inserted in frame into exon 11 at the C-terminal end of
the Foxp3 locus (Foxp3∆EGFP), express a non-functional ∆Foxp3-
EGFP fusion protein that is devoid of the nuclear localization
sequence and residues involved in DNA binding (Lin et al., 2007).
In heterozygous Foxp3∆EGFP± female mice, which have random
inactivation of one of the two X chromosomes, the frequency of
thymocytes expressing the non-functional ∆Foxp3-EGFP fusion
protein was similar to thymocytes expressing normal Foxp3. The
EGFP+ cells from these mice also expressed several Treg cell-
associated molecules, such as CD25, CTLA-4, GITR, and CD44,
but were not suppressive and produced Th1- and Th2-associated
cytokines. Many transcripts commonly found in Treg cells were
identified by gene array in the EGFP+ cells, these included Il2ra,
Ctla4, and Itgae. The expression of additional genes suggestive of
a cytotoxic effector program, such as Gzma, Gzmb, and Gzmk,
and genes encoding chemokine receptors such as Cxcr6, were also
observed (Lin et al., 2007).

In a separate set of studies, cells destined to be Treg cells were
marked with an in frame insertion of GFP into a Foxp3 locus dis-
rupted by a stop codon. This resulted in Foxp3 transcription, but
not translation, and also allowed for the separation of Foxp3-
dependent and independent factors (Gavin et al., 2007). As a
result, several characteristic Treg cell markers, such as CD25, CD44,
CTLA-4, GITR, and ICOS, were found to be Foxp3-independent.
Although several hallmark Treg cell markers were found, sup-
pressive activity was lost in the absence of Foxp3 protein. These
studies confirmed that Foxp3 suppressive function and stability are
dependent on a functional Foxp3 protein. Together, they suggest
that some aspects of commitment to the Treg cell lineage begin
independently of a functional Foxp3 protein.

Fundamental work from Hill et al. (2007) combined gene
expression profiles of Treg cells obtained under many different
conditions and identified a canonical Treg cell signature. This
study confirmed previous work, in that it identified Treg cell-
associated genes that were not correlated with Foxp3 expression,
but they also organized the Treg signature into several co-regulated
gene clusters influenced by a defined set of factors. This Treg cell
transcriptional signature provides a framework for comparison of
Treg cells derived by alternative methods or in varying anatom-
ical locations. Treg cells found in different anatomical locations
within the same individual have unique TCR repertoires, varia-
tions in their cell surface phenotypes, and distinct gene expression
profiles (Lathrop et al., 2008; Feuerer et al., 2010). These findings
are consistent with the idea that subsets of Treg cells exist, and that
Treg cell suppressive activity may be finely tuned to the microen-
vironment. Currently there is no consistent, reliable marker to
distinguish nTreg and iTreg cells in vivo, although in some systems
Helios (Thornton et al., 2010) and Neuropilin 1 (Nrp1) (Weiss
et al., 2012; Yadav et al., 2012) have been suggested to specifically
identify nTreg cells. Others have determined that expression of
Helios, an Ikaros family transcription factor, results from more
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general T cell activation and proliferation (Akimova et al., 2011).
Nrp1 is a receptor for TGF-β1 and has been reported to activate the
latent form of TGF-β1 and promote Treg cell activity (Glinka and
Prud’homme, 2008). Under homeostatic conditions, this marker
seems to reliably distinguish nTreg cells from iTreg cells; however,
iTreg cells present in inflammatory conditions can express Nrp1
(Weiss et al., 2012). The lack of a suitable surface marker has ham-
pered the ability to effectively distinguish the characteristics of the
two subsets in a host without using a transfer model to mark the
populations.

Many studies have compared the transcriptional signatures
of nTreg and iTreg cells in an attempt to distinguish the two
subsets. Given that a portion of the Treg cell signature is Foxp3-
independent, it was not surprising that the transcriptional sig-
nature of iTreg cells derived in vitro did not fully recapitulate the
observed nTreg cell genetic signature (Haribhai et al., 2009; Feuerer
et al., 2010). On the other hand, iTreg cells that were allowed to
develop in vivo were more similar to nTreg cells than their in vitro-
derived counterparts (Feuerer et al., 2010; Haribhai et al., 2011).
However, nTreg cells and in vitro-derived iTreg cells that are sta-
bly maintained in vivo for approximately 3 months share similar
transcriptional profiles (Schmitt et al., 2012). This included the
expression of many genes associated with Treg cell suppressive
function such as Il2ra, Ctla4, Gzmb, and Il10. Thus, the transcrip-
tional signature of in vitro-derived iTreg cells and nTreg cells,
although much different immediately after generation in vitro,
converge as the in vitro-derived iTreg cells are selected and main-
tained in vivo. While the collective gene expression data suggest
that the two Treg subsets share similar suppressive mechanisms,
the observed requirement for both subsets in maintaining toler-
ance hints that distinct suppressive mechanisms that play discrete
roles, either in different anatomical locations or in different types
of inflammation, may yet be identified. Indeed, a recent study
uncovered four “Treg cell-representative regions” which included
regions of Foxp3, Tnfrsf18, Ctla4, and Ikzf4 that display demethy-
lation patterns in nTreg cells that are distinct from those observed
in Tconv and iTreg cells. This nTreg cell-specific methylation pat-
tern is instrumental in establishing Treg cell-type gene expression
(Ohkura et al., 2012). Additionally, recent work demonstrated an
important role for Foxo1 in establishing the Foxp3-independent
Treg cell transcriptional program, in part by inhibiting IFN-γ
expression in Treg cells (Ouyang et al., 2012).

The interaction of Foxp3 with several different molecules is
important for Treg cell transcriptional activity. The Foxp3 gene has
numerous structural domains including a transcriptional repres-
sion domain at the N-terminus, followed by a zinc finger domain,
a leucine zipper domain, and a forkhead DNA binding domain. A
series of serendipitous discoveries using a Foxp3GFP (Foxp3tm2Ayr)
fusion protein to mark Treg cells, in which GFP is fused to the
amino terminus of Foxp3 (Fontenot et al., 2005b), revealed altered
autoimmune disease phenotypes. The Foxp3GFP fusion protein
reduces or eliminates the interaction of the N-terminal domain of
the Foxp3 gene with Eos, Tip60, HDAC7, and HIF-1α; however,
distal interactions with NFAT, AML1/Runx-1, RORα, and IRF4
are maintained or enhanced. As a result, the transcriptional activ-
ity of Treg cells was altered leading to accelerated type 1 diabetes
in disease prone NOD mice (Bettini et al., 2012) while protecting

mice from autoimmune arthritis in the K/BxN model (Darce et al.,
2012).

Much work has been done to uncover the molecular mecha-
nisms of Treg cell suppressive activity delineated by the transcrip-
tional data. However, there have been few attempts to discriminate
between the two subsets. Consequently, with regard to the spe-
cific mechanisms utilized to control inflammation, the “division
of labor” between nTreg cells and iTreg cells remains largely unre-
solved (Curotto de Lafaille and Lafaille, 2009). In general, Treg
cell suppression has been demonstrated to modify effector cell
activity at several different stages within the immune response
(Suri-Payer et al., 1998). Suppression by Treg cells can operate at
the early stages, by limiting cell activation and proliferation. Ini-
tial studies using in vitro proliferation assays demonstrated the
ability of Treg cells to control effector cell proliferation in an IL-2
dependent manner (Thornton and Shevach, 1998). Gene expres-
sion profiling of the suppressed CD4+ T cells subsequently showed
the induction of genes involved in growth arrest or the inhibition
of proliferation (Sukiennicki and Fowell, 2006). In the later stages
of the immune response, Treg cells have been shown to control
effector cell differentiation and function in the target tissues (Old-
enhove et al., 2003; Sarween et al., 2004; DiPaolo et al., 2005). The
ability of Treg cells to effectively control diverse types of inflam-
mation has been associated with Treg cell upregulation of specific
transcription factors (Campbell and Koch, 2011). Treg cell expres-
sion of T-bet, IRF4, and STAT3 contribute to the ability of Treg
cells to control the associated Th1 (Koch et al., 2009), Th2 (Zheng
et al., 2009), and Th17 (Chaudhry et al., 2009) polarized inflam-
mation, respectively. In addition, Treg cell expression of GATA-3
is important for their accumulation at the site of inflammation as
a Treg cell-specific deletion of GATA-3 led to a failure of Treg cell
accumulation in tissues and the acquisition of effector cytokine
production (Wohlfert et al., 2011). Thus, it appears that Treg cells
possess the ability to express transcription factors associated with
the type of inflammation they are controlling, which in turn pro-
vides them with the ability to adapt their suppressive program to
the surroundings.

Various molecular mechanisms of Treg cell-mediated suppres-
sion have been proposed. These suppressive mechanisms fall into
three broad categories: suppression mediated by cell–cell contact,
metabolic disruption, and the secretion of inhibitory cytokines
(Figure 1). Cell–cell contact suppression operates via molecules
such as CTLA-4 (Wing et al., 2008) and LAG-3 (Liang et al., 2008),
which may function to modulate the immunostimulatory capacity
of dendritic cells. In addition, Treg cells secrete cytotoxic molecules
such as Granzyme B, which is presumed to require cell–cell contact
(Grossman et al., 2004; Gondek et al., 2005). Metabolic disruption
can occur via the delivery of cAMP to effector T cells through
gap junctions (Bopp et al., 2007). The ectoenzymes CD39 and
CD73 on Treg cells generate adenosine, which binds the adenosine
receptor 2A on effector T cells and increases intracellular cAMP to
suppress their function (Deaglio et al., 2007). Lastly, the increased
constitutive expression of CD25 on Treg cells may allow them to
out-compete effector cells for the growth factor IL-2, leading to
cytokine deprivation-induced apoptosis of the effector T cells (de
la Rosa et al., 2004; Pandiyan et al., 2007). Inhibitory cytokines
such as TGF-β1 (Powrie et al., 1996), IL-35 (Collison et al., 2007),
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FIGURE 1 | Mechanisms of regulatoryT cell-mediated suppression.
Regulatory T (Treg) cells can utilize several different suppressive
mechanisms falling into three broad categories: (1) cell–cell
contact-mediated suppression, (2) the metabolic disruption of
effector T (Teff) cells, and (3) the secretion of inhibitory cytokines.
(1) Contact-mediated suppression dampens the immunostimulatory
properties of dendritic cells (DC) and occurs via the engagement of Treg cell
inhibitory receptors such as CTLA-4 and LAG-3 with CD80/86 and MHC

molecules on the DC, respectively. Delivery of granzyme B (Gzm B) to Teff
cells leads to apoptosis. (2) Metabolic disruption of effector T cells is
mediated by Treg cell delivery of cAMP to effector T cells via gap junctions,
the generation of adenosine by the Treg cell ectoenzymes CD39 and CD73
which acts on Teff cell adenosine receptors (A2AR), and by Treg cell
consumption of IL-2 thereby depriving Teff cells of growth factors. (3) Treg
cells secrete inhibitory cytokines such as IL-10, IL-35, and TGF-β1, which
inhibit both T cells and DCs.

and IL-10 (Asseman et al., 1999) have been implicated in Treg
cell suppressive function, and may serve to specifically dampen
the activation of antigen presenting cells or inhibit effector T cell
proliferation.

The immunomodulatory cytokine IL-10 has been studied
extensively in relation to Treg cell biology. IL-10 is particularly
important for Treg cells at environmental interfaces, as a Treg
cell-specific inactivation of IL-10 results in spontaneous colitis,
heightened immune-mediated lung hyperreactivity, and increased
skin sensitivity (Rubtsov et al., 2008). Treg cell-derived IL-10 con-
trols Th17 cells and a unique population of T cells displaying

features of both Th1 and Th17 cells (Th1+Th17) in a transfer
model of colitis (Huber et al., 2011). In a model where Foxp3-
deficiency was treated with nTreg cells plus in vivo-derived iTreg
cells, gene expression profiling revealed that both Treg cell types
over-expressed Il10 as compared to naïve Tconv cells, suggesting a
possible role for IL-10 as an iTreg cell mechanism of suppression
(Haribhai et al., 2011). Recently, it was demonstrated that IL-
10 produced by iTreg cells could replace nTreg cell-derived IL-10
in the cure of experimental colitis. Reversal of the experimental
conditions was similarly effective, defining the novel principle
of reciprocal compensation between Treg cell subsets, which was
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necessary to establish tolerance in this model (Schmitt et al., 2012).
This work also demonstrated that iTreg cells limited the frequency
of ex-iTreg cells adopting a Th1, Th17, or Th1+Th17 cell fate,
in concordance with previous data looking at the function of
nTreg cells (Huber et al., 2011). Thus, it is possible that under
certain circumstances, both Treg subsets must possess the ability
to operate via the same mechanism. Further studies are needed
to determine whether the principle of reciprocal compensation
is model-specific or can be globally applied in situations where a
known Treg cell defect exists.

T CELL RECEPTOR REPERTOIRE OF THE TREG CELL SUBSETS
In the thymus, developing Tconv cells and nTreg cell precursors
have unique affinity requirements (Jordan et al., 2001; Apostolou
et al., 2002). Induction of Foxp3 requires an agonist self-peptide,
and the frequency of nTreg cells that develop is directly pro-
portional to the strength of the signal (Relland et al., 2009).
Furthermore, autoreactivity of the nTreg cell compartment has
been demonstrated, despite a normal response to central tolerance
mechanisms (Romagnoli et al., 2002; Hsieh et al., 2004). Given the
observed bias of nTreg cells to self antigen, several studies have
sought to compare the TCR repertoires of nTreg and Tconv cells.
Studies that have reported differences between nTreg and Tconv
repertoires have analyzed the TCRα complementarity determin-
ing region (CDR3) of mice with fixed transgenic TCRβ chains and
a restricted Tcra locus. In these reports, the nTreg and Tconv TCR
repertoires were found to be equally diverse, however the degree of
observed overlap between the two populations varied (Hsieh et al.,
2004, 2006; Pacholczyk et al., 2006, 2007; Wong et al., 2007b). In a
separate system with limited diversity, the repertoire of the nTreg
cells responding to a foreign antigen was found to be more limited
and clonally distinct compared to Tconv cells also responding to
the antigen (Relland et al., 2012). In contrast to the self-specificity
seen in the nTreg cell population, iTreg cells are thought to be
specific for foreign antigen, given that the iTreg cell population
is derived from the Tconv cell pool. Therefore, it was not sur-
prising that the iTreg cell TCR repertoire shared minimal overlap
with that of nTreg cells (Haribhai et al., 2011). This limited overlap
may in part contribute to the requirement for both nTreg and iTreg
cells in the resolution of autoimmune diseases, as the combination
provides a more diverse TCR repertoire. Evidence from a handful
of TCR repertoire studies suggests that iTreg formation in non-
mucosal tissues, such as in the central nervous system of mice with
experimental autoimmune encephalomyelitis (Liu et al., 2009) and
in the pancreas of diabetic mice (Wong et al., 2007a), may be lim-
ited. Minimal TCR repertoire overlap was observed between Tconv
and Treg cells at these locations, supporting a role for Treg cell
recruitment rather than induction. Furthermore, mice that lack
iTreg cells due to a genetic ablation of the intronic Foxp3 enhancer
CNS1 maintain tolerance to systemic and tissue-specific antigens
but develop inflammation at the mucosal interfaces of the lung
and gastrointestinal tract (Josefowicz et al., 2012). Interestingly,
CNS1 deficient mice also display increased fetal resorption due to
a lack of fetal alloantigen-specific iTreg cells (Samstein et al., 2012).
These data support the notion that iTreg cell TCRs may function to
expand tolerance to non-self antigens, particularly those present
at mucosal interfaces.

To gain further insight into the TCR specificity of Treg cells,
several groups have created TCR transgenic mice that harbor a
TCR derived from a Treg cell (Bautista et al., 2009; Leung et al.,
2009). Interestingly, nTreg cells were only efficiently generated
when the transgenic cells were present at a low clonal frequency.
These studies suggested that the development of nTreg cells is a
saturable process that plateaus, most likely due to intraclonal com-
petition for MHC/peptide complexes. However, recent work has
demonstrated that a limited, fixed pool of in vitro-derived iTreg
cells contains a large number of clones with TCRs that can be
maintained within the iTreg cell niche, and mice receiving equiv-
alent numbers of the same iTreg cells maintained distinct clones
(Schmitt et al., 2012). This is in agreement with previous work
demonstrating that high TCR diversity is important for the opti-
mal function of Treg cells in a model of experimental acute GVHD
(Fohse et al., 2011). In contrast to the nTreg cell niche, the iTreg
cell niche is probably not constrained by the number of available
antigens, given the proposed specificity for non-self and the com-
plexity of the microbiome. This suggests that the size of the iTreg
cell population may not be limited by TCR specificity, but may
be determined by other factors such as the number of tolerogenic
antigen presenting cells (Coombes et al., 2007), local concentra-
tions of TGF-β1 (Marie et al., 2005; Li et al., 2006) and IL-2 (Chen
et al., 2011), and signaling via the PD 1–PD-L pathway (Francisco
et al., 2009). In addition, members of the Tumor Necrosis Fac-
tor Receptor superfamily expressed on Treg cells, including GITR
(Ray et al., 2012) and OX40 (Piconese et al., 2010), have also been
shown to be important for Treg cell proliferative fitness. Increased
IL-2 signaling, via administration of IL-2 immune complexes or
through constitutive STAT5b signaling, allows for Treg cell divi-
sion in the absence of TCR signaling (Zou et al., 2012). During the
treatment of autoimmune conditions, such as experimental coli-
tis, high levels of IL-2 could allow for the maintenance of a diverse
population of iTreg cells. Other cell types, such as IL-10-producing
CXCR1+ macrophages in the lamina propria are important for
Treg cell proliferation in the setting of oral tolerance, and may
contribute to the size and composition of the iTreg cell popula-
tion (Hadis et al., 2011). It is also likely that the nTreg cell subset
dictates the size of the iTreg cell niche, because in the absence of
nTreg cells, the iTreg cell compartment expands ∼fivefold (Harib-
hai et al., 2009). A recent study demonstrated that in vitro-derived
iTreg cells cotransferred with naïve T cells into Rag−/− hosts were
not effective in preventing colitis and many of the iTreg cells had
decreased Foxp3, CTLA-4, and CD25 expression (Ohkura et al.,
2012). Thus, cooperation between nTreg and iTreg cells, which
is essential to establish tolerance, could therefore influence the
composition of the iTreg cell niche. Manipulation of the factors
implicated in shaping the iTreg cell niche may provide a mecha-
nism to control the size, specificity, and/or function of the iTreg
cell compartment.

IMMUNOTHERAPY WITH iTREG CELLS
Statistics published by the National Institutes of Health indicate
that chronic autoimmune disease affects ∼5–8% of the U.S.
population, an estimated 14.7–23.5 million individuals, and
the prevalence is rising (NIAID, 2005). Existing therapeutic
approaches are inadequate and current research efforts must focus
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on restoring the balance between pro- and anti-inflammatory
responses. A decrease in Treg cell numbers and/or function has
been associated with many human autoimmune diseases (Long
and Buckner, 2011). Currently, ex vivo expanded nTreg cells are
being used in umbilical cord blood transplantation clinical tri-
als, where the benefit to risk ratio is high due to the risk of
life-threatening GVHD (Brunstein et al., 2011). Although nTreg
cells were functionally suppressive in vivo after several rounds of
stimulation and expansion, the optimal ≥1:1 nTreg to periph-
eral blood mononuclear cell ratio could not be achieved (Hippen
et al., 2011b). Therefore iTreg cells, which can be generated in
large numbers ex vivo and have been shown to operate in a xeno-
geneic model of GVHD, may offer an alternative to nTreg cells
(Hippen et al., 2011a). The ability of iTreg cells to be generated in
large numbers makes them an attractive alternative for the treat-
ment of human autoimmune disorders unresponsive to current
approaches (Trzonkowski et al., 2009; Brunstein et al., 2011; Di
Ianni et al., 2011; Hippen et al., 2011a). In vitro-derived iTreg
cells are functionally suppressive in animal models of inflamma-
tory bowel disease (Fantini et al., 2006), diabetes (Weber et al.,
2006), autoimmune gastritis (DiPaolo et al., 2007), experimental
autoimmune encephalitis (Selvaraj and Geiger, 2008), and Foxp3-
deficiency (Huter et al., 2008). Notably, in vitro-derived iTreg cells
contribute to tolerance in disease models where in vivo-derived
iTreg cells are absent (Haribhai et al., 2009, 2011). Moreover, iTreg
cells can be used to augment and restore regulatory networks in sit-
uations where nTreg cells are exhausted or defective (Schmitt et al.,
2012). Yet, in many of these models the specific Treg cell suppres-
sive mechanism that is important and functional at an individual
site of inflammation remains poorly understood. It is likely that
iTreg cells can operate via multiple means but that particular sup-
pressive mechanisms may vary in importance in each autoimmune
disease or in different stages of the same disease.

A recent phase 1/2a clinical study conducted in 20 patients
with refractory Crohn’s disease demonstrated a clinically signif-
icant effect of a single infusion of Treg cells in 40% of patients
5 weeks post-infusion (Desreumaux et al., 2012). Patients’ cells
were expanded in vitro in response to ovalbumin (OVA) and
cloned by limiting dilution to generate IL-10–producing OVA-
specific Treg cells. Whether these cells are functioning purely as
IL-10–producing T regulatory (Tr1) cells or as Foxp3+ iTreg cells
is unclear, as ∼60% of the OVA-Treg cells expressed Foxp3. For
human cells, in vitro activation leads to Foxp3 expression within
48 h, peaking at 4–6 days, and diminishing by 10–14 days post-
activation, leaving only a fraction of cells Foxp3+(Pillai et al.,
2007). Bonafide human Foxp3+ Treg cells can be identified by
characteristic epigenetic changes within the Foxp3 locus (Baron
et al., 2007), however, tracking of the transferred cells was not
feasible in this case (Desreumaux et al., 2012). Regardless of
this caveat, both Foxp3+ and Foxp3− IL-10-producing regulatory
cells can control pathogenic T helper cells in mouse models of
intestinal inflammation (Huber et al., 2011). This initial clinical
study provides the groundwork for additional research into adop-
tive transfer immunotherapy for autoimmune diseases refractory
to current therapies.

Another issue with adoptive transfer immunotherapy is the
in vivo stability of iTreg cells. In a model of experimental colitis,

iTreg cells were recovered from successfully treated mice (Haribhai
et al., 2009; Schmitt et al., 2012). Conversely, in a mouse model of
GVHD these cells did not persist (Beres et al., 2011). Perhaps, the
degree of ongoing inflammation will hamper the efficacy of these
cells for therapy. If relevant clones could be pre-selected,enhancing
the possibility that these cells will be expanded and/or maintained
via interactions with their cognate ligand in vivo, this may increase
the usefulness of iTreg cells. Further, excessive regulation may
hamper normal immune responses to invading organisms, thus
a fine balance between limiting disease progression and impeding
natural responses to infectious agents needs to be established.

STABILITY OF iTREG CELLS
The self-specificity of nTreg cell TCRs creates the potential for
autoimmunity that is averted by stable Foxp3 expression. Several
recent studies have scrutinized the stability of nTreg cells, both
long term and in pro-inflammatory conditions. Indeed, there is
some disparity in the reports regarding Treg cell plasticity. On one
hand, both nTreg and iTreg cells were shown to convert to a pro-
inflammatory Th17 phenotype in the presence of IL-6, IL-1, and
TGF-β1 in vitro (Yang et al., 2008). These “exFoxp3” cells were
also tracked in a study using Foxp3-GFP-Cre BAC transgenic mice
bred to mice that expresses YFP from the Rosa26 promoter after
removal of a loxP-“stop” cassette (Rosa26-loxP-Stop-loxP-YFP).
In this model, all cells that expressed Foxp3 at any time during
their lifespan deleted the “stop” cassette and remained YFP+, thus
marking “exFoxp3” cells with a YFP+ Foxp3− phenotype. These
“exFoxp3” cells produced pro-inflammatory cytokines, were path-
ogenic, and the TCR repertoire analysis suggested that they were
derived from both nTreg and iTreg cells (Zhou et al., 2009). In
contrast to this report, a group that used an inducible labeling sys-
tem found the nTreg cell population to be stable throughout the
lifespan of the mouse and in the setting of Listeria infection, lym-
phopenia, and autoimmune inflammation (Rubtsov et al., 2010).
In this model, mice with a Foxp3-eGFP-Cre-ERT2 (ERT2, mutated
human estrogen receptor ligand-binding domain) fusion protein
were bred to mice in which the Rosa26 locus contains a loxP site-
flanked STOP cassette followed by YFP. The GFP-CreERT2 fusion
protein is normally sequestered in the cytosol, but administration
of tamoxifen allows nuclear localization and constitutive, herita-
ble labeling of a cohort of Treg cells with YFP. The differences
observed between these studies were attributed to the caveats with
the BAC transgenic system, in which cells that transiently expressed
Foxp3, prior to stabilization, would be labeled (Miyao et al., 2012).
The latest labeling system revealed that mouse T cells can upregu-
late Foxp3 during activation (Miyao et al., 2012), as observed with
human T cells (Pillai et al., 2007), and that this promiscuous Foxp3
expression accounts for the documented instability of the Treg cell
lineage. Taken together, these results demonstrate that nTreg cells
express Foxp3 in a stable, heritable fashion.

Analysis of the Foxp3 locus revealed three intronic elements
within the proximal CNS that influence the composition, stabil-
ity, and size of the Treg cell compartment (Zheng et al., 2010).
To determine the function of the CNS elements in vivo, individ-
ual deletions of each CNS element were created. These analyses
revealed CNS1, which contains binding sites for NFAT, RAR/RXR,
and Smad3, to be particularly important for the development of
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iTreg cells. In CNS1 knockout mice the efficiency of in vivo and
in vitro generation of iTreg cells was reduced. CNS2 was shown
to be important in the heritable maintenance of Foxp3. The CpG
motifs in CNS2, also known as the Treg cell-specific demethy-
lated region (TSDR), are demethylated in nTreg cells, but not in

iTreg cells produced in vitro (Floess et al., 2007; Polansky et al.,
2008) (Table 2). Interestingly, in vitro-derived iTreg cells that were
stably maintained in vivo for ∼3 months could achieve at least
partial demethylation of the TSDR (Schmitt et al., 2012). Treat-
ment with inhibitors of DNA methyltransferases (Polansky et al.,

Table 2 | Summary of CNS2 methylation status in CD4+ T cell populations.

Reference Cell type Method % methylation

Floess et al. (2007) nTreg CD4+CD8−CD25+ Treg cells isolated from the thymus +++

nTreg CD25+ Treg cells isolated from secondary lymphoid organs of male mice +

iTreg Mouse TGF-β1 induced iTreg cells after 6 days in culture +++

Tconv CD25−CD4+ Tconv cells isolated from secondary lymphoid organs of male mice ++++

Baron et al. (2007) nTreg Human FOXP3+CD25highCD4+ Treg cells isolated from the peripheral blood of male

donors

+

Tconv Human naive CD45RA+CD25−CD4+ T cells isolated from the peripheral blood of

male donors

++++

Polansky et al. (2008) iTreg iTreg cells generated in vivo by anti-DEC-205-mediated targeting of an agonist to

dendritic cells, isolated 3 weeks later and expanded in vitro for 5 days

++

Lal et al. (2009) iTreg iTreg cells generated in the presence of TGF-β1 and the DNA methyltransferase

inhibitor 5-aza-2′-deoxycytidine

+

Zheng et al. (2010) nTreg GFP+ Foxp3-null T cells (TFN) expressing a Foxp3 reporter “null” allele (Foxp3gfpko) +

iTreg TGF-β1 induced iTreg cells after 3 days in culture ++++

Haribhai et al. (2011) nTreg nTreg cells transferred into a Foxp3-deficient host at birth and maintained in vivo

50 days

+

iTreg Generated in vivo from Tconv cells that were transferred into Foxp3-deficient mice at

birth and maintained in vivo 50 days

++++

Chen et al. (2011) iTreg Transfer of OT-II iTreg cells followed by immunization with OVA/IFA and treatment

with IL-2/anti-IL-2 complexes, isolated after 5 days

+

Sela et al. (2011) iTreg Generated by a MLR in the presence of TGF-β1 and RA, cultured 5 days +++

iTreg Generated by a MLR in the presence of TGF-β1 and RA, cultured 5 days and

restimulated with allogeneic dendritic cells for 3 days

++

iTreg Generated in vitro by a 5-day MLR in the presence of TGF-β1 and RA, cotransferred

with GVHD-inducing cells, and isolated 1.5 months post transfer

+

Ohkura et al. (2012) nTreg Isolated from the thymus +++

nTreg Isolated from the spleen +

iTreg Generated in vitro by TCR stimulation with TGF-β1±RA, 5 days culture ++++

iTreg Transfer of Tconv into RagKO recipients, analysis of in vivo-derived iTreg cells

7 weeks post transfer

+

Miyao et al. (2012) Tconv In vitro TCR stimulation of naïve T cells in the presence of IL-2, leading to transient

activation induced Foxp3 expression

++++

Schmitt et al. (2012) nTreg nTreg cells used to treat lymphopenia induced colitis, maintained in vivo ∼100 days +

iTreg Generated in vitro with TGF-β1, maintained in vivo (as above) for ∼100 days +++

Toker et al. (2013) nTreg Thymic CD4+CD8−Foxp3+CD24hi
++++

nTreg Thymic CD4+CD8−Foxp3+CD24int
+++

nTreg Thymic CD4+CD8−Foxp3+CD24lo
++

This table documents the percent methylation of CNS2, also known as the Treg cell-specific demethylated region (TSDR), of nTreg, iTreg, and Tconv cells in several

different model systems and organs. Percent methylation is depicted as follows:+, 0–25% methylated;++, 25–50% methylated;+++, 50–75% methylated;++++,

75–100% methylated. GVHD, graft versus host disease; IFA, incomplete Freud’s adjuvant; MLR, mixed leukocyte reaction; OVA, ovalbumin; RA, retinoic acid.
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2008; Lal et al., 2009) and histone deacetylases (Tao et al., 2007)
can enhance the stability of Foxp3 expression. In a similar fash-
ion, progesterone (Lee et al., 2012), rapamycin (Battaglia et al.,
2005), and retinoic acid (Mucida et al., 2009) promote iTreg cell
stability and/or generation, and could be incorporated into in vitro
induction protocols to create stable iTreg cells for immunotherapy.
After demethylation, a Foxp3-Runx-1-CBFb complex is recruited
to CNS2 and may represent an important lineage specification
event (Zheng et al., 2010). Since demethylation is required for the
complex to bind, and iTreg cells generally fail to fully demethy-
late the TSDR, a lack of binding of this complex may account for
their reduced stability. CNS2 is demethylated in GFP+ Foxp3-null
T cells (TFN) expressing a Foxp3 reporter “null” allele (Foxp3gfpko),
suggesting that Foxp3 binding is not required for demethylation
of the TSDR (Zheng et al., 2010). Rather, it appears that TCR
stimulation is essential to establish the Treg cell-specific CpG
hypomethylation patterns (Ohkura et al., 2012). The last CNS
element observed, CNS3, is important for Foxp3 induction in the
thymus and periphery. Formation of a c-Rel containing enhanceo-
some, in cooperation with NFAT, CREB, p65, and Smad3, may
potentiate Foxp3 induction (Rudensky, 2011). In addition to the
demethylation pattern observed in CNS2 of Foxp3, three other
“Treg cell-representative regions” were identified and included
regions of Tnfrsf18, Ctla4, and Ikzf4 that display distinct demethy-
lation patterns in nTreg, Tconv, and iTreg cells and are essential
to establish lineage stability (Ohkura et al., 2012). In addition to
its roles in iTreg cell generation and proliferation, IL-2 signal-
ing is important for iTreg cell stability in vivo (Chen et al., 2011).
Also, expression of the suppressor of cytokine signaling-2 (SOCS2)

protein plays a role in preventing IL-4-dependent iTreg instability
(Knosp et al., 2013). In summary, a complex, regulated series of
interactions with Foxp3 are required for the establishment of Treg
cell stability.

CONCLUSION
In conclusion, recent work has established the importance of iTreg
cells to the maintenance of immunological tolerance. As a pop-
ulation, iTreg cells share many characteristics with nTreg cells,
but the observed differences in their respective TCR repertoires
may lead to differential function and location, creating a need for
both subsets. Future studies will look to establish additional sur-
face markers to distinguish the subsets so that conclusive studies
regarding the function and stability of the iTreg cell population
can be conducted. An enhanced understanding of the origin and
function of iTreg cells will promote future studies examining the
translational potential of these cells.
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