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The interleukin-1 (IL 1) family of ligands is associated with acute and chronic inflammation,
and plays an essential role in the non-specific innate response to infection. The biological
properties of IL 1 family ligands are typically pro-inflammatory.The IL 1 family has 11 family
members and can be categorized into subfamilies according to the length of their precursor
and the length of the propiece for each precursor (Figure 1).The IL 1 subfamily consists of
IL 1α, IL 1β, and IL 33, with the longest propieces of the IL 1 family. IL 18 and IL 37 belong
to the IL 18 subfamily and contain smaller propieces than IL 1 and IL-33. Since IL 37 binds
to the IL 18Rα chain it is part of the IL 18 subfamily, however it remains to be elucidated
how the propiece of IL 37 is removed. IL 36α, β, and γ as well as IL 36 Ra belong to the IL
36 subfamily. In addition, IL 38 likely belongs to this family since it has the ability to bind
to the IL 36R. The IL 36 subfamily has the shortest propiece. The one member of the IL 1
family that cannot be categorized in these subfamilies is IL 1 receptor antagonist (IL 1Ra),
which has a signal peptide and is readily secreted. In the present review we will describe
the biological functions of the IL-1F members and new insights in their biology.
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INTRODUCTION
The interleukin-1 (IL-1) family of ligands is associated with acute
and chronic inflammation, and plays an essential role in the non-
specific innate response to infection. The biological properties of
IL-1 family ligands are typically pro-inflammatory. The IL-1 fam-
ily has 11 family members and can be categorized into subfamilies
according to the length of their precursor and the length of the pro-
piece for each precursor (Figure 1). The IL-1 subfamily consists
of IL-1α, IL-1β, and IL-33, with the longest propieces of the IL-1
family. IL-18 and IL-37 belong to the IL-18 subfamily and contain
smaller propieces then IL-1 and IL-33. Since IL-37 binds to the
IL-18Rα chain it is part of the IL-18 subfamily, however it remains
to be elucidated how the propiece of IL-37 is removed. IL-36α, β,
and γ as well as IL-36 Ra belong to the IL-36 subfamily. In addi-
tion, IL-38 likely belongs to this family since it has the ability to
bind to the IL-36R. The IL-36 subfamily has the shortest propiece.
The one member of the IL-1 family that cannot be categorized in
these subfamilies is IL-1 receptor antagonist (IL-1Ra), which has a
signal peptide and is readily secreted. In the present review we will
describe the biological functions of the IL-1F members and new
insights in their biology.

THE IL-1 SUBFAMILY
INTERLEUKIN-1α
IL-1α does not have a signal peptide, binds to nuclear DNA, and
is released from the cell upon death after which it can bind to the
IL-1R1 receptor as either an unprocessed precursor or a processed
protein. Primary cells such as keratinocytes, thymic epithelium,
hepatocytes, endothelial cells, fibroblasts, and the epithelial cells
of mucus membranes contain constitutive levels of intracellular
IL-1α precursor (Hacham et al., 2002). Furthermore, precursor
IL-1α can be found on the surface of several cells, particularly on

monocytes and B-lymphocytes, referred to as membrane bound
IL-1α (Kurt-Jones et al., 1985). Membrane bound IL-1α is bio-
logically active (Kaplanski et al., 1994), and its biological activities
are neutralized by antibodies specific to IL-1α. Endothelial cells
undergoing stress-induced apoptosis release membrane apoptotic
body-like particles containing full-length IL-1α precursor and
the processed mature form (Berda-Haddad et al., 2011). When
injected into mice, apoptotic body-like particles containing the
IL-1α precursor induce neutrophilic infiltration that can be pre-
vented by neutralization of IL-1α (Berda-Haddad et al., 2011).
Although the IL-1α precursor is biologically active, the processed
form is more active. The processing of the IL-1α precursor is
accomplished by calpain II, a membrane-associated, calcium-
dependent cysteine protease (Miller et al., 1994), and calcium
influx induces IL-1α secretion of the processed form (Gross et al.,
2012).

It has been proposed that IL-1α acts as an autocrine growth
factor since the intracellular regulating normal cellular differenti-
ation, particularly in epithelial and ectodermal cells. In support of
this concept, neutralizing intracellular IL-1α reduces senescence in
endothelial cells (Maier et al., 1990), and constitutive IL-1α precur-
sor can bind to HAX-1 in fibroblasts that subsequently translocates
as a complex to the nucleus (Kawaguchi et al., 2006). Although
these data support the concept that IL-1α can act as an autocrine
growth factor, it should be noted that mice deficient in IL-1α show
no defects in growth and development, including skin, fur, epithe-
lium, and gastrointestinal function (Horai et al., 1998). However,
since mice deficient in IL-1α still retain the N-terminal propiece
(Werman et al., 2004) and this N-terminal propiece of IL-1α has
been shown to bind HAX-1 (Yin et al., 2001) it could still be that
the propiece of IL-1α is responsible for the proposed autocrine
growth factor function of IL-1α.
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van de Veerdonk and Netea IL-1 family ligands

FIGURE 1 | Subfamilies according to the length of their precursor.
Three families can be distinguished in the IL-1 family, the IL-1 subfamily, the
IL-18 subfamily, and the IL-36 subfamily. The IL-1 receptor antagonist (IL-1Ra)
cannot be categorized in these subfamilies, since it has a signal peptide and
is readily secreted.

IL-1α plays an important role in sterile inflammation. Upon
necrotic cell death the IL-1α precursor is released (Carmi et al.,
2009; Cohen et al., 2010) and binds to the IL-1 receptor on
nearby tissue macrophages and epithelial cells (Luheshi et al., 2011;
Rider et al., 2011). This will trigger a pro-inflammatory response
characterized by neutrophilic influx that is followed by influx of
monocytes (Rider et al., 2011). This is underlined by the observa-
tion that extracts of tumor cells induce neutrophilic inflammation,
which does not occur in mice deficient in IL-1RI and that can be
prevented by neutralization of IL-1α (Chen et al., 2007). Thus,
IL-1α, either the unprocessed precursor or the cleaved form can
be seen as an alarmin (Chan et al., 2012). Furthermore, platelets
also contain IL-1α (Hawrylowicz et al., 1989), and platelet-derived
IL-1α has been described to be important in brain injury in stroke
models (Thornton et al., 2010) and in atherosclerosis (Gawaz et al.,
2000).

In mice fed a high-fat diet, serum amyloid A protein, a marker
of inflammation in atherogenesis, was markedly lower in IL-1α-
deficient mice compared to wild type or IL-1β-deficient mice
(Kamari et al., 2007). IL-1α-deficient mice had significantly higher
levels of non-high density lipoprotein cholesterol. The beneficial
effect of IL-1α deficiency was due to hematopoietic cells trans-
ferred from the bone marrow of IL-1α-deficient mice resulting
in a reduction in aortic lesion size twice that observed in mice
transplanted with IL-1β-deficient bone marrow cells. Therefore,
IL-1α appears to play an important role in the pathogenesis of
lipid-mediated atherogenesis and this may be due to an effect of
membrane IL-1α.

INTERLEUKIN-1β
IL-1β is a highly inflammatory cytokine as reviewed in Dinarello
(2011a), and is primarily a product of monocytes, macrophages,
and dendritic cells (DC) as well as B-lymphocytes and NK cells.
Caspase-1, an intracellular cysteine protease, is responsible for the
conversion of inactive IL-1β precursor into the active cytokine
(Figure 2). Caspase-1 likewise needs to be processed in order

to become active. This activation of caspase-1 is dependent on
a complex of intracellular proteins termed the inflammasome
(Agostini et al., 2004; Martinon et al., 2009). One critical compo-
nent of the inflammasome is NLRP3, also termed cryopyrin since
the gene was initially discovered in patients with “familial cold
auto-inflammatory syndrome,” a genetic disease characterized by
fevers and elevated acute phase proteins following exposure to cold
(Hoffman et al., 2001). Human blood monocytes contain consti-
tutively active caspase-1, which is dependent on the presence of the
key components of the inflammasome, namely ASC and NLRP3
(Netea et al., 2009). By contrast, other cells, such as macrophages
and DC, need an additional trigger to activate caspase-1 (Netea
et al., 2009). Non-caspase-1 mechanisms also exist to generate
active forms of IL-1β. Sterile inflammation induces fever and
increased production of hepatic acute phase proteins, which are
absent in mice deficient in IL-1β, but present in mice deficient in
caspase-1 (Fantuzzi et al., 1997a; Joosten et al., 2009). This observa-
tion can be explained by the fact that proteinase 3 from neutrophils
can also process the IL-1β precursor extracellularly into an active
cytokine (Coeshott et al., 1999; Joosten et al., 2009), as well as
other proteases including elastase, matrix metalloprotease 9, and
granzyme A (Figure 2).

Recently, autophagy has been reported to regulate IL-1β pro-
duction (Saitoh et al., 2008). Autophagy is an ancient process
of recycling cellular components, such as cytosolic organelles
and protein aggregates, through degradation mediated by lyso-
somes. Autophagy is activated in conditions of cell stress, hypoxia,
starvation, or growth factor deprivation, and it promotes cell
survival by generating free metabolites and energy through degra-
dation of the endogenous cellular components (Klionsky, 2007).
In addition to its role in the pathophysiology of aging, cancer,
and neurodegenerative diseases, autophagy can also modulate
inflammatory responses (Schmid and Munz, 2007). A role for
autophagy in production of pro-inflammatory cytokines, par-
ticularly IL-1β, has emerged with the reported link between
ATG16L1 (an autophagy gene) function and IL-1β production.
Macrophages from ATG16L1-deficient mice produce higher lev-
els of IL-1β and IL-18 after stimulation with lipopolysaccharide
(LPS) (Saitoh et al., 2008). These data suggest that higher acti-
vation of caspase-1 in ATG16L1-deficient mice accounts for the
higher production of these caspase-1 dependent cytokines. Indeed,
additional studies in ATG16L1-deficient mice point toward a
regulatory effect of autophagy on caspase-1 activation through
modulating the NLRP3 inflammasome (Saitoh et al., 2008;
Tschopp and Schroder, 2010; Nakahira et al., 2011; Zhou et al.,
2011). Autophagy can thus regulate IL-1β production by influ-
encing caspase-1 activity (Figure 2). Furthermore, autophago-
somes present in mouse macrophages can specifically degradate
IL-1β precursor (Harris et al., 2011). Moreover, inhibition of
autophagy in human primary monocytes leads to increased pro-
duction of IL-1β (Crisan et al., 2011) (Figure 2). However, in the
same cells TNFα production was decreased by autophagy inhi-
bition, suggesting that there are divergent effects of autophagy
on the production of these two important pro-inflammatory
cytokines. Interestingly, in human cells IL-1β mRNA transcrip-
tion is elevated when autophagy is inhibited, whereas no effects
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FIGURE 2 | Processing and regulation of IL-1β. Transcription of IL-1β mRNA
can be induced by ligands that activate Toll like receptors (TLR) or by IL-1
ligands (IL-1α and IL-1β). This transcription can be regulated by autophagy. The
precursor of IL-1β, namely pro-IL-1β, can be processed by active caspase-1

which is part of the inflammsome. In addition proteases, predominantly
derived from neutrophils, can cleave extracellular pro-IL-1β, which will be
present extracellularly in the setting of damaged inflammatory cells. This
processed mature and bioactive IL-1β can then induce its own transcription.

can be observed on caspase-1 activation (Saitoh et al., 2008;
Crisan et al., 2011; Harris et al., 2011). Despite these differences
between mouse and human cells, autophagy modulates IL-1β

production and inhibition of autophagy increases the production
of IL-1β.

The potent inflammatory function of IL-1β is underlined by
diseases that are specifically associated with IL-1β production.
Although it has been described that IL-1 can play an important
role in neurodegenerative diseases such as Alzheimer’s disease,
developmental diseases such as schizophrenia (Meyer, 2011) or
even stress (Goshen and Yirmiya, 2009) most disease states that
have been clearly linked with IL-1β mediated inflammation fall
into the category of auto-inflammatory diseases, which are to
be distinguished from the classic autoimmune diseases. Although
inflammation is common to both auto-inflammatory and autoim-
mune diseases, in the case of IL-1-mediated disease, there is no
evidence for a role of the adaptive immune system in its induction.

Persons with activating mutations in one of the key genes that
control the activation of caspase-1, namely NLRP3 (cryopyrin),
can develop life-threatening systemic inflammation, which can be
reversed by blocking IL-1β. Interestingly, in patients with these
mutations in NLRP3, there is a decrease in steady state levels of
pro-caspase-1 mRNA with IL-1Ra treatment (Goldbach-Mansky
et al., 2006), suggesting that IL-1β stimulates its own production
and processing. Other studies supporting this concept of IL-1-
induced IL-1 have been reported (Goldbach-Mansky et al., 2006;
Gattorno et al., 2007; Greten et al., 2007; Boni-Schnetzler et al.,
2008). This explains the auto-inflammatory nature of these IL-1
mediated diseases, namely an initial trigger induces the production
of IL-1β, which thereafter can induce itself. Type 2 diabetes appears
to be an example of an auto-inflammatory disease where glucose
induces IL-1β production from the insulin-producing beta cell
and IL-1β induces the beta cell to produce its own IL-1β (Maedler
et al., 2002).
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No spontaneous disease has been reported in mice deficient in
IL-1β. However, upon challenge, IL-1β-deficient mice differ signif-
icantly in their responses from wild-type mice. The most dramatic
is the response to local inflammation induced by a local irri-
tant. IL-1β-deficient mice will not have an acute phase response,
develop anorexia, and have no fever within the first 24 h (Zheng
et al., 1995; Fantuzzi et al., 1997b). These effects have also been
observed in the same model using anti-IL-1R type I antibodies
in wild-type mice (Zheng et al., 1995; Fantuzzi et al., 1997b).
Reduced inflammation has also been observed in IL-1β-deficient
mice that are exposed to zymosan-induced peritonitis (Fantuzzi
et al., 1997b). IL-1β-deficient mice injected with LPS have little or
no expression of leptin mRNA or leptin protein (Faggioni et al.,
1998), however they do have elevated febrile responses to LPS, IL-
1β, or IL-1α when compared to wild-type mice (Fantuzzi et al.,
1996).

Interleukin-1β enhances T-cell activation and recognition of
antigen. The specificity of this response was however not known
initially. IL-1β, together with IL-6, and TGFβ have been reported
to induce the development of Th17 cells, while IL-23 has been
reported to be important for the maintenance of Th17 cells
(Weaver et al., 2006; Dong, 2008; van de Veerdonk et al., 2009).
The combination of IL-23 and IL-1β induces the development
of human Th17 cells (Wilson et al., 2007). Interestingly, these
cells also released IFNγ, displaying a phenotype common to both
Th17 and Th1 cells (Wilson et al., 2007). The strong capacity of
IL-1 to induce Th17 differentiation has also been linked to the
induction and release of prostaglandins (Dinarello, 2011b). PGE2
are inducers of Th17 induction and inhibitors of cyclooxygenase
decrease IL-17 production (Chizzolini et al., 2008; Smeekens et al.,
2010). Furthermore, engagement of the aryl hydrocarbon recep-
tor, a pathway demonstrated to be crucial for the generation of
Th17 cells, has been shown to strongly induce IL-1β (Henley et al.,
2004). IL-1β is also required for the production of IL-17 by NKT
cells (Moreira et al., 2011) and of IL-22 from NK cells (Hughes
et al., 2010).

Cytokines belonging to the IL-1 family have also been described
to modulate neurons and functions of the central nervous system
(CNS). For example IL-1β and its antagonist IL-1Ra have been
extensively described for their ability to act within the CNS as
modulators of hippocampal memory, as well as involvement in
neuronal death (Yirmiya and Goshen, 2011; Hanamsagar et al.,
2012). From these studies it is clear that in some context these
cytokines that belong to the IL-1 family not only exert a patholog-
ical role but also play a role in homeostasis. These emerging obser-
vations underscore that the functions of inflammatory cytokines
such a IL-1β are not only confined to the classical inflammatory
response.

INTERLEUKIN-33
IL-33 belongs to the IL-1 subfamily, and was formerly termed
IL-1F11. IL-33Rα is the ligand binding chain for IL-33 (Schmitz
et al., 2005), and the co-receptor for IL-33 is the IL-1RAcP, which
is also the co-receptor for IL-1α and IL-1β. The IL-33Rα chain
is similar to IL-1R1, since it can bind the ligand but requires
the IL-1RAcP to signal (Ali et al., 2007; Chackerian et al., 2007).

The structure of IL-33 is closer to IL-18 than to IL-1β. Ini-
tially, IL-33 was considered closely related to IL-1β and IL-18
because the IL-33 precursor contains a caspase-1 site (Schmitz
et al., 2005). However studies have revealed that caspase-1 cleav-
ing of IL-33 actually results in loss of IL-33 activity and that
the full-length IL-33 precursor can bind to IL-33Rα and is active
(Cayrol and Girard, 2009). In addition, it has been reported that
the caspase-1 cleavage site is similar to the consensus sequence
for caspase-3 and that intracellular IL-33 precursor is a sub-
strate for caspase-3 (Cayrol and Girard, 2009). Precursor IL-33
can also be processed by neutrophil proteinase 3 (PR3) into a
biological active form of IL-33, however increasing the incuba-
tion time of PR3 will decrease the biological activity of IL-33
(Bae et al., 2012). Next to PR3 cleavage, neutrophil elastase and
cathepsin G can cleave the IL-33 precursor, which results in the
generation of IL-33 with different N-termini and varying lev-
els of activity (Lefrancais et al., 2012). Thus, extracellular IL-33
is released as a precursor and can be processed by neutrophil
enzymes which will generates active forms with varying levels of
activity.

The dominant biological activity of IL-33 is the induction
of Th2 cytokines, IL-4, IL-5, and IL-13 as well as other prop-
erties anticipated for a Th2 type cytokine. Therefore, the role
of IL-33 in lung inflammation such as allergic type asthma has
been studied extensively. Administration of IL-33 into the air-
ways triggers an immediate allergic response in the lung of naïve
mice and worsens the response in mice sensitized to antigen
(Louten et al., 2011). When human IL-33 is administered to mice
eosinophilic infiltration is a prominent finding in the lung and
in allergic rhinitis as well as allergic conjunctivitis (Matsuba-
Kitamura et al., 2010). Interestingly, it was recently described
that interleukin-1α can control allergic sensitization to inhaled
house dust mite (HDM) via the epithelial release of IL-33 (Willart
et al., 2012). Mice deficient in IL-33Rα do not develop a Th2
response to Schistosoma egg antigen, and mice deficient in IL-
33, are highly susceptible to Strongyloides venezuelensis (Yasuda
et al., 2012). This infection induces a unique class of cells called
natural helper cells or nuocytes, which produce IL-5 and IL-13
upon activation by IL-33, which results in eosinophilic infiltra-
tion into the lungs. This pulmonary eosinophilic inflammation
causes damage that is IL-33 and IL-5 dependent (Yasuda et al.,
2012).

Other impressive pathological findings such as changes in the
arterial walls and intestinal tissues have also been observed when
human IL-33 is injected in mice (Schmitz et al., 2005; Kim et al.,
2012). In mice deficient in IL-33Rα, there is myocardial hyper-
trophy, ventricle dilation, and fibrosis of the heart suggesting that
IL-33 plays a protective role in the heart (Sanada et al., 2007).
Moreover, elevated levels of the extracellular domain of IL-33Rα

predict outcomes in patients that have had a myocardial infarction
(Sanada et al., 2007). Furthermore, administration of recombinant
IL-33 inhibits the phosphorylation of IκB and reduces hypertro-
phy and fibrosis in a model of cardiomyocyte hypertrophy (Sanada
et al., 2007). One of the more challenging aspects is the role of the
IL-33 signaling pathway in the ApoE deficient mouse model of
atherosclerosis. Arterial wall plaques of ApoE deficient mice on a
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high-fat diet contain IL-33 and IL-33Rα. Atherosclerotic plaques
were markedly reduced when these mice were treated with IL-33,
however when Insoluble IL-33Rα was administered to neutralize
IL-33 signaling the disease worsened (Miller et al., 2008).

Clearly IL-33 has properties that go beyond its role of induc-
ing Th2 responses. For example, IL-33 can induce potent CD8(+)
T-cell (CTL) responses to replicating, prototypic RNA, and DNA
viruses in mice (Bonilla et al., 2012). Moreover, IL-33 is iden-
tical to a nuclear factor which is dominantly expressed in high
endothelial venules (HEV) called NF-HEV (Carriere et al., 2007).
Constitutive nuclear localization of IL-33 has also been reported
in several other cell types such as type II lung epithelial cells
(Yasuda et al., 2012), epithelial cells (Moussion et al., 2008), and
pancreatic stellate cells (Masamune et al., 2010). IL-33 binding to
DNA and acting as a nuclear factor resembles closely the IL-1α

binding to chromatin and IL-1α functioning as a nuclear factor
(Stevenson et al., 1997; Werman et al., 2004; Cohen et al., 2010).
IL-33 precursor can bind NF-κB p65 and IL-1β-induced TNFα

is reduced in cells overexpressing the IL-33 precursor (Ali et al.,
2011). These data suggest that next to the ability of IL-33 to induce
T-cell responses, IL-33 possesses anti-inflammatory activity which
appears to be dependent on nuclear sequestration (Cohen et al.,
2010).

THE IL-18 AND IL-37 SUBFAMILY
INTERLEUKIN-18
Interleukin-18 is extensively reviewed in this issue of Frontiers in
Immunology by Dr. C. Dinarello.

INTERLEUKIN-37
IL-37, formerly termed IL-1F7, lacks a signal peptide and has a
caspase-1 site. IL-37 can translocate to the nucleus following stim-
ulation, similar to IL-1α and IL-33 (Sharma et al., 2008). Inhibition
of caspase-1 markedly reduces nuclear entry of IL-37 (Sharma
et al., 2008), suggesting that IL-37 translocates to the nucleus
after caspase-1 processing, and acts as a transcriptional modula-
tor reducing the production of LPS-stimulated pro-inflammatory
cytokines. It must be noted that the secretion of IL-37 has not
been documented with any certainty. It is likely that the IL-37
precursor exits the cell during cell death and that this precur-
sor suppresses LPS-induced IL-1β, IL-6, and TNFα (Nold et al.,
2010). It was from the first reports on IL-37 that recombinant IL-
37 bound to the IL-18Rα (Pan et al., 2001; Kumar et al., 2002). In
IL-37 transgenic mice this binding of IL-37 to IL-18Rα has also
been observed (Nold et al., 2011), and it has been reported that
IL-37 specifically binds to the third domain of the IL-18Rα (Bufler
et al., 2002). However, IL-37 does not act as a classical receptor
antagonist for IL-18, despite these studies showing binding of IL-
37 to the IL-18Rα chain. High concentrations of IL-37 do not
inhibit recombinant IL-18-induced IFNγ, and recombinant IL-
37 modestly reduces IL-18-induced IFNγ in the presence of low
concentrations of IL-18BP (Bufler et al., 2002).

A mouse homolog for human IL-37 has not been identi-
fied, therefore a strain of transgenic mice has been generated
to study the in vivo biological function of IL-37 (Nold et al.,
2010). No obvious phenotype in homozygous IL-37 transgenic

mice (IL-37 tg) mice has been observed and breed normally.
Importantly, these mice do not constitutively express mRNA lev-
els of IL-37, which is most likely due to a functional instability
sequence found in IL-37 that limits the half-life of IL-37 mRNA
(Bufler et al., 2004). Upon stimulation with IL-1β or LPS, expres-
sion of IL-37 increases after 4–24 h and the IL-37 precursor
can be found in peripheral blood cells isolated from the trans-
genic mice (Nold et al., 2003). Compared to wild-type mice,
IL-37 transgenic mice are protected against LPS challenge (Nold
et al., 2010). They display significantly less hypothermia, acidosis,
hyperkalemia, hepatitis, and dehydration during LPS challenge.
In addition, IL-6 and TNFα production is significantly less in
whole blood cultures from IL-37 transgenic mice when stim-
ulated by IL-1β or the combination of IL-12 plus IL-18. This
anti-inflammatory activity of IL-37 is not limited to a reduc-
tion of the cytokines and chemokines, also DC isolated from
the spleen of IL-37 transgenic mice have a marked reduction
in their expression of CD86 and MHC II after LPS challenge
(Nold et al., 2010). IL-37 transgenic mice subjected to dex-
tran sulfate sodium (DSS)-induced colitis have significantly less
clinical disease compared to wild-type mice (McNamee et al.,
2011). A decreased leukocyte recruitment into the colonic lam-
ina propria was observed in IL-37Tg mice which was associated
with decreased proinflammatory cytokine production. Wild-type
mice reconstituted with bone marrow from IL-37 transgenic
mice were protected from colitis, suggesting that IL-37 origi-
nating from hematopoietic cells is sufficient to exert protective
anti-inflammatory effects.

THE IL-36 SUBFAMILY
The IL-1 family members IL-1F5, IL-1F6, IL-1F8, IL-1F9, and IL-
1F10 are now termed IL-36Ra, IL-36α, IL-36β, IL-36γ, and IL-38
respectively (Dinarello et al., 2010). Each member of the IL-36 sub-
family binds to the IL-1Rpr2, now termed IL-36R (Towne et al.,
2004). The IL-36 subfamily is closely related to the IL-1 subfam-
ily because similar to the IL-1α and IL-1β and IL-33, the IL-36R
forms a signaling complex with the IL-1RAcP (Towne et al., 2004;
Ali et al., 2007).

INTERLEUKIN-36α, β, γ (IL-36)
IL-36α, IL-36β, and IL-36γ all have agonistic characteristics and
signal through the IL-36R (Towne et al., 2004; Magne et al., 2006;
Chustz et al., 2011). These IL-36 cytokines are mainly expressed
in keratinocytes, bronchial epithelium, brain tissue, and mono-
cytes/macrophages (Smith et al., 2000; Barksby et al., 2009). LPS
derived from E. coli or P. gingivalis specifically induces expression
of IL-36γ, but not IL-36α or IL-36β in THP-1 cells (Barksby et al.,
2009). Peripheral blood lymphocytes are able to express IL-36γ in
response to α-particles, which can be used for targeted cancer ther-
apy (Turtoi et al., 2010), and T-lymphocytes have been reported to
express IL-36α and IL-36β (Smith et al., 2000; Li et al., 2010; Vigne
et al., 2011). Interestingly, it has recently been shown that γδ T-cells
can express IL-36β under specific conditions (Yang et al., 2010).
IL-36 cytokines like IL-1 and IL-18 also need to be processed in
order to gain full bioactivity, although the enzyme responsible still
remains to be determined (Towne et al., 2011).
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IL-36β can induce expression of itself, and thus an
autocrine/paracrine loop similar to IL-1 also seems to be present
in the IL-36 subfamily of cytokines (Dinarello et al., 1987; Car-
rier et al., 2011). IL-36α, IL-36β, and IL-36γ can induce IL-17
and TNF expression in keratinocytes, which can be synergized
by the cytokine IL-22 (Carrier et al., 2011). Furthermore, several
reports indicate that epidermal growth factor signaling regulates
the expression of IL-36α and IL-36β in the skin (Yang et al., 2010;
Franzke et al., 2012) suggesting an important role of the agonists
IL-36α and IL-36β in skin homeostasis. In line with this is the
observation that transgenic mice which overexpress the IL-36α

gene in basal keratinocytes display acanthosis and hyperkerato-
sis of the skin, which are characteristics of psoriatic skin lesions
(Blumberg et al., 2007). IL-36 cytokine expression in bronchial
epithelial cells can be induced by several pro-inflammatory stim-
uli (Vos et al., 2005; Chustz et al., 2011). In human lung fibroblasts,
IL-36γ induces the chemokine IL-8 and the Th17 chemokine
CCL20 (Chustz et al., 2011), suggesting that IL-36 cytokines
can contribute to pro-inflammatory responses and in particular
neutrophilic airway inflammation.

Furthermore, the IL-36R is highly expressed on microglial cells
and astrocytes (Lovenberg et al., 1996; Berglöf et al., 2003; Wang
et al., 2005). Murine IL-36β is expressed in neuron cells and in
glial cells, but cannot be upregulated by LPS or IL-1β stimulation
(Berglöf et al., 2003; Wang et al., 2005). Intraventricular injection
of recombinant non-processed mouse IL-36β does not induce any
of the classical IL-1 like responses such as fever or modification
of food intake and body weight in mice (Berglöf et al., 2003).
However, it must be noted that these studies have been performed
with non-processed IL-36 agonists, which is shown to have sig-
nificantly less bioactivity compared to its processed form (Towne
et al., 2011).

IL-36 RECEPTOR ANTAGONIST
IL-36Ra shares homology with IL-1Ra but is unable to bind to
the IL-1R1 since it significantly differs in loop conformations
from IL-1Ra (Dunn et al., 2003). IL-36Ra inhibits IL-36γ-induced
NFκB activation (Debets et al., 2001; Towne et al., 2004) in
a way similar to IL-1Ra (Towne et al., 2011). However unlike
IL-1Ra, IL-36Ra needs to be processed in order to gain antag-
onistic properties (Towne et al., 2011). Interestingly, IL-36Ra
itself can induce mRNA of IL-4 and protein expression in glia
cells, which can be attenuated by anti-SIGIRR antibodies. More-
over, the anti-inflammatory action IL-36Ra in vivo in the brain
is dependent on IL-4 and SIGIRR (Costelloe et al., 2008). IL-
36Ra reduces fungal-induced Th17 responses, however not in a
classical dose-dependent manner (van de Veerdonk et al., 2012;
Gresnigt et al., 2013). These reports suggest that IL-36Ra might
be able to recruit the anti-inflammatory IL-1 orphan receptor
SIGIRR and activate an anti-inflammatory signaling pathway,
and thus does not act as a classical receptor antagonist such
as IL-1Ra.

The importance of the biological activity of IL-36Ra in regulat-
ing skin inflammation has been demonstrated by several reports.
IL-36Ra deficiency exacerbates skin lesions in IL-36α transgenic
mice (Blumberg et al., 2007). Phorbol ester treatment of mouse
skin overexpressing IL-36α results in an inflammatory condition

with macroscopic and histological similarities to human psori-
asis (Blumberg et al., 2010), and characteristic inflammation of
human psoriatic skin transplanted into immunodeficient mice is
dependent on the IL-36R (Blumberg et al., 2010). In patients with
psoriasis anti-TNF treatment results in decreased expression of the
IL-36 agonists and IL-36Ra, which was associated with improved
clinical outcome (Johnston et al., 2011). This increased expres-
sion of IL-36 agonists correlates with Th17 cytokines in human
psoriatic skin lesions, although the expression of IL-36Ra by IL-
17-stimulated keratinocytes derived from patients with psoriasis
does not differ from healthy controls (Carrier et al., 2011; Muhr
et al., 2011). Moreover it has recently been shown that mutations
in IL-36RN can cause a rare life-threatening disease called general
pustular psoriasis (GPP) (Marrakchi et al., 2011; Onoufriadis et al.,
2011; Sugiura et al., 2012; Farooq et al., 2013). The currently found
mutations in IL-36RN lead to introduction of a premature stop-
codon, frameshift mutation, or an amino acid substitution which
were found to result in a misfolded IL-36Ra protein that is less
stable and poorly expressed (Marrakchi et al., 2011; Sugiura et al.,
2012; Farooq et al., 2013). The misfolded IL-36Ra has less affin-
ity with the IL-36R compared to the wild-type IL-36Ra protein,
and therefore is not able to dampen IL-36R-mediated inflamma-
tion (Marrakchi et al., 2011; Sugiura et al., 2012; Farooq et al.,
2013). These data indicate that IL-36Ra is a receptor antagonist,
and that IL-36 signaling plays a significant role in regulating skin
inflammation.

IL-36 cytokines might play a significant role in joint disease.
Remarkably, only IL-36β is expressed joints of mice and humans
(Magne et al., 2006). Interestingly, IL-36β can be measured in
the serum of healthy human volunteers, but when serum IL-
36β concentrations of healthy volunteers are compared to serum
concentrations in rheumatoid arthritis there were no significant
differences observed (Magne et al., 2006). However, a recent study
showed that the IL-36R was not involved in the inflammatory
response in a mouse model of collagen induced arthritis (Lamac-
chia et al., 2013). In a Caucasian cohort polymorphisms in IL-36β

have been associated with spondylitis ankylopoetica, but not this
association was not observed in Asian cohorts (Wu and Gu, 2007;
Kim et al., 2008).

IL-36γ expression in the lung is significantly increased com-
pared to non-challenged mice in a murine model of HDM-
induced allergic inflammation. When recombinant IL-36γ is
given intratracheally, this will result in neutrophil influx, but
not eosinophilic influx in the lungs of mice, suggesting that
IL-36γ is more involved in the regulation of neutrophilic air-
way inflammation (Chustz et al., 2011; Ramadas et al., 2011,
2012). Bronchial epithelial cells from patients with asthma
that were infected with rhinovirus show a higher expression
of IL-36γ compared to infected cells from healthy controls
(Bochkov et al., 2010). These data support the concept that IL-
36 cytokines might also play a significant role in regulating airway
inflammation.

INTERLEUKIN-38
IL-1F10 has recently been renamed IL-38 (Dinarello et al., 2010).
IL-38 shares 43% homology with IL-36Ra and 41% homology
with IL-1Ra (Bensen et al., 2001). The IL-38 precursor lacks a
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signal peptide and is 152 amino acids in length, and the natural N-
terminus is unknown (Bensen et al., 2001). There is no caspase-1
consensus cleavage site present in the precursor of IL-38. IL-38 is
predominantly expressed in the skin and in proliferating B-cells of
the tonsil (Lin et al., 2001). The allele combinations that include
IL-38 polymorphisms are associated with psoriatic arthritis and
ankylosing spondylitis (Chou et al., 2006; Rahman et al., 2006; Guo
et al., 2010), suggesting that IL-38 plays a role in the pathogene-
sis of these inflammatory diseases. Moreover, and suggesting an
important role for this cytokine in human cardiovascular disease,
polymorphisms in IL-38 were associated with CRP concentrations
in humans in addition to polymorphisms in CRP, IL-6 receptor,
and NLRP3 that were also associated with CRP concentrations
(Dehghan et al., 2011).

Although it has been reported earlier that IL-38 binds to the
IL-1 receptor type I this binding affinity of recombinant IL-38 was
low (Lin et al., 2001), and more recently it was demonstrated that
IL-38 can bind to the IL-36R similar to IL-36Ra (van de Veerdonk
et al., 2012). The only biological activity reported so far is that
IL-38 can reduce Candida-induced T helper 17 responses (van de
Veerdonk et al., 2012). Notably, the dose-response suppression of
IL-38 as well as that of IL-36Ra of Candida-induced IL-22 and
IL-17 was not similar to the classic dose-response of IL-1 receptor
antagonist, because low concentrations were optimal for inhibiting
IL-22 production (van de Veerdonk et al., 2012). A non-classical
dose-response has now been observed for IL-36Ra, IL-37, and IL-
38 activity and it remains to be determined what the underlying
mechanism and biological significance is of these findings.

INTERLEUKIN-1 RECEPTOR ANTAGONIST
The IL-1 receptor is expressed in nearly all tissues and its antago-
nism prevents receptor binding of either IL-1α or IL-1β, therefore
its biological function is as diverse as the roles of IL-1α and
IL-1β apart and combined. IL-1Ra can inhibit these responses
by binding to the IL-1R1 and preventing the recruitment of
IL-1RAcP, which will block IL-1 signaling (Dinarello, 1996). The

potent inhibitory effect of IL-1Ra and its importance as a regu-
lating protein in IL-1-mediated inflammation is underlined by
a disease called deficiency in interleukin-1 receptor antagonist
(DIRA) (Aksentijevich et al., 2009). This disease is characterized
by severe sterile multifocal osteomyelitis, periostitis, and pustulo-
sis (Aksentijevich et al., 2009). The life-threatening overwhelm-
ing inflammation of skin and bones in these patients can be
resolved by treatment with recombinant IL-1Ra. Next to treat-
ing this rare disease it should be highlighted that IL-1Ra as a
recombinant molecule is successful and on the rise as a new
therapeutic agent for many diseases. The use of blocking IL-1
is extensively reviewed in Dinarello et al. (2012), and treating
auto-inflammatory diseases with IL-1Ra such as Muckle-wells or
gout is highly effective, and a growing list of diseases in which
blocking IL-1 signaling with IL-1Ra is growing (Dinarello et al.,
2012).

CONCLUSION
It is becoming clear that most members of the IL-1 family primar-
ily promote inflammation and enhance specific acquired immune
responses, while some members can provide a brake on inflam-
mation, such as IL-1Ra and IL-36Ra. We are just beginning to
understand the biological function of the new IL-1 family mem-
bers, IL-37 and the cytokines belonging to the IL-36 subfamily,
and we are increasingly appreciating the potency of blocking IL-1
in disease. This underscores that long after the initial discovery of
IL-1, the cytokine biology of the IL-1 family is still contributing to
understanding pathology of disease and remains an exciting field
to study.
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