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Recombinant αβT cell receptors, expressed onT cell membranes, recognize short peptides
presented at the cell surface in complex with MHC molecules.There are two main subsets
of αβ T cells: CD8+ T cells that recognize mainly cytosol-derived peptides in the context
of MHC class I (pMHC-I), and CD4+ T cells that recognize peptides usually derived from
exogenous proteins presented by MHC class II (pMHC-II). Unlike the more uniform peptide
lengths (usually 8–13mers) bound in the MHC-I closed groove, MHC-II presented peptides
are of a highly variable length.The bound peptides consist of a core bound 9mer (reflecting
the binding motif for the particular MHC-II type) but with variable peptide flanking residues
(PFRs) that can extend from both the N- and C-terminus of the MHC-II binding groove.
Although pMHC-I and pMHC-II play a virtually identical role during T cell responses (T cell
antigen presentation) and are very similar in overall conformation, there exist a number
of subtle but important differences that may govern the functional dichotomy observed
between CD8+ and CD4+ T cells. Here, we provide an overview of the impact of structural
differences between pMHC-I and pMHC-II and the molecular interactions with the T cell
receptor including the functional importance of MHC-II PFRs. We consider how factors
such as anatomical location, inflammatory milieu, and particular types of antigen present-
ing cell might, in theory, contribute to the quantitative (i.e., pMHC ligand frequency) as
well as qualitative (i.e., variable PFR) nature of peptide epitopes, and hence offer a means
of control and influence of a CD4+ T cell response. Lastly, we review our recent findings
showing how modifications to MHC-II PFRs can modify CD4+ T cell antigen recognition.
These findings may have novel applications for the development of CD4+ T cell peptide
vaccines and diagnostics.

Keywords: modified peptide, peptide flanking residue, peptide-major histocompatibility complex class II, T cell
receptor,T cell repertoire, vaccine, crystal structure, MHC processing

INTRODUCTION
T cell immunity is mediated primarily by the membrane bound
T cell receptor (TCR) that interacts with peptide epitopes pre-
sented by major histocompatibility molecules (pMHC) (1). This
interaction governs T cell specificity and leads to downstream T
cell activation. Classical MHC exists in two forms: MHC class I
(MHC-I) and MHC class II (MHC-II), which differ in both their
subunit composition and functional expression pattern. MHC-I
presents peptides derived mainly from endogenous cytosolic pro-
teins and is expressed upon the cell surface of most nucleated cells
allowing cognate CD8+ T cells to scan cells for intracellular infec-
tions or abnormal proteins in cancerous cells (2, 3). In contrast,
MHC-II is expressed mainly upon antigen presenting cells (APCs)
e.g., dendritic cells and macrophages, that patrol the extracellu-
lar space, actively endocytosing potentially immunogenic proteins
that are proteolysed and complexed with MHC-II (pMHC-II).
Activated APCs enter the lymphatic system and travel to secondary
lymphoid nodes allowing naive CD4+ T cells to interrogate cell
surface expressed pMHC-II enabling CD4+ T cell activation and
initiation of immune responses (3–5).

PEPTIDES PRESENTED BY MHC-I AND MHC-II HAVE
DISTINCT STRUCTURAL CHARACTERISTICS
In spite of the differing subunit compositions of the two MHC
classes, they are structurally very similar (Figures 1A,B). The pep-
tide binding groove, in both cases, is comprised of two anti-parallel
α-helices that form a channel in which the peptide can bind in
an extended conformation, and eight anti-parallel β-sheets that
provide specific peptide binding pockets in the base of the groove
(Figures 1C,D) (3, 6). Peptides are selected according to their abil-
ity to bind to these MHC allele specific pockets within the floor
of the peptide binding groove using peptide anchor residues. All
of the currently available structural data suggest the TCRs bind
to both pMHC-I and II with a fixed polarity (TCRα chain over
the N-terminus of the peptide and the TCRβ chain over the C-
terminus) and make similar interactions with the bound peptide
and MHC surface (Figures 1E,F). Thus, the overall mechanism by
which TCRs interact with MHC-I and II to initiate T cell activation
is closely matched.

Despite these similarities, MHC-I and II present peptides in
a distinct manner that is governed by the composition of the
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FIGURE 1 | A structural comparison of pMHC-I and pMHC-II. Although the
subunit compositions of MHC-I (PDB: 1ZHL) (A) and MHC-II (PDB: 1KG0) (B)
are different, the structural conformation they assume is very similar,
illustrating their shared role in presenting antigenic peptides (green) to T cells.
(A) MHC-I is comprised of three α-chain domains (1, 2, and 3 in red) and β2m
(cyan), whereas (B) MHC-II is comprised of a two domain α-chain (red) and a
two domain β-chain (cyan). A top down view of the MHC-I (C) and MHC-II (D)
demonstrates the two molecules form similar peptide binding grooves
comprised of two anti-parallel α-helices that form a channel in which the

peptide can bind in an extended conformation, and eight anti-parallel β-sheets
that provide specific peptide binding pockets in the base of the groove. These
pockets are lined with polymorphic residues that define the size and chemical
characteristics of each pocket, and therefore the specific peptide binding
motif and register that can be accommodated by different MHC alleles. TCR
binding to pMHC-I (E) and pMHC-II (F) is also conserved. The three
complementarity determining loops (CDRs) of the TCR (blue circles) bind in a
very similar overall orientation with the TCR α-chain over the N-terminus of the
peptide and the TCR β-chain over the C-terminus

MHC peptide binding groove. The closed conformation of the
MHC-I α1α2 binding grove (Figure 2A) restricts peptide length to
∼8–13 amino acids (most commonly 9 or 10mers) (3, 7). In con-
trast, the MHC-II α1β1 binding groove comprises an open-ended

conformation (Figure 2B) that allows variable length peptides to
bind. The core binding 9mer contains the motif for binding to the
particular MHC-II heterodimer, but eluted and sequenced pep-
tides often reveal families of processed peptides ∼12–20 amino
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FIGURE 2 | Comparison of peptide conformations presented by MHC-I
and MHC-II. Cartoon cross sections of the pMHC-I (A) and pMHC-II (B)
binding grooves, show the key anchor sites in the floor of each groove
determine which peptide can associate and the conformation it can assume.
(C) The structural database of pMHC-I complexes shows that peptides
presented by a MHC-I molecules (represented as ribbon cartoons) generally
assume a central bulged conformation. As peptide length increases, the

“closed” nature of the pMHC-I binding groove forces the central residues of
the peptide up out of the groove to accommodate the extra residues. (D) In
contrast, the pMHC-II binding groove is “open” enabling longer peptide to
extend out of the groove at form peptide flanking regions. Thus, peptides
presented by MHC-II molecules (represented as ribbon cartoons) generally
assume a much flatter conformation in the MHC-II binding groove,
irrespective of the length of the peptide presented.

acids (referred to as nested sets) sharing the core binding region
(3, 8, 9). MHC-I-restricted peptides usually bind to the MHC
surface using anchor residues located at, or near, the N- and C-
termini of the peptide. Depending on the length of the peptide, this
binding mode squeezes the central peptide residues up so that they
extend out the groove (central bulge), exposing peptide side chains
for direct interaction with the TCR (3, 10). Longer MHC-I pep-
tides can only be accommodated by forming a larger central bulge,
which presumably constrains the length of the peptide beyond a
certain threshold (Figure 2C; Table 1).

MHC-II restricted peptides contain a central binding motif of
nine “core” amino acids that bind to the MHC-II groove via an
extensive hydrogen bond network between the MHC-II groove
and the peptide backbone (Figure 2B). Peptide side chains also
form contacts with allelic specific pockets of the MHC-II binding
groove. These pockets, usually P1, P4, P6, and P9, are lined with
polymorphic residues that define the size and chemical character-
istics of each pocket, and therefore the specific peptide binding
motif and register that can be accommodated by different MHC-
II alleles (Figure 1D) (11, 12). Amino acids that are outside of
the “core” peptide region can extend out of the open MHC-
II binding groove forming so called “peptide flanking regions”
(PFRs) at both the N- and C-terminus (Figure 2D; Table 1).
Thus, although pMHC-I and pMHC-II are similar in their overall
structure and function, the nature of peptide presentation is gen-
erally distinct (e.g., bulged versus flat peptides). These differences
present different challenges for TCR binding at the atomic level.
For example, the flat binding surface and lack of a central peptide
bulge may enable MHC-II restricted TCRs to adopt a more flexible
binding mode compared to MHC-I restricted TCRs. In support

of this notion, the structures of a number of TCR-MHC-II com-
plexes have shown that, although the binding mode can be very
similar to the classical diagonal TCR-MHC binding mode (13–
17), some MHC-II restricted TCR bind with highly unorthodox
conformations (18, 19).

MHC-II RESTRICTED TCRS HAVE WEAKER BINDING
AFFINITY COMPARED TO PMHC-I RESTRICTED TCRs
Biophysical studies have shown that TCR/pMHC affinity is rela-
tively weak (K D= 100 nM–270 µM), with fast kinetics, compared
to antibody binding (usually nM–pM affinity) (20, 21). We have
recently shown that TCR/pMHC-I binding affinities are, on aver-
age, fives times stronger compared to equivalent TCR/pMHC-
II interactions (i.e., viral pMHC-I restricted TCRs versus viral
pMHC-II restricted TCRs) (Figures 3A,B), which has limited the
usefulness of pMHC-II multimers for the identification, isolation
and detection of antigen specific CD4+ T cells. This distinction
in affinity was mainly due to a significantly faster on-rate for
TCR/pMHC-I binding compared to that of TCR/pMHC-II, while
the off-rate or half-lives of all of the TCR/pMHC interactions
were relatively conserved, possibly indicating a more important
role for off-rate in determining T cell activation. The consistent
difference in binding affinity between TCRs restricted to either
pMHC-I or pMHC-II is extraordinary when considering that the
same pools of genes, on chromosome 9, encode the human TCR
for both types of αβ T cell (22). The TCR itself is expressed before
positive selection, at which point immature T cells express both
the CD4 and CD8 co-receptors (double positive). Once positively
selected, immature thymocytes become single positive for either
CD4 or CD8 (22). Until this point, the thymocyte, which has
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Table 1 | Comparison of peptide conformations presented by MHC-I and MHC-II.

MHC Protein Peptide length

(mer)

Peptide Sequence Height (Å) Width (Å) PDB (Ref)

HLA-B*3501 HIV-1 NEF75–82 8 VPLRPMTY 4 21 1A1N (56)

HLA-A*0201 Flu A Matrix58–66 9 GILGFVFTL 6 22 1HHI (57)

HLA-A*0201 MART-126–35 10 EAAGIGILTV 8 22 2GT9 (58)

HLA-B*3501 EBV407–417 11 HPVGEADYFEY 13 22 2FZ3 (59)

HLA-B*3501 M-CSF4–17 14 LPAVVGLSPGEQEY 16 22 1XH3 (60)

DRB1*0401, DRA1*0101 Collagen II 261–273 12 AYMRADAAAGGA 4 35 2SEB (61)

DRB1*0101, DRA1*0101 HA306–318 13 PKYVKQNTLKLAT 4 37 1DLH (12)

DRB1*1501, DRA1*0101 MBP85–99 14 ENPVVHFFKNIVTP 4 42 1BX2 (62)

DRB1*0101, DRA1*0101 MART-1100–114 15 APPAYEKLSAEQSPP 4 44 3L6F (63)

DRB1*0101, DRA1*0101 CLIP102–120 19 KPVSKMRMATPLLMQALPM 4 50 3PDO (64)

already developed antigen specificity through its TCR, can theo-
retically have either cell fate (23). Considering these shared genetic
and developmental processes, it is possible that the differences in
MHC restricted TCR binding is conferred by the variations in the
“antigenic landscape” of pMHC-I versus pMHC-II.

As discussed above, peptides presented by MHC-I molecules
generally assume a central bulged conformation, often requir-
ing conformational adjustments in the binding regions of the
TCR during ligand engagement (Figure 2C) (24–26). An extreme
example of this observation is a 13mer Epstein-Barr virus derived
peptide presented by HLA-B∗3508 which forms a “superbulge”
extending nearly 20Å out of the MHC-I binding groove (26). In
contrast, MHC-II presented peptides generally assume a much
flatter conformation in the MHC-II binding groove (13, 14)
(Figure 2D). The presence of a solvent exposed central bulge for
MHC-I peptide presentation may represent a structurally advan-
tageous feature for TCR binding, providing an anchor point that
can guide the TCR into the correct binding orientation to engage
its cognate ligand (Figure 3A). Conversely, the flat, and relatively
featureless surface of pMHC-II confers no dominant structural
feature for the TCR to “latch” onto, and may reduce the chance
of a productive TCR/pMHC-II interaction occurring (explaining
the slower on-rate and weaker affinity compared to TCR/pMHC-I
interactions) (Figure 3B). This notion is consistent with our recent
observation that a MHC-II restricted TCR underwent minimal
conformational adjustments during binding compared to most
MHC-I restricted TCRs (27). The immunological significance of
these topological and biophysical distinctions between MHC-I and
MHC-II is still unclear. However, the difference in binding affin-
ity between MHC restricted TCRs may represent a biophysical
characteristic that relates to cellular function.

MHC-II ANTIGEN PROCESSING GENERATES VARIABLE
LENGTH PEPTIDES
The “flat” surface of pMHC-II may contribute to the reduced
affinity of MHC-II restricted TCRs. However, a striking difference
in the peptides bound to MHC-II is the presence of non-bound
PFRs, which may be available to interact with adjacent membrane
proteins on the same or different cells. These PFRs can vary in
length generating nested sets of peptides that are presented on the

surface of APCs (28, 29). One consequence of having a longer PFR
is an increased binding affinity of peptides to the MHC-II (30–33),
and therefore an increased probability of a meaningful interaction
with a cognate T cell.

These variable PFRs are generated by proteolytic processes
during the exogenous antigen processing pathway that has been
reviewed in detail elsewhere (34, 35). Briefly, extracellular protein
antigens are endocytosed by tissue resident APCs (Figure 4A).
The pH of the endosome containing potential antigens progres-
sively decreases, activating proteases which cleave captured pro-
teins (Figure 4B). Newly synthesized MHC-II molecules reside
in the endoplasmic reticulum (ER) in complex with a stabiliz-
ing chaperon, calnexin. To prevent premature peptide association
with the MHC-II binding groove by ER derived proteins, the
groove is“plugged”with a protein known as the MHC-II associated
invariant chain (Ii) (36) (Figure 4C). Exocytic vesicles containing
precursor Ii:MHC-II complexes then combine with endosomes
containing exogenous peptide fragments forming the MHC-II
compartment (Figure 4D). The acidic pH of the MHC-II com-
partment and presence of the chaperon, HLA-DM (37), allows
peptide exchange between the class II-associated invariant-chain
peptide (CLIP) and high affinity complementary peptides pro-
teolysed in the endosomal compartment. Peptide selection, that
presumably plays a strong role in determining the characteristics of
PFRs, is also facilitated by HLA-DM in a process termed “peptide-
editing”which ensures that only stable MHC-II peptide complexes
are expressed and transported to the cell surface for potential TCR
interactions (38, 39) (Figure 4E). Structural modeling of HLA-
DM association with pMHC-II indicated that peptide editing was
achieved through conformational changes around pocket 1 (P1) of
the binding groove, a pocket crucial for the stability of the peptide-
MHC-II complex (40). Such conformational changes induced by
HLA-DM were thought to weaken the hydrogen bond network
between the bound peptide and MHC-II molecule and facilitate
peptide release (41). A recent co-complex structure of HLA-
DM with HLA-DRα∗0101; β∗0101 (HLA-DR1) has confirmed
this experimentally, revealing that HLA-DM binding induced a
conformational change in the α-helix of the DRα chain in the
peptide binding groove (42). This change enabled two HLA-DR1
residues, DRα phenylalanine 51 and DRβ phenylalanine 89, to
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FIGURE 3 |TCRs bind with stronger affinity to pMHC-I compared to
pMHC-II. Biophysical studies have shown that TCR/pMHC-I binding
affinities are, on average, five times stronger compared to equivalent
TCR/pMHC-II interactions (i.e., viral pMHC-I restricted TCRs versus viral
pMHC-II restricted TCRs) because of faster on-rate for TCR/pMHC-I binding
compared to that of TCR/pMHC-II. These differences could be due to the
structural differences in peptide presentation between MHC-I and MHC-II.
(A) Cartoon of TCR binding to pMHC-I. The presence of a solvent exposed
central bulge for MHC-I peptide presentation may represent a structurally
advantageous feature for TCR binding, providing an anchor point that can
guide the TCR into the correct binding orientation to engage its cognate
ligand. (B) Cartoon of TCR binding to the flatter surface of pMHC-II. This
relatively featureless surface provides no dominant structural feature for the
TCR to “latch” onto, and may reduce the chance of a productive
TCR/pMHC-II interaction occurring (explaining the slower on-rate and
weaker affinity compared to TCR/pMHC-I interactions).

bind to, and stabilize, the P1 binding pocket of the MHC-II bind-
ing groove, presumably blocking the association of weakly binding
peptides. Thus, only the association of high affinity peptides with
MHC-II results in displacement of these residues, enabling a revi-
sion in the conformation of MHC-II and the dissociation of
HLA-DM (40, 42).

It is possible that the proteolytic events that occur before
peptide-MHC-II loading govern the final pool of peptides avail-
able for selection during MHC-II peptide loading. However, it has
also been suggested that the final pMHC-II, loaded with exogenous
peptide, can be modified further in a process termed peptide trim-
ming, whereby the length of the PFRs can be edited (Figure 4F)
(43, 44). These processes demonstrate a remarkable degree of

complexity and control during MHC-II peptide selection that is
still not fully understood. The antigen processing by cellular pro-
teases and the generation of pMHC-II may also be influenced by
cell extrinsic factors such as inflammatory cytokines, e.g., IFNs
(45), as well as cell intrinsic factors reflecting the type/subtype of
APC (46, 47). The cellular machinery involved in antigen process-
ing and presentation is different between cell types (48), hence the
determinants resulting from protein digestion may vary depend-
ing on cell type or subtype (e.g., B cell versus macrophage; CD8+

versus CD8- dendritic cells etc); and context (e.g., inflamed ver-
sus non-inflamed tissues, anatomical location). It is conceivable
that a range of determinants presented in a lymph node may
differ from those presented at the primary site of infection in
both a quantitative fashion, i.e., the number of pMHC-II com-
plexes per cell, and qualitative fashion i.e., length and type of
PFRs and hence offer a local control of CD4+ T cell responses
accordingly.

MODULATING CD4+ T CELL RESPONSES VIA ALTERED
PEPTIDE FLANKING RESIDUES
There is convincing evidence that PFRs can modulate T cell func-
tion (49). A study of a HIV-I p24 (GAG) epitope, presented
by HLA-DR1, revealed that antigen specific T cell activation
was enhanced with longer flanking residues. Structural analyzes
showed that the C-terminal flank could form a hairpin turn, rais-
ing the possibility that MHC-II PFRs may form more complex
conformations that could directly impinge on TCR binding (50).
Thus, the open ended nature of the MHC-II binding groove, that
allows long peptides to extend beyond the binding region at both
the N- and C-terminus (Figures 2 and 3), may play a direct role
during T cell antigen recognition. In support of this notion, it has
been demonstrated that removal of C-terminus PFRs from the
immunodominant epitope in hen egg lysosome52–61 (HEL) sig-
nificantly altered the immunogenicity of the epitope, reducing T
cell sensitivity (9).

Our previous work, using sequence analysis of eluted peptide
ligands from a range of allelic variants of MHC-II molecules, has
identified allele-transcending enrichments in PFRs at the peptide
C- and N-terminus (51, 52). These data show that a range of dif-
ferent modifications to PFRs could modulate specific CD4+ T cell
responses including amino acids with biochemically distinct side
chains (52, 53). The identification of these PFR amino acid enrich-
ment patterns suggests that they play a role during CD4+ T cell
activation and can modulate antigen recognition. Further stud-
ies using antigen specific CD4+ T cell clones demonstrated that
PFR modifications could enhance CD4+ T cell activation (53).
Although a wide range of different amino acid substitutions in
PFRs could generate stronger CD4+ T cell responses, we observed
that basic residues at the peptide C-terminus, or acidic residues
in the N-terminus, were most commonly enriched and generated
enhanced CD4+ T cell responses across different MHC-II alleles
and different peptides. Studies focusing on the C-terminal PFRs,
in which the basic amino acid, arginine was substituted into the
C-terminal flank (at position 10 or 11) of known T cell epitopes
from haemaggluttinin (HA) and myelin basic protein (MBP),
demonstrated that these alterations led to a significant increase in
CD4+ T cell responses (52, 53). Screening T cells which recognized
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FIGURE 4 | Peptide flanking regions are determined during the MHC-II
antigen processing pathway. (A) Extracellular protein antigens are
endocytosed by tissue resident APCs. (B) The pH of the endosome containing
potential antigens progressively decreases, activating proteases which cleave
captured proteins. (C) Newly synthesized MHC-II molecules reside in the
endoplasmic reticulum (ER) in complex with the MHC-II associated invariant
chain (Ii), which “plugs” the MHC-II binding groove, preventing ER derived
peptides from premature peptide association. (D) Exocytic vesicles containing
precursor Ii:MHC-II complexes then combine with endosomes containing
exogenous peptide fragments forming the MHC-II compartment. Formation
of the MHC-II compartment results in proteolytic cleavage of the Ii chain
leaving a 24 amino acid remnant called the class II-associated invariant-chain

peptide (CLIP) within the binding groove of the MHC-II molecule. The acidic
pH of the MHC-II compartment and presence of the chaperon, HLA-DM,
allows peptide exchange between CLIP and high affinity complementary
peptides proteolysed in the endosomal compartment. (E) Peptide selection,
that presumably plays a strong role in determining the characteristics of PFRs,
is also facilitated by HLA-DM in a process termed “peptide-editing” which
ensures that only stable MHC-II peptide complexes are expressed and
transported to the cell surface for potential TCR interactions. (F) The final
pMHC-II, loaded with exogenous peptide, can also be modified further in a
process termed peptide trimming that may play a role in governing PFR
length. pMHC-II molecules are then transported to the cell surface for
interrogation by CD4+ T cells.

this same MBP-derived epitope with a combinatorial library also
revealed a preference for C-terminal basic residues (54).

However, in all of these examples, the mechanism for the effect
of PFRs on T cell responsiveness had remained elusive. Two pos-
sibilities can be considered. Firstly, PFR modifications may alter
the stability of pMHC-II molecules (a notion that has been exper-
imentally observed (30–33), altering their expression levels at the
surface of APCs. However, we have demonstrated that, although
the substitution of basic residues in the C-terminus increased
T cell activation, they actually reduced peptide/MHC binding
(52). Secondly, if the TCR can directly contact the PFRs, then
modifications in the PFR could alter TCR binding affinity and
subsequent T cell activation. In order to investigate the second
possibility, we conducted biophysical experiments by surface plas-
mon resonance using cloned TCRs specific for an influenza epitope
(HA305–320) presented by HLA-DR1 (53). The substitution of argi-
nine into either position 10 (HA10R) or 11 (HA11R) of HA306–318

generated approximately twofold increase in TCR binding affin-
ity (Figures 5A,B). Intriguingly, analysis of the TCR clonotypic
repertoire of peptide-expanded influenza-specific CD4+ T cells
from HLA-DR1+ donors in response to HA305-320 or arginine
altered variants (HA10R and HA11R) demonstrated a marked alter-
ation in TCR usage, with a striking focusing of the response when
using the peptides which are known to increase TCR binding i.e.,
number of clonotypes for HA > HA10R > HA11R. The structure
of HLA-DR1-HA306–318 in complex with the MHC-II restricted
TCR, HA1.7, has been solved by X-ray crystallography (55). This
structure demonstrated that the TCR could not directly contact
the short side chains of either Alanine at P10, or Threonine at

P11 in the universal HA306–318 epitope (Figure 5C). The clos-
est proximity between the TCR and either P10 or P11 of the
HA306–318 peptide was over 8Å, which was beyond the limits for
atomic contacts. However, structural modeling of the substitution
of arginine, which has a long acidic side chain, at either P10 or
P11 indicated this gap could be closed allowing additional inter-
actions to form between the peptide and the TCR (Figure 5D)
(53). These potential new contacts could offer an explanation for
the stronger binding affinity between the HA1.7 TCR and the P10
or P11 substituted DR1-HA306–318 epitope.

CONCLUSION
The function of classical MHC molecules is presentation of
peptide epitopes to the cell mediated arm of adaptive immune
response. However, the subtle differences that exist between the
two classical forms of MHC, with respect to antigen processing
and structural architecture, significantly alters the nature of the
peptide each class of MHC can present upon the cell surface. In
particular, the closed binding groove of MHC-I forces bound pep-
tides to bulge in the center, compared to the open binding groove
of MHC-II that allow PFRs to form. In vitro experiments using
a variety of antigens in mice and human systems, including HA,
GAG, MBP, and HEL, have demonstrated that the PFRs of an epi-
tope can profoundly affect CD4+ T cell function. Generation and
selection of different PFRs might be governed according to the
anatomical location, inflammatory milieu and particular types of
APC involved during antigen processing. Thus, a key question
that remains is whether particular changes in PFRs occur through
a random, stochastic process, or whether changes are purposefully
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FIGURE 5 | Substitution of Arginine substitutions in the C-terminal
flanking region of the native Flu1 peptide increases binding affinity.
(A,B) Substitution of arginine at position 11 (blue) in the HA305–320 epitope
generates around a twofold increase in TCR binding affinity. (C,D)
Cartoon representation of the interaction between the TCR and
C-terminal PFR (modeled from PDB: 1FYT). (C) The TCR β-chain is

beyond the limits for atomic contacts with HA305–320 P11 (dotted line). (D)
Modeling shows that a new interaction, possibly a salt bridge, could be
formed between the TCR β-chain and arginine (blue) substituted at
position 11 of the HA305–320 peptide. This new interaction could explain the
increase in affinity observed for cognate TCR binding to the HA305–320

peptide and HA11R.

intentioned to control or alter the nature of a specific immune
response. Irrespective of the answer to this question, our recent
data revealed that experimental PFR modifications could enhance
TCR/pMHC-II affinities closer to the range typically observed
for TCR/pMHC-I interactions. This exciting observation sug-
gests that augmentation of pMHC-II antigens through C-terminal
PFR modifications might be a useful strategy to enhance MHC-II

restricted TCR binding affinity and CD4+ T cell responsiveness,
with attendant implications for vaccination and other immune
system interventions.
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