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Secretory IgA (SIgA) plays an important role in the protection and homeostatic regulation of
intestinal, respiratory, and urogenital mucosal epithelia separating the outside environment
from the inside of the body. This primary function of SIgA is referred to as immune exclu-
sion, a process that limits the access of numerous microorganisms and mucosal antigens
to these thin and vulnerable mucosal barriers. SIgA has been shown to be involved in avoid-
ing opportunistic pathogens to enter and disseminate in the systemic compartment, as well
as tightly controlling the necessary symbiotic relationship existing between commensals
and the host. Clearance by peristalsis appears thus as one of the numerous mechanisms
whereby SIgA fulfills its function at mucosal surfaces. Sampling of antigen-SIgA complexes
by microfold (M) cells, intimate contact occurring with Peyer’s patch dendritic cells (DC),
down-regulation of inflammatory processes, modulation of epithelial, and DC responsive-
ness are some of the recently identified processes to which the contribution of SIgA has
been underscored.This review aims at presenting, with emphasis at the biochemical level,
how the molecular complexity of SIgA can serve these multiple and non-redundant modes
of action.
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INTRODUCTION
Secretory IgA (SIgA) is the principal immunoglobulin (Ig) on
mucosal surfaces of humans and many other mammals. Glob-
ally, more IgA is produced than all other Ig isotypes combined.
Due to its particular biosynthetic pathway relying on production
by plasma cells in the lamina propria and poly Ig receptor (pIgR)-
mediated secretion by epithelial cells overlying mucosal surfaces,
SIgA displays a very different molecular form as compared to IgA
antibodies found in the circulation and tissues. SIgA operates in an
ever-changing environment whose function is to physically sepa-
rate the inside of the body that needs to remain sterile from the
outside world rich in antigenic stimuli including those present in
air, liquid, and food. In the gastro-intestinal tract, a further chal-
lenge for host-defending SIgA is to discriminate between symbiotic
harmless commensal bacteria and periodic invading, potentially
life-threatening microorganisms. The complexity of mechanisms
involved is far from being fully understood. From a more global
immune surveillance’s point of view, the mucosal immune system,
including SIgA, must constantly monitor the environment and
maintain a balance between tolerance to the normal microbiota
and immunity to microbial pathogens while the systemic immune
system is designed to vigorously react to any foreign antigen or
microbe. Given the intrinsic fragile nature of the gut and airway
mucosal barriers ensured by a single layer of epithelial cells, the
contribution of SIgA in maintaining homeostasis appears essen-
tial. This is reflected by the growing evidence of the role of maternal
milk SIgA from early in life in the process of epithelial matura-
tion. However, it is fair to mention that polymeric IgM actively
transported across epithelia by pIgR (just like polymeric IgA), as

well as IgG transuding from plasma into local secretions, can also
participate in protection of the intestine and the respiratory tract
(1–4).

As this will become apparent when discussing the structure-
function relationship, the various molecular forms of the antibody
are highly glycosylated comprising sugar-derived residues in each
constituent polypeptide. With respect to pIgA glycosylation, both
human IgA1 and IgA2 subclasses have two conserved N-glycan
sites on each heavy chain. Moreover, IgA2 preferentially found in
secretions, harbors one or two additional N-glycans present on
the Cα1 domain. IgA1 is the only subclass with O-carbohydrates
in the hinge region. Mice have one class of IgA which is structurally
similar to human IgA2 in terms of polypeptide assembly and
glycosylation. In comparison with monomeric serum IgA, addi-
tional biochemical features found in SIgA include the joining (J)
chain and secretory component (SC) (5), a polypeptide compris-
ing the extracellular portion of the precursor pIgR that transports
polymeric IgA across epithelial cells, a process also known as tran-
scytosis (6) (Figure 1, pathway 1). The J chain, upon covalent
binding to two IgA monomers, triggers dimerization (possibly,
yet less commonly, oligomerization of higher magnitude) during
biosynthesis in mucosal IgA-secreting plasma cells that are abun-
dant in the lamina propria underlying the epithelium. With only
one N-moiety, the J chain is the least glycosylated peptide con-
stituent of SIgA. Incorporation of J chain within polymeric IgA
(and IgM pentamers) is essential for selective recognition of the
two antibody isotypes by membrane bound pIgR or purified free
SC from colostrum or from recombinant origin. Carbohydrate
residues represent up to 20% of the SC molecular mass, with seven
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Corthésy Secretory IgA in mucosal homeostasis

FIGURE 1 | Schematic representation of the identified levels by which
polymeric IgA, SIgA, or SC may contribute to protection of mucosal
surfaces, as defined in various in vivo and in vitro models. (1) Polymeric
IgA produced by local plasma cells in the lamina propria is transported across
epithelial cells (a process referred to as transcytosis) by the polymeric Ig
receptor (pIgR), and released in luminal secretions in the form of SIgA
performing immune exclusion via interaction with environmental antigens
(bacteria, viruses, toxins, etc). (2) Polymeric IgA on their way to pIgR-mediated
secretions can intercept incoming viruses intracellularly, and excrete them in
the form of non-virulent immune complexes. (3) Polymeric IgA may neutralize
in the lamina propria invading infectious agents that have penetrated through
breaches occurring in the inflamed epithelium; subsequent transport by pIgR
will favor clearance of immune complexes. (4) Via glycans abundantly found
on its surface, free SC released in secretions neutralizes pathogen-derived
products, and contributes to protection of epithelial surfaces as well; this
property is conserved when SC is bound to polymeric IgA in SIgA. (5)
Sampling of SIgA by M cells in Peyer’s patches (PP) leads to specific targeting
of the antibody to dendritic cells (DC) in the subepithelial dome region. In the

form of immune complexes with noxious antigens, presentation to naïve T
cells in the PP and draining mesenteric lymph nodes (not drawn) results in the
onset of attenuated, Th2-biased mucosal immune responses with
concomitant quenching of inflammatory circuits. (6) Remarkably, the same
SIgA-mediated retro-transport is achieved with commensal bacteria, leading
to the shaping of the mucosal immune system toward a non-inflammatory,
tolerogenic pattern that takes place through the induction of regulatory T cells.
(7) Neutralization of Gram-negative bacterial lipopolysaccharide (LPS) in apical
recycling endosomes by transcytosing polymeric IgA abrogates
NF-κB-mediated activation of pro-inflammatory gene products, thus
preserving the epithelial barrier’s integrity. (8) Cross-talk between the
probiotic bacteria and the intestinal mucosa is enhanced by SIgA, with various
consequences extending from increased expression of epithelial pIgR and
tight junction proteins to production of thymic stromal lymphopoietin (TSLP)
involved in priming of mucosal DCs. Brown ellipses depict pathogen bacteria;
gray ellipses depict commensal bacteria; purple spiky spheres depict virus;
polymeric IgA are drawn in green; Free secretory component and polymeric
Ig receptor (pIgR) are drawn in red; TSLP, thymic stromal lymphopoietin.

sites of N-glycosylation identified (7). The function of SC in SIgA is
manifold (see below), and may justify of why it is released in asso-
ciation with polymeric IgA from its precursor pIgR synthesized by
epithelial cells after having ensured single transcytosis.

PROTECTIVE OPERATIVE MECHANISMS RELEVANT TO SIgA
FUNCTION
Immune exclusion is the primary mechanism by which SIgA
blocks microorganisms and toxins from attaching to mucosal
target epithelial cells, thereby preventing surface damage, coloniza-
tion, and subsequent massive invasion (8). In the context of the
gut, immune exclusion is defined as the ability of SIgA, through its
recognition of multiple antigenic epitopes on the surface of viruses
and bacteria as well as proteins, to cross-link these various antigens
in the intestinal lumen and consequently delay or abolish their
intrinsic potential to adhere to and/or penetrate the epithelium

(Figure 1, pathway 1). Such a consensual mode of action of SIgA
against bacterial, viral, and parasitic mucosal pathogens, as well
as toxins and possibly food allergens, has been defined via com-
pelling evidence from animal models, in vitro models and human
epidemiological studies.

IgA has been used in humans for passive protection or thera-
peutic intervention at mucosal surfaces (9–17), yet with different
degrees of success, possibly because the complete SIgA mole-
cule was not used. In the intestine of mice, passive oral delivery
of specific IgA antibodies also protected against bacterial infec-
tions including Salmonella typhimurium (18, 19), Vibrio cholera
(20), Shigella flexneri (21), and Helicobacter pylori (22). Mono-
clonal IgA antibodies directed against respiratory syncytial virus
applied passively to the nasopharyngeal mucosa of mice subse-
quently prevented initial infection and pneumonia (23). Similar
observations as to the crucial role of passively instilled IgA in
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preventing viral infection has been documented for influenza
virus (24) and reovirus (25, 26). Intravenous injection of simi-
lar virus-neutralizing doses of anti-influenza polymeric IgA mAb,
but not monomeric IgA, protected mice against viral infection due
to transport into nasal secretions (27). Antigen-specific IgA anti-
bodies produced by an IgA-secreting hybridoma clone implanted
in the back of mice (backpack technique) were shown to pro-
vide efficient protection against Vibrio cholerae (28) and rotavirus
(29) following pIgR-mediated transport into secretions. These
studies with monoclonal antibodies demonstrated that immuno-
logically naive animals could be protected using IgA as the sole
immune agent. While the levels of protection observed in these
various experimental settings were generally good, it is impor-
tant to keep in mind that under natural conditions, the mucosal
immune response would be polyclonal, and therefore more effec-
tive. In this respect, passive administration of colostrum rich in
specific and non-specific SIgA has been shown to protect against
gastrointestinal and airway infections (30, 31). In support of these
numerous studies underscoring the protective function of SIgA of
defined specificities, genetically modified mice unable to produce
IgA, J chain, or pIgR all presented deficiencies in their capacity to
fight against mucosal infectious agents (32–36).

The use of epithelial cell lines grown as polarized monolay-
ers mimicking the mucosal barrier found in the gut and air-
ways has proven a valuable tool to demonstrate the properties of
immune exclusion exerted by IgA/SIgA toward pathogens and tox-
ins in vitro. In such models, the antibody acted by blocking binding
of cholera toxin (37), C. difficile toxin A (38), and ricin (39),
thus preventing subsequent damage including fluid loss, cytotoxi-
city, and intoxication of exposed epithelial cells. Interference with
attachment to epithelial cells and blocking of transmission of HIV
from epithelial cells to peripheral blood mononuclear cells used
as viral target was confirmed as a valid mechanism of action of
HIV gp120-specific IgA (40). The crucial implication of the IgA
isotype antibody in the process was further exemplified by the
demonstration that SIgA, but not IgG, isolated from seroposi-
tive patients prevented HIV entry (41, 42). Along the same line,
adhesion of enteropathogenic Escherichia coli strains capable of
targeting epithelial cells could be inhibited by SIgA (43). When
tested, polymeric IgA turned out to be systematically superior
in maintaining cell integrity as compared to monomeric IgA or
IgG of the specificity, indicating that the highest avidity associ-
ated with polymeric antibodies was important in the process of
neutralization, possibly by favoring agglutination (38, 44).

Such an in vitro model has further shown its value by under-
scoring the ability of transcytosed SIgA to neutralize invading
influenza, Sendaï, or rotaviruses intracellularly (45–48) (Figure 1,
pathway 2). During their journey to the apical surface, specific
polymeric IgA antibodies colocalized with viral hemagglutinin,
neuraminidase, or surface viral proteins within the apical recycling
endosomes, thus preventing intracellular replication or assembly,
eventually resulting in reduced viral titers in the supernatant and
cell lysates. Apical to basolateral transcytosis of HIV isolates across
polarized epithelial cell monolayers demonstrated that HIV dis-
semination was blocked by polymeric IgA directed against the
glycoprotein (gp)41 envelope protein, thus excluding the virus
from spreading to the lamina propria (49). As for other viruses,
intracellular neutralization took place inside the apical recycling

endosome, and SIgA-based immune complexes were selectively
recycled to the apical, lumen-like surface of the polarized mono-
layer. Intracellular neutralization with transcytosing IgA directed
against HIV gp120, but not IgG with identical Fv domains, was
accompanied by inhibition of viral replication inside epithelial
cells (50). Interestingly, neutralization was dependent on the con-
centration of polymeric IgA added in the basolateral, serosal-like
compartment, and reached a plateau which corresponded to the
SIgA content in human secretions, i.e., about 100 µg/ml (51). The
excretory function of SIgA appears as another plausible mecha-
nism that contributes to microbial elimination at mucosal surfaces:
when soluble polymeric IgA-based immune complexes were added
to the basolateral compartment of polarized monolayers of epithe-
lial cells expressing pIgR, the complexes were transported intact
to the apical side (52). Capture of an antigen by polymeric IgA
present in the lamina propria and subsequent secretion by intesti-
nal crypt cells expressing high amount of basolateral pIgR was
further demonstrated in vivo (53) (Figure 1, pathway 3).

From these various modes of action, one can conclude that
multiple levels of SIgA-mediated protection fulfill complemen-
tary functions in order (1) to create a barrier at mucosal surfaces,
(2) to eliminate within epithelial cells, or (3) to keep noxious
microorganisms away from the body’s internal compartments.
Although not tackled in this review, one has to keep in mind that a
variety of other back-up mechanisms involving systemic IgA and
FcαR1-bearing cellular partners are available to ensure efficacious
protection against a myriad of pathogenic antigens (54, 55).

In human, correlation between resistance to infection and high
specific SIgA titers was described in several studies dealing with
immunity to Vibrio cholera infection. The presence of LPS-specific
SIgA, as determined by antibodies measured in feces by ELISA,
and in ELISPOT assays detecting antibody-secreting cells, allowed
establishment of a strong association between SIgA and reduced
level of infection (56, 57). Correlation between a strong mucosal
IgA response and protection against influenza virus was also doc-
umented in vaccinated mice (58). Humans suffering from IgA
deficiency (IgAD) exhibit increased frequency of upper respiratory
and gastrointestinal tract infections (59, 60), yet the consequences
are not always profound, mostly because compensatory adaptive
or innate mechanisms such as the substitution of SIgM for SIgA
take over (61). Moreover, assessment of the true contribution
of IgA is complicated by the fact that the lack of IgA is rarely
absolute and may be accompanied by deficiencies in other iso-
types. The association of certain major histocompatibility complex
haplotypes (62) and mutations in transmembrane activator and
calcium-modulating cyclophilin ligand interactor (63) in patients
with IgAD may further contribute to confusion when it comes
to assigning a direct and unique role to IgA in the prevention of
gastrointestinal diseases (64). In this respect, IgA-knock-out mice
appear to display the same alterations in the expression of other
isotypes and defects in immune responses (65, 66), thus making it
difficult to draw unambiguous conclusions.

MULTIPLE FACETS OF THE FUNCTIONALITY OF SC IN SIgA
ANTIBODIES
Free SC is composed of five Ig-like domains folded as compact
ellipsoids stabilized internally by several disulfide bridges. Overall,
the molecule displays a J-shape with all seven glycosylation sites
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exposed on the same surface, away from the binding site for poly-
meric IgA (67). The specific and stable interaction of SC with
polymeric IgA in SIgA involves basically all domains, with domain
1 serving as the original anchoring site for polymeric IgA, and
domains 2 and 3 spatially constraining domain 5 to ensure forma-
tion of a productive disulfide bridge with one Cα2 domain of one
monomer in polymeric IgA (68,69). Three dimensional analyses of
human SIgA1 and SIgA2 subclasses shows SC wrapping domains
Cα2 and Cα3 of polymeric IgA compactly, a feature that may be
essential to the remarkable stability of the antibody (70). While
exposure to intestinal proteases of polymeric IgA leads to rapid
degradation into Fab and F(ab′)2 fragments, cleavage sites within
domains Cα2 and Cα3 are masked in the presence of bound SC,
resulting in a close to 24-h delay in enzymatic clipping (71, 72).
Cross-protection takes place, as bound SC remains unaffected, in
contrast to free SC, which is rapidly and totally degraded, to an
extent similar to control IgG antibodies. Stability of SIgA is also
increased upon binding of antigens of various size and nature:
hierarchy shows the best protection toward proteases following
interaction with a bacterium, then with a virus, and finally with
a protein toxin (73). Such intrinsic properties makes SIgA well-
suited to survive the hostile environment that prevails in the gut,
and allowing to fulfill its protective function.

Another characteristics of bound SC in SIgA is its ability to
confer hydrophilic properties to the Fc fragment of the antibody
via the seven surface-exposed N-linked oligosaccharides equipped
with terminal sialic acid residues. It is thought that this pattern
is important for interaction with mucus, and therefore proper
location of the antibody in the close proximity to the mucosal
surfaces it is supposed to protect. SIgA-based immune complexes
tethered within the mucus layer overlying the epithelium further
limits diffusion in the luminal environment and aids their clear-
ance from the gut via peristalsis (74). SIgA anchoring in mucus
may account for the observation that the outer mucus layer is the
preferential habitat for the microbiota in the colon (75). However,
the identification of CD71 as a SIgA receptor on the apical surface
of intestinal epithelial cells (IECs) grown in Ussing chambers (76),
together with the fact that SIgA binds commensal bacteria via SC
(77) suggests that a more dynamic situation occurs in this part of
the gut. In a mouse model of lung infection by Shigella flexneri,
mucus-mediated anchoring of SIgA was found to be instrumen-
tal to guarantee neutralization of the bacterium preventing entry
into the tissue (78); polymeric IgA mostly found in the lumen
of the nasal cavity and bronchi was inefficient at protecting the
mice. Similarly, removal of carbohydrate chains of SC within SIgA
molecules abolished anchoring to mucus and associated protective
function (79). SC can thus be seen as an essential constituent of
SIgA, in that it ensures both sustained stability and proper local-
ization in the mucosal environment, two features instrumental to
the optimal function of the antibody.

In SC, N-glycans contribute to approximately 20% of the
molecular weight of the protein, and endow SIgA with further
binding sites for bacterial lectin-like adhesins, in addition to the
four Fab domains (80). For example, SC interacts directly with a
surface protein of Streptococcus pneumoniae, choline binding pro-
tein A (CbpA), a bacterial factor involved in colonization of the
nasopharynx of rats (81). Binding was dependent on amino acid

sequences present in domains 3 and 4 of SC (82) and on a highly
conserved hexapeptide motif within CbpA (83). It was proposed
that such an association will serve to preclude contact with epithe-
lial cells, yet a report using the unencapsulated S. pneumoniae
strain Rx6 had described facilitated invasion of pIgR expressing
Detroit 562 cells (84). The innate-like properties of free SC in
the defense against mucosal pathogens was further demonstrated
in the case of Clostridium difficile toxin A and enteropathogenic
Escherichia coli intimin (85) (Figure 1, pathway 4); neutralization
of the bacterial products by free SC or non-specific SIgA prevented
infection of target epithelial cells via interaction with sialic and
galactose residues displayed on the surface of SC. Denaturation of
the free SC polypeptide scaffold brings sugar moieties in a con-
formation no longer able to interact with the bacterial epitopes,
arguing for the possibility that finely tuned spatial disposition is
important for specific recognition by complex carbohydrates.

The importance of the glycosylated nature of SC and SIgA in
exerting their protective function can be further illustrated as for
instance in the case of sialyloligosaccharides preventing epithelial
adhesion of Escherichia coli through type I fimbrial lectin (86, 87).
SC in SIgA recovered from human colostrum was described to
inhibit adhesion of Helicobacter pylori to human gastric surface
mucous cells in a fucose-dependent manner (88). Carbohydrate
side chains in SIgA serve as a docking site for ricin toxin; human
SIgA with no Fab-dependent specificity for ricin reduced attach-
ment to the apical surface of epithelial cell lines in culture and
to the luminal surfaces of human intestinal villi via SC and the
IgA heavy chain (89). Although not a universal mechanism, these
many examples identify free and bound SC as microbial scavengers
contributing to the anti-pathogenic arsenal that protects the body
epithelial surfaces.

INTERFERING EFFECTS OF SIgA ON FITNESS OF INFECTIOUS
BACTERIA
Blocking of interaction with epithelial cells possibly through
agglutination of mucosal microorganisms may not be the only
mechanism by which SIgA exerts its protective function. Recent
evidence argues for a more direct effect on the bacterial viability or
pathogenicity, as for example by perturbation of the bioenergetic
machinery, impact on motility, disruption of virulence factors
involved in bacterial entry (90). For example, in the presence of
sub-agglutinating amounts of IgA specific for the O-antigen of
LPS (Sal4 mAb), the capacity of Salmonella typhimurium to invade
epithelial cell monolayers was reduced by a factor of 20 (91). In
support of this observation, Fab fragments derived from the same
IgA, although unable to trigger agglutination, blocked entry as effi-
ciently as the whole antibody molecule. In addition, treatment with
Sal4 led to a complete paralysis of the bacterium within 15 min,
again independently of agglutination (91). These data are con-
sistent with the idea that IgA-mediated interference with motility
and entry accounts for the protective function of Sal4 in the case of
Salmonella invasion. Further studies revealed that Sal4 treatment
impaired T3SS-mediated translocon formation and attenuated
the delivery of tagged effector proteins into target epithelial cells
(92). Changes in surface ultrastructure, alterations in outer mem-
brane permeability, a partial reduction in membrane energetics
and intracellular ATP levels were all detected upon association
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of Sal4 IgA with Salmonella, a series of features that can ren-
der the bacterium avirulent. This occurs by triggering a cyclic
dimeric guanosine monophosphate-dependent signaling pathway
through YeaJ, a proposed inner membrane-localized diguanylate
cyclase and a known regulator of cellulose biosynthesis. For the
bacterium, this results in loss of motility due to exopolysaccha-
ride production and biofilm formation (93). From an antibody
point of view, IgA possesses the ability to convert S. typhimurium
from an invasive, motile status to a non-motile, avirulent condi-
tion via direct impact on several metabolic pathways. A similar
inhibitory mechanism occurs upon binding of a murine mono-
clonal IgA (IgAC5) to the O-antigen of Shigella flexneri serotype
5a (94): transient impairment (45–60 min) of the T3SS, which is
necessary for bacterial entry into IECs is coincident with a partial
reduction in the bacterial membrane potential and a decrease in
intracellular ATP levels.

THE ROLE OF SIgA IN CONTROLLING EPITHELIAL
TRANSPORT
An extension of the function of SIgA at mucosal surfaces is the
importance of immune exclusion for the protection of the host
against excessive antigenic challenge from environmental macro-
molecules. IgAD subjects with IgE-mediated atopic disease had
increased allergen penetration through mucosal membranes and
formation of circulating immune complexes (95, 96) initially sug-
gested that SIgA had a role in controlling absorption of food anti-
gens and in reducing susceptibility to atopic allergies. Experiments
performed in mouse models of airway allergy supported the find-
ing that antigen-specific SIgA suppresses features associated with
inflammation and asthma (97–100). The importance of IgA in the
process was further illustrated in the gut by the finding that mice
sensitized with bovine lactoglobulin had much lower frequencies
of IgA-producing cells in Peyer’s patches, as well as reduced fecal
SIgA when compared to mice actively tolerized with the same
protein (101). The production of saliva antigen-specific SIgA was
consistently enhanced in a mouse model of allergic asthma in
which sublingual vaccination triggered protection against sub-
sequent challenge (102). However, allergen-specific SIgA is not
always increased in successfully tolerized animals, and can even
be present in large amounts in sensitized ones without conferring
protection (103). Oral tolerance can be induced in pIgR knock-out
mice lacking SIgA, with protection against systemic hypersensitiv-
ity ensured via compensatory Treg function (104). This series of
contradictory results in allergy and inflammatory diseases adds to
the continuing debate about the protective role of SIgA in these
deleterious processes. Moreover, the importance of SIgA against
allergic diseases remains unclear with respect to recent clinical
studies. Patients with IgAD displayed increased risk of food hyper-
sensitivity at the age of 4 years (105), whereas in another cohort,
IgAD did not show any correlation with food allergy (106). Fur-
ther studies are required to clarify the importance of SIgA in the
maintenance of local tolerance, and eventually the integrity of the
intestinal barrier.

In addition to play an essential role in immune exclusion, SIgA,
in contrast to IgM and IgG, exhibits the striking ability to adhere
selectively to the apical membrane of M cells overlying mouse and
human Peyer’s patches (107, 108). Subsequent limited transport

across the epithelium resulted in the presence of small amounts
of SIgA in the M cell pocket and in processes that extend in the
basal lamina (109). To date, an M cell-specific receptor ensuring
controlled retro-transcytosis of SIgA has not yet been identified,
although one can speculate that it needs to display particular
properties (low expression, binding activity in the presence of a co-
receptor, recognition of altered molecular forms of SIgA) to avoid
overwhelming entry of the large excess of SIgA in the intestinal
lumen. In vivo uptake of SIgA delivered into mouse ligated ileal
loop containing a Peyer’s patch resulted in specific targeting to,
and internalization by dendritic cells (DC) in the subepithelial
dome region (110). Ex vivo, only CD11c+CD11b+ DC isolated
from Peyer’s patches and draining mesenteric lymph nodes showed
selective binding and internalization mimicking the in vivo situa-
tion (111) (Figure 1, pathway 5). Interestingly, in mucosal tissues,
such DC are poor producers of IL-12 but potent inducers of IL-
10 secreting T cells (112) and IgA production from naïve B cells
(113). DC-SIGN was recently identified as a possible candidate
for SIgA recognition by mouse DC (114), while the existence of
CD89 and CD71 (transferrin receptor) has been documented on
maturing human DC (115). In support of these complementary
mechanisms, modulation of DC function with inhibition of IL-12
production by IgA has been recently described (116).

Such observations led to the obvious question of the immuno-
logical relevance of the transport of SIgA molecules across the
M cell and its subsequent association with DC. When admin-
istered orally in the presence of the mucosal adjuvant cholera
toxin (117), genetically engineered SIgA carrying a foreign epitope
from Shigella flexneri invasin B triggered the production of both
salivary and systemic antibodies specific for the bacterial anti-
gen (118). To further assess the nature of the mucosal immune
response following re-entry of SIgA across the intestinal mucosa,
mice were immunized orally with heterologous SIgA consisting
of mouse polymeric IgA and human SC in the absence of any
adjuvant. Engineered SIgA triggered production of human SC-
specific antibodies and mixed Th1/Th2 type responses, preserved
or induced IL-10 and TGF-β expression in MLN, and migration
and maturation of DC along the Peyer’s patch-MLN-spleen axis
(119) (Figure 1, pathway 5). By comparison with human SC adju-
vantized with cholera toxin, it turned out that SIgA induced low
degrees of activation in a non-inflammatory context favorable to
preserve local homeostasis of the gastro-intestinal tract. Neutral-
ization of Shigella flexneri by SIgA led to local suppression of
pro-inflammatory circuits leading to gut tissue damages, a fea-
ture resulting form the stability of the immune complex in the
harsh intestinal environment (120) (Figure 1, pathway 7).

An intriguing possibility in the context of SIgA-based immune
complexes would be that these latter contribute to local
immunomodulation, or early in life, to educate the mucosal
immune system toward a tolerogenic profile. In support of this,
milk antibodies, and in particular SIgA, prevents neonatal respon-
siveness against commensal bacteria (121). In this respect, timely
provision of a set of maternal antibodies fitting the newborn
gut microbiota primarily represented by a hand-over from the
mother (at least after “classical” vaginal delivery) may justify
from such regulatory mechanisms. It makes a sense to speculate
that maternal milk SIgA antibodies passing across the epithelium
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direct associated antigens to DC, and shapes the gastro-intestinal
immune system both in terms of defense or tolerization during
initial exposure to non-self antigenic structures. Based on the evi-
dence of SIgA re-entry into Peyer’s patch, a broad interpretation
of the data would suggest that SIgA-coated, neutralized bacteria
could prime the immune system of naïve individuals within a
whole population in the absence of global infection.

THE ROLE OF SIgA IN REGULATING THE MICROBIOTA
More recently, SIgA has been identified as a necessary partner
in maintaining the fragile balance between the triad composed
of the microbiota, the IECs lining the gastro-intestinal tract and
the underlying mucosal immune system. The homeostatic control
taking place at gut mucosal surfaces is essential to keep billions of
colonizing, and at first sight potentially harmful microorganisms
in order to ensure optimal symbiosis with the host. Indeed, any
potential dysfunctions can lead to the development of patholo-
gies such as inflammatory bowel diseases (122), or affect processes
of extraction of energy and digestion of otherwise unavailable
sources of nutrients such as the final degradation of carbohydrates.
Commensal bacteria have been directly associated with the proper
development of gut-associated lymphoid tissues such as isolated
lymphoid follicles (123) or with the secretion of normal levels of
SIgA (124) with unknown specificity called“natural”SIgA (125). It
appears that the IgA repertoire is restricted to a minimum consid-
ering the enormous varieties of antigens encountered at mucosal
surfaces (126), arguing in favor of the presence of polyspecific,
low affinity antibodies in intestinal secretions (127, 128). This
notion was challenged by a recent study using high-throughput
sequencing to investigate the shaping of the IgA repertoire (129).
Analysis of more than one million VH sequences revealed that the
IgA repertoire comprised both highly expanded and low frequency
clones which both contributed to high diversity, a phenomenon
amplified with aging due to hypermutation. Similar to mice IgA
sequences, human VH sequences carry numerous somatic hyper-
mutation (130). Whether this process relies on the reutilization of
germinal centers in multiple Peyer’s patches as recently identified
(131) is in need of further investigation. Programed cell death pro-
tein 1 knock-out mice that have elevated numbers of Peyer’s patch
Treg cells exhibit changes in the binding capacity of their SIgA,
which in turn affects the nature of the commensal bacteria (132).
The fact that commensal bacteria are naturally coated by SIgA in
feces of humans and mice strongly suggests that this interaction
is necessary to maintain a steady-state commensal colonization.
Mice expressing an activation-induced cytidine deaminase hypo-
morph (which disrupts somatic hypermutation but still supports
class switch recombination) display changes in the composition
of their microbiota (133). Together, this suggests that SIgA keeps
the microbiota at bay using both Fab-dependent adaptive and
glycan-mediated innate immune interactions.

By using free SC and non-specific SIgA (purified from
hybridoma cell lines and colostrum) serving as substitutes of
natural mucosal antibodies, the molecular basis pertaining to
the interaction between SIgA and intestinal resident bacteria,
i.e., Lactobacillus, Bifidobacteria, Escherichia coli, and Bacteroides
strains, was identified as the many glycans residues carried by
SC (77). While the interaction with Gram-positive bacteria indi-
cated the essential role of carbohydrates in the process, binding

to Gram-negative bacteria was preserved whatever the molec-
ular form of protein partner used, suggesting the involvement
of different binding motifs. Poor or absent association between
Gram-positive bacteria and control IgG identified the critical role
of sugar moieties in SC in selective binding of the highly diverse
microbiota by the whole SIgA protein.

Recognition of commensal bacteria by IECs has been rec-
ognized to play a fundamental role in mucosal homeostasis by
promoting for instance cytokine release, cell expansion, and rein-
forcement of the barrier integrity (134–136). Further, commen-
sal strains coated by SIgA can potentiate the responsiveness of
reconstituted IEC monolayers in vitro (137) (Figure 1, pathway
8). Unexpectedly, association with SIgA increased the bacterial
anchoring at the apical surface of IECs, resulting in the reinforce-
ment of the barrier integrity through increased phosphorylation of
tight junction proteins promoting cell-to-cell contact. In addition,
secretion of pro-inflammatory cytokines/chemokines by IECs was
quenched, while expression of pIgR was promoted. As pIgR is
involved in transcytosis of SIgA from the basolateral to the apical
pole of IECs one can conclude that commensal bacteria com-
plexed with SIgA generate a positive feedback on pIgR expression,
leading to more receptors being available for active SIgA tran-
scytosis. This phenomenon could account for the sustained SIgA
secretion resulting from commensal colonization as observed pre-
viously (138). This contributes to further defining the function
of SIgA in keeping commensal bacteria at bay through a delicate
balance combining appropriate neutralization and proper sens-
ing by the IECs. Whether the presence of the transferrin receptor
(CD71) capable of binding SIgA at the apical pole of IECs (76) is
involved in governing binding of SIgA-commensal bacteria com-
plexes remains to be determined. Early in life, the role of maternal
SIgA may be considered of primordial importance in limiting a
potential inflammation induced by primary colonization in the
gut of newborns. The presence of SIgA could contribute to the ini-
tial sensing of the newly implanted microbiota and allow proper
development of the immune system under non-inflammatory
conditions. Such a mechanism might be relevant to the under-
standing of inflammatory bowel disease which is, among others,
associated with deregulated inflammatory responses to intestinal
bacteria (139).

While data reported above shed light on the role of SIgA in
mucosal monitoring of commensals by IECs, they do not say
much on how the communication with partners of the under-
lying immune system is established. Limited uptake of bacteria
including a Lactobacillus and a Bacteroides occurs through sam-
pling by M cells found in intestinal Peyer’s patches, and regulated
entry can be promoted upon association with non-specific SIgA
(140) (Figure 1, pathway 6). The almost absent transepithelial pas-
sage observed in germ-free mice having barely detectable gut SIgA
can be compensated for by administration of pre-formed SIgA-
bacteria complexes. Commensal bacteria given alone get coated
with endogenous SIgA within 3 h, strongly suggesting that asso-
ciation takes place under steady-state conditions anytime, and
hence participates in keeping the large majority of bacteria in
the intestinal lumen. The role of SIgA in shaping the gut micro-
bial community composition may arise from its ability to sup-
press expression of certain bacterial epitopes (141), and therefore
favor the fitness of one species or genus over others. Selective
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SIgA-mediated targeting of bacteria is restricted to the tolerogenic
CD11c+CD11b+CD8− DC subset and macrophages located in
the subepithelial dome region of Peyer’s patches, indicating that
the host is not ignorant of its resident commensals (140). Upon
coating of commensal bacteria, natural and/or specific SIgA largely
maintains luminal compartmentalization of the microbiota, while
occasionally permitting rare translocation events necessary to con-
trol the continuous dialog between the host’s immune system and
its resident symbionts. Commensal bacteria associated with local
DC in the subepithelial dome region do not penetrate further than
the draining mesenteric lymph nodes, resulting in the confinement
of immune induction against the microbiota to the mucosa (142,
143). Making the systemic immune system relatively ignorant of
these organisms at this stage would permit adequate stimulation
in the case of sepsis. While transport of SIgA alone or in com-
plex with protein antigens or bacteria through Peyer’s patch M
cells is well established, it remains to be determined whether other
transepithelial pathways including for example M cells in isolated
lymphoid follicles (144), lamina propria DC snorkeling dendrites
across the tight epithelium (145), Peyer’s patch DC extending den-
drites around M cells (146), or Goblet cell-mediated passage (147)
can account for selective sampling and targeting of cells regulating
intestinal immune responses.

CONCLUSION
Mucosal surfaces at the interface between the external world and
the inside of the body are the primary sites of continuous challenge

with potentially infectious agents, commensal bacteria, and for-
eign proteins. Maintenance of the integrity and selective function
of these delicate epithelia implies that tightly controlled homeosta-
sis is ensured anytime. As a consequence, depending on the nature
of the stimulus, very different immunoregulatory mechanisms
have to be duly activated. A prominent effector in this network,
SIgA plays a crucial role in the essential communication occurring
between the host’s mucosal environment and the proper sensing
of harmless inhabitants or noxious pathogens/antigens (Figure 1).
To fulfill this demanding multi-task function, SIgA displays several
properties that extend from classical immune exclusion and per-
manent checking of the microbiota to local immunomodulation
via intricate contacts with microorganisms, epithelial cells includ-
ing enterocytes and M cells, and DC in the mucosal associated
lymphoid tissue. It must be emphasized that biochemical features
associated with SIgA, such as stability in an aggressive medium,
anchoring in mucus, heavy glycosylation, Fab-independent recog-
nition of antigens, transcytosis and retro-transcytosis across the
intestinal epithelium all contribute to allow the antibody to
perform optimally in the particular environment of mucosal
surfaces.
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