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Hematopoietic stem cells (HSCs) are quiescent cells with self-renewal capacity and the
ability to generate all mature blood cells. HSCs normally reside in specialized niches in
the bone marrow that help maintain their quiescence and long-term repopulating activ-
ity. There is emerging evidence that certain cytokines induced during inflammation have
significant effects on HSCs in the bone marrow. Type I and II interferons, tumor necrosis
factor, and lipopolysaccharide (LPS) directly stimulate HSC proliferation and differentiation,
thereby increasing the short-term output of mature effector leukocytes. However, chronic
inflammatory cytokine signaling can lead to HSC exhaustion and may contribute the devel-
opment of hematopoietic malignancies. Pro-inflammatory cytokines such as G-CSF can
also indirectly affect HSCs by altering the bone marrow microenvironment, disrupting the
stem cell niche, and leading to HSC mobilization into the blood. Herein, we review our
current understanding of the effects of inflammatory mediators on HSCs, and we discuss
the potential clinical implications of these findings with respect to bone marrow failure and
leukemogenesis.
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INTRODUCTION
Infections and other inflammatory conditions place demands on
hematopoiesis to increase production of immune effector cells.
Hematopoietic cytokines and certain chemokines produced in
response to infection are the primary mediators of the stress
hematopoiesis response. They increase production of mature
effects cells from lineage-committed hematopoietic progenitors
and facilitate the mobilization of mature effector cells from the
bone marrow to blood. Recent evidence suggests that hematopoi-
etic stem cells (HSCs) also are direct targets of inflammatory
signaling. In particular, interferons (IFNs), tumor necrosis fac-
tor (TNF), and toll-like receptor (TLR) ligands, among others,
have been shown to stimulate the proliferation,differentiation,and
repopulating ability of HSCs in multiple mouse models of infec-
tion and inflammation. Importantly, recent studies suggest that
“inflammatory signaling” may also contribute to HSC regulation
under homeostatic conditions (i.e., in the absence of overt infec-
tion or tissue damage). While inflammatory signaling in HSCs may
be advantageous in the short-term, there is evidence that chronic
inflammation may be deleterious to HSCs, and this may contribute
to bone marrow failure and malignant transformation in humans.

Hematopoietic stem cells are a rare, quiescent population com-
prising only about 0.01% of bone marrow cells. These cells rep-
resent the foundation of the hematopoietic system, supplying the
progenitors that give rise to all of the differentiated cell types in the
blood. Although HSCs are largely quiescent, or dormant, at base-
line (75% of long-term HSCs are in G0 phase of the cell cycle) (1),
they can be induced to cycle and differentiate in response to various
challenges to the hematopoietic system including chemotherapy,

hemorrhage, and infection (2, 3). HSCs are defined by their ability
to self-renew and support long-term (at least 12 weeks) multi-
lineage hematopoietic engraftment. HSC-enriched populations
can be identified by flow cytometry using a variety of cell sur-
face markers and via exploitation of their staining properties with
the vital dye Hoechst 33342 (4, 5). Kit+ lineage− Sca+ (KSL) cells,
while enriched for hematopoietic progenitor activity, only contain
5–10% HSCs. CD150+ CD48− KSL and CD34− KSL cells repre-
sent the two most commonly used murine HSCs phenotypes, each
containing approximately 50% HSCs (5, 6). Of note, the study of
HSCs in the context of inflammation or infection is complicated
by the fact that the expression of the defining surface markers may
be altered by inflammatory signals. For example, Sca-1 expres-
sion is induced by IFNs and TNF (7, 8), and c-Kit expression is
markedly reduced in HSCs in response to the chemotherapeutic
agent 5-fluorouracil (5-FU) (9). Thus, one must employ caution
in interpreting the effects of inflammatory signals on HSCs, and
functional studies are imperative to complement surface marker
expression analyses.

In this review, we focus on direct effects of inflammatory signals
on HSCs. However, inflammatory signals also can alter the bone
marrow microenvironment, which can indirectly affect HSCs.
HSCs are localized to at least two anatomic regions in the bone
marrow: the endosteum and perivascular region (5, 10–12). Stro-
mal cells that populate these “stem cell niches” provide essential
signals to HSCs that regulate their proliferation, differentiation,
and retention in the bone marrow (Figure 1A). For example, Kit
ligand (KitL) expression from endothelial cells and leptin receptor-
positive perivascular stromal cells is required for HSC maintenance
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FIGURE 1 | Stem cell niches in the bone marrow. (A) Hematopoietic
stem cells (HSCs) reside in specialized niches in the bone marrow that
are comprised of certain stromal cells, including endosteal osteoblasts
(Ob) and perivascular stromal cells including CXCL12-abundant reticular
(CAR) cells, leptin receptor+ cells, and nestin+ or Prx1-targeted
mesenchymal progenitors. These cells maintain HSCs through the
production of factors such as angiopoietin, Kit ligand (KitL), CXCL12,

and Jagged1. (B) G-CSF treatment alters the HSC niches. Shown are
sections from the femurs of Col2.3-GFP mice with osteoblast-specific
GFP expression. After 7 days of G-CSF treatment (125 µg/kg given
subcutaneously twice a day; bottom panel), there is a marked loss of
osteoblasts (green color) compared to an untreated control animal (top
panels). Original magnification 10×. Photo courtesy of Adam
Greenbaum.

(13). Likewise, CXCL12 expression from mesenchymal progeni-
tors and CXCL12-abundant reticular (CAR) cells is required for
the efficient retention of HSCs in the bone marrow and mainte-
nance of HSC repopulating activity and quiescence (14, 15). While
HSCs largely reside within the bone marrow niches, they period-
ically traverse the bloodstream, and the number of blood-borne
and extramedullary HSCs increases in response to inflammation
or infection. Furthermore, multiple other tissues throughout the
body are capable of supporting hematopoiesis, particularly under
conditions of stress, inflammation, and infection (16). There is
strong evidence that certain cytokines induced during inflamma-
tion indirectly affect HSCs through alteration of the bone marrow
microenvironment. For example, granulocyte colony-stimulating
factor (G-CSF) suppresses CXCL12 production from bone mar-
row stromal cells resulting in HSC mobilization into the blood
(17–19). Thus, when considering the effect of inflammatory sig-
nals on HSCs, both inflammatory signaling in HSCs and alter-
ations in the bone marrow microenvironment should be taken
into account.

INTERFERONS
Interferons are cytokines produced by immune cells and others
in response to pathogens (viruses, bacteria, parasites) and tumor
cells. Type I interferons (IFN-α, IFN-β) are produced by a variety
of cell types, including lymphocytes, dendritic cells, macrophages,
fibroblasts, endothelial cells, and osteoblasts, and signal though
the IFNα/β receptor (IFNAR) on target cells. Recently, Essers et
al. (20) demonstrated that treatment of mice with IFN-α stimu-
lated the in vivo proliferation of CD150+ CD48− KSL cells. Both
direct and indirect effects of IFN-α on HSC proliferation were
observed. Importantly, while short-term (three doses) of IFN-α

did not affect HSC repopulating activity in transplanted mice,
chronic IFN-α stimulation (eight doses over 2 weeks) led to a
decrease in CD150+ CD48− KSL cells and a marked reduction
in their repopulating activity. Consistent with these findings, Sato
et al. (21) found that IFN-α induced HSC (KSL-side population
cell) proliferation. Furthermore, they demonstrated that loss of
interferon regulatory factor-2 (IRF2), a transcriptional repressor
of IFN signaling, led to enhanced HSC cycling, and a reduction in
repopulating ability in transplanted mice. Importantly, this repop-
ulating activity was partially restored in Irf2−/− HSCs if type I
IFN signaling was disabled. Thus IRF2-mediated suppression of
IFN signaling helps to maintain HSC quiescence and repopulating
activity.

Like IFN-α, IFN-γ has been shown to regulate HSC prolifera-
tion and repopulating activity. Using a mouse model of Mycobac-
terium avium infection, Baldridge et al. (22) showed that this
infection resulted in an IFN-γ-dependent increase in prolifera-
tion of HSCs (CD150+ KLS cells), and treatment of mice with
IFN-γ alone was sufficient to induce HSC proliferation and mobi-
lization. Furthermore, M. avium infection or IFN-γ treatment led
to an HSC repopulating defect in transplanted mice. Interestingly,
HSCs from IFN-γ-deficient (Ifng−/−) mice were more quiescent at
baseline and had a repopulating advantage compared to wild-type
HSCs. Similarly, infection with Ehrlichia muris results in an IFN-
γ-dependent enhancement of HSC proliferation and a reduction
in long-term repopulating activity (23).

Collectively, these data suggest that both IFN-α and IFN-γ
directly stimulate HSC proliferation, and, if the exposure is pro-
longed, result in a loss of repopulating activity. IFN signaling
also appears to play a negative role in regulating HSC quies-
cence and repopulating activity under basal conditions. Of note,
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there is evidence (at least for IFN-γ) that IFN signaling regu-
lates HSC function in humans. Specifically, Yang and colleagues
showed that treatment of CD34+ CD38− human cord blood cells
with IFN-γ markedly inhibits their ability to support multi-lineage
hematopoiesis when transplanted into NOD-SCID mice (24).

TUMOR NECROSIS FACTOR
TNF-α is a member of the TNF family of pro-inflammatory
cytokines, produced largely by cells of the monocyte/macrophage
lineage, but also by a variety of other cells including lympho-
cytes, natural killer cells, and endothelial cells. Originally identified
as a serum-derived factor capable of inducing tumor cell necro-
sis (25), TNF-α is involved in a wide variety of other processes
including stimulation of fever and regulation of cell proliferation
and differentiation. TNF-α signals via two distinct receptors: the
p55 receptor (TNFRSF1A), which is constitutively expressed in
most tissues, and the p75 receptor (TNFRSF1B), whose expres-
sion is restricted largely to hematopoietic cells (26). There is
general agreement that ex vivo treatment of murine and human
hematopoietic progenitors with TNF-α inhibits their prolifera-
tion (27–30). For example, treatment of human CD34+ CD38−

cells with TNF-α in vitro suppresses hematopoietic colony for-
mation (29) and the ability of these cells to sustain multi-lineage
hematopoiesis after transplantation into NOD-SCID mice (27).
The in vivo contribution of TNF signaling to HSC maintenance
is more controversial. In the most recent and complete study,
Pronk and colleagues carefully assessed HSC number and func-
tion in mice lacking Tnfrsf1a, Tnfrsf1b, or both (28). Although the
number of phenotypic HSCs (KSL flk2− cells) in the bone mar-
row is normal in all mice, transplantation experiments showed a
modest increase in the long-term repopulating capability of either
Tnfrsf1a−/− or Tnfrsf1b−/− HSCs, which was enhanced further
using Tnfrsf1a and Tnfrsf1b doubly deficient cells. On the other
hand, Rebel and colleagues reported that older mice (>6 months)
lacking Tnfrsf1a−/− had reduced repopulating activity compared
to age-matched wild-type or Tnfrsf1b−/− mice (31). To model the
effect of increased TNF-α production during infection, Pronk et al.
(28) assessed the effect of the in vivo administration of TNF-α on
HSCs. They showed that short-term TNF (three doses) resulted
in suppression of cycling HSCs and decreased HSC long-term
repopulating activity. However, Rezzoug et al. showed that TNF-
α production by bone marrow-derived CD8+ cells suppresses
apoptosis of HSCs and facilitates hematopoietic engraftment after
transplantation into allogeneic and syngeneic transplant recipients
(32). Considering these somewhat discrepant results together, it is
clear that the effects of TNF-α on HSCs are complex. It appears
likely that the HSC response to TNF signaling is dependent on
the dose and duration of TNF-α exposure and the local environ-
ment in which the HSCs reside, and there may be age-dependent
differences in TNF response. That said, under basal conditions, it
appears that TNF signaling negatively regulates HSC repopulating
activity.

GRANULOCYTE COLONY-STIMULATING FACTOR
Granulocyte colony-stimulating factor is a cytokine produced by
multiple hematopoietic and bone marrow stromal cell types in
response to inflammatory signals, and it is the principle cytokine

regulating neutrophil production. Systemic levels of G-CSF are
increased in response to many types of infection (33), stimulating
neutrophil production and release from the bone marrow. In addi-
tion to its prominent role in basal and stress granulopoiesis, G-CSF
also regulates HSC function. G-CSF is a potent mobilizing agent,
a property it shares with other inflammatory cytokines, includ-
ing IL-6, IL-3, IL-12, and GM-CSF (34). There is a considerable
body of literature showing that G-CSF induces the mobiliza-
tion of hematopoietic stem/progenitor cells (HSPCs) primarily by
altering the bone marrow microenvironment. G-CSF treatment
results in marked changes in bone marrow stromal cells that have
been implicated in HSC maintenance, including: (1) decreased
CXCL12 expression from osteoblasts and Nestin-GFP+ stromal
cells (35, 36); (2) decreased KitL and angiopoietin expression from
Nestin-GFP+ stromal cells (36); and (3) osteoblast suppression
(Figure 1B) (19, 35) The decrease of CXCL12 expression is of
particular importance, since CXCL12 signaling regulates HSC qui-
escence, repopulating activity, and retention in the bone marrow
(37–39). Indeed, recent studies show that conditional deletion of
Cxcl12 from CAR cells (15) or leptin receptor+ stromal cells (14)
in the bone marrow is sufficient to mobilize HSPCs into the blood.

Less well appreciated is the effect of G-CSF receptor signaling
on HSCs. G-CSF receptor deficient (Csf3r−/−) mice at baseline
have normal numbers of phenotypic HSCs in the blood but a
marked long-term repopulating defect (40). Conversely, expres-
sion of a mutant G-CSF receptor with enhanced signaling proper-
ties confers a clonal advantage to HSCs upon G-CSF stimulation
(41). G-CSF administration in vivo, despite mobilizing some HSCs
to the blood and spleen, results in an absolute increase in phe-
notypic HSCs (CD150+ CD48− KSL cells) in the bone marrow
(42). Of note, this HSC expansion is not, however, associated with
enhanced HSC activity, as the bone marrow of mice treated with
G-CSF has significantly less repopulating activity than the bone
marrow of untreated mice (43–45). Further study is needed to
define the mechanisms by which G-CSF treatment inhibits HSC
function.

In summary, G-CSF signals play an important role in maintain-
ing HSC function under basal conditions. Increased G-CSF expres-
sion (either endogenous or pharmacologic) results in impaired
HSC function in the bone marrow through alterations in the bone
marrow microenvironment and possibly through direct G-CSF
signaling in HSCs.

TOLL-LIKE RECEPTORS
Both mouse and human HSCs have been shown to express
multiple members of the TLR family, a family of transmem-
brane pattern recognition receptors (PRRs) that detect pathogen-
associated molecular patterns (PAMPs; e.g., lipopolysaccharide,
single-stranded RNA, peptidoglycans). Twelve family members
have been described in mice, and 10 in humans, and they
play a central role in the innate (and subsequently the adap-
tive) response to pathogens such as viruses and bacteria. In
addition, numerous non-pathogen associated ligands for TLRs
have been described, the so-called danger-associated molecu-
lar patterns (DAMPs), which include intracellular molecules
released upon necrotic cell death and extracellular matrix com-
ponents that are either degraded or upregulated during tissue
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injury (46). All TLRs require intracellular adaptor proteins for
signaling, with the adaptor MyD88 required for signaling through
all TLRs except TLR3. TLR3 signaling requires the TRIF (aka
TICAM1) adaptor, and TLR4 uses both a MyD88-dependent and
a MyD88-independent (TRIF-dependent) pathway (Figure 2).

Nagai et al. (47) reported that murine bone marrow HSCs
(Flk2− KSL and IL7R− KSL cells) express TLR2 and TLR4, and
activation of HSCs in vitro with the TLR4 ligand LPS or the TLR2
ligand Pam3CSK4 led to MyD88-dependent myeloid differenti-
ation and enhanced cell cycling. The same group later showed
that chronic in vivo exposure to LPS altered phenotypic HSC
populations and permanently impaired their repopulating and
self-renewal capacities in transplantation experiments (48). In
their study, low-dose LPS (6 µg daily injections) treatment for
4–6 weeks led to an expansion of the CD150+ CD48− KSL and

Flk2− KSL HSC populations, as well as increased HSC cycling.
When transplanted competitively into irradiated recipients, bone
marrow from LPS-treated mice displayed impaired self-renewal
and myeloid skewing compared to marrow from untreated mice.
Finally, they noted that the changes observed with LPS treat-
ment were reminiscent of HSC aging, including myeloid skewing
and expansion of a CD150hi population lacking CD86 or CD18.
Recently, Zhao et al. (49) similarly showed that chronic low-
dose LPS (1 µg daily for 30 days) induced HSC cycling, increased
HSC numbers and impaired their repopulating and self-renewal
capacities in transplanted animals. In their study, LPS treatment
was associated with increased transcription of Id1, encoding an
inhibitory helix-loop-helix protein that was previously shown to
be important for maintaining normal HSC numbers and repopu-
lating activity (50), and loss of Id1 mitigated the LPS-induced HSC

FIGURE 2 |Toll-like receptor signaling pathways. Toll-like
receptors (TLRs) are a family of transmembrane pattern recognition
receptors that recognize a wide variety of pathogen- and
danger-associated molecular patterns (PAMPs/DAMPs). TLRs are

located either at the plasma membrane or in endosomes, and signal
through either MyD88-dependent or TRIF-dependent pathways to
active NFκB, IRF7, or IRF3 and induce the expression of
pro-inflammatory cytokines.
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cycling and long-term repopulating defect. While these studies
suggest that LPS increases HSC cycling while reducing repopu-
lating activity, Rodriguez et al. (51) found that injection of mice
with pseudomonas-derived LPS led to decreased cycling of KSL
cells after 24 h. Also discordant, Takizawa et al. (52) reported that
short-term treatment with higher-dose LPS (35 µg× 4 doses, each
2 days apart) led to increased HSC multi-lineage repopulating abil-
ity. Thus, the specific effects of LPS on HSCs may be dose and/or
duration-dependent.

There also is evidence that TLR signaling may regulate HSC
function in humans. Sioud et al. (53) demonstrated that, like
murine HSCs, human bone marrow CD34+ cells express multi-
ple TLRs, including TLR4, TLR7, TLR8, and TLR9. Furthermore,
incubation of freshly isolated CD34+ cells with specific TLR
ligands including immunostimulatory small interfering RNAs
and the TLR7/8 ligand R848, led to the production of multi-
ple cytokines (IL1-β, IL-6, IL8, TNF-α, GM-CSF), and induced
the differentiation of CD34+ cells along the myeloid lineage in
the absence of any exogenous cytokines. Likewise, human cord
blood Lin− CD34+ CD38lo cells express multiple TLRs, including
TLR1, TLR2, TLR3, TLR4, and TLR6 (54), and culture of these
cells with the TLR1/2 agonist Pam3CSK4 stimulated proliferation
and myeloid differentiation.

Taken together, these studies in mice and humans clearly
demonstrate that HSCs express TLRs, and TLR ligation influences
HSC cycling and promotes differentiation toward a myeloid fate.
Further studies are needed to elucidate the effects of specific TLR
ligands on HSCs, as well as determine the dose- and duration-
related effects of TLR ligation on HSC proliferation and function.
As with inflammatory cytokines, TLR signaling may alter the
expression of HSC-defining surface markers. For example, CD150
is upregulated on multiple hematopoietic cell types in response to
TLR signaling (55–57), and therefore the “expansion” of HSCs in
response to TLR ligation may reflect an alteration in HSC-related
surface marker expression of cells that are not true HSCs. Inter-
estingly, bone marrow from TLR4−/−, TLR9−/−, and MyD88−/−

mice has a repopulating advantage when transplanted compet-
itively with wild-type marrow into lethally irradiated recipients
(58), suggesting that TLR signaling may contribute to the mainte-
nance of HSCs under homeostatic conditions. This data suggests
that endogenous TLR ligands, such as those produced by normal
gut flora, may contribute to the regulation of baseline HSC activ-
ity. Further studies are necessary to explore this possibility and
define the source of endogenous TLR ligands affecting HSCs in
the absence of overt infection.

It is presently unclear whether the in vivo effects of TLR
agonists on HSCs are direct, involving TLR signaling on the
HSCs themselves, or indirect, requiring TLR signaling by another
hematopoietic or stromal cell type. To address this issue, Megias
and colleagues transplanted purified wild-type KSL IL7Rα− cells
into TLR2−/−, TLR4−/−, or MyD88−/− mice and then injected
these recipients with specific TLR2, TLR4, or TLR9 agonists (59).
They observed that TLR stimulation rapidly induced differenti-
ation of transplanted KSL IL7Rα− cells into macrophages. This
approach removes the potential contribution of soluble media-
tors secreted by recipient cells, supporting the idea that HSCs
may be directly influenced by TLR ligation. On the other hand,

LPS-induced increased expression of ID1, which has been impli-
cated in LPS-induced loss of HSC repopulating activity, is not
mediated by direct TLR signaling in HSCs (49). Moreover, Shi et
al. showed that treatment of mice with LPS led to increased expres-
sion of CCL2 by nestin-GFP+ stromal cells and CAR cells, two
bone marrow stromal cell populations implicated in HSC main-
tenance (60). Thus, it is likely that TLR agonists regulate HSCs in
both cell autonomous and non-cell autonomous fashions.

The regulation of TLR expression on HSCs is also not well
understood. Of note, Joo et al. (61) reported that G-CSF mobi-
lized HSCs have increased TLR2 levels compared to unmobilized
bone marrow HSCs, and ex vivo treatment of Lin− c-Kit+ bone
marrow cells with G-CSF led to upregulation of TLR2 expres-
sion as detected by flow cytometry. Thus inflammatory cytokines
produced during infection or tissue damage may help regulate
TLR expression on HSCs, thus priming them to directly respond
to the offending pathogen or damage-associated ligand. Addi-
tional studies are necessary to understand how G-CSF regulates
TLR expression, and determine what other factors regulate TLR
signaling in HSCs.

In addition to TLRs, several other classes of PRRs are important
for direct pathogen and damage-associated pattern recognition
including the C-type lectin receptors (CLRs), the nucleotide-
binding oligomerization domain (NOD)-like receptors (NLRs),
retinoic acid-inducible gene (RIG)-I-like receptors (RLRs), and
purinergic receptors. Human CD34+ cells express the NLR NOD2,
an intracellular PRR with a role in recognizing bacterial peptido-
glycans and activating NF-κB. Stimulation of these cells with a
NOD2 agonist led to increased expression of the PU.1 transcrip-
tion factor, important for myeloid differentiation, and enhanced
their responsiveness to TLR2 ligation with the production of
multiple inflammatory cytokines (TNF-α, IL-1β, GM-CSF) (62).
In addition, both mouse and human HSCs have been shown
to express purinergic receptors, which respond to extracellular
nucleotides released during tissue injury or inflammation. Expo-
sure to the purinergic receptor ligands ATP or UTP enhanced
the proliferation of human CD34+ HSCs (63), and inhibition
of purinergic signaling mitigated the enhanced HSC cycling in
a mouse model of inflammatory bowel disease (64).

INFLAMMATION AND HSC DYSFUNCTION IN HUMAN
DISEASE
As discussed above, studies in mice clearly show that inflammatory
cytokines and pathogen- or danger-associated ligands can influ-
ence the cycling status, differentiation, and repopulating activity
of HSCs. While fewer studies have been performed using human
cells, human HSCs clearly do, like murine HSCs, respond to sim-
ilar inflammatory stimuli, and a link between inflammation and
bone marrow dysfunction has long been observed. For example,
increased expression of TNF-α and IFN-γ has been observed in
the bone marrow of patients with MDS (65). Similarly, IFN-γ
and TNF-α expression is higher in the bone marrow of patients
with aplastic anemia compared to healthy controls (66). In a study
of children with idiopathic aplastic anemia, bone marrow CD4+,
and CD8+ cells expressing IFN-γ and TNF-α were significantly
increased compared to normal controls, and a higher percentage of
marrow TNF-α-expressing T cells correlated with an unfavorable
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outcome (67). Similarly, increased bone marrow levels of these
cytokines are associated with Fanconi Anemia (FA), and inhibi-
tion of TNF-α restores erythropoiesis in a mouse model of FA
(68). Li et al. (69) provided further evidence for a role for TNF-
α in the pathogenesis of FA by demonstrating that, while TNF-α
initially inhibited the growth of HSCs from FA mice (Fancc−/−),
longer-term exposure promoted the generation of cytogenetically
abnormal clones that led to acute myelogenous leukemia upon
transplantation into congenic wild-type recipients.

Augmented TLR signaling has also been implicated in
myelodysplastic syndrome (MDS) and acute myeloid leukemia
(AML). TLR4 expression is increased in CD34+ cells from
patients with MDS compared to healthy controls, and is associated
with enhanced apoptosis (70). Similarly, the mRNA expression
of TRAF6, a mediator of MyD88-dependent TLR signaling, is
increased more than 10-fold in patients with MDS compared
to healthy controls (71). Starczynowski et al. (72) demonstrated
that upregulation of TLR signaling via loss of miR-145 and miR-
146a contributes to myelodysplasia in 5q− syndrome. In their
study, they identified the TLR signaling pathway mediators TIRAP
and TRAF6 as respective targets of these non-coding RNAs, and
showed that knockdown of miR-145 and miR-146a together or
enforced expression of TRAF6 in murine HSCs led to an MDS-
like phenotype consisting of thrombocytosis, neutropenia, and
megakaryocytic dysplasia. Furthermore, approximately one-third
of mice transplanted with TRAF6-overexpressing HSCs ultimately
developed bone marrow failure or AML.

Gain-of-function mutations of MYD88 are common in certain
lymphoproliferative syndromes. Ngo et al. (73) identified L265P
MYD88 mutations in 29% of 382 primary activated B-cell-like dif-
fuse large B-cell lymphoma samples. They confirmed that this is
a gain-of-function mutation, enhancing NF-κB, and JAK-STAT3
signaling and tumor cell survival. The same MYD88 mutation was
identified by a second group in 9 of 310 CLL patients (2.9%), and
was associated with a younger age and more advanced clinical stage
at diagnosis (74). Again, the mutation was associated with acti-
vation of downstream signaling effectors and enhanced cytokine
secretion of tumor cells upon stimulation with TLR ligands. CLL
cells have previously been shown to express multiple TLRs, and
stimulation of these cells with TLR ligands protects them from
apoptosis (75). More recently, L265P MYD88 mutations were
identified in >90% of patients with Waldenstrom macroglobu-
linemia and approximately 50% of patients with immunoglobu-
lin M (IgM) monoclonal gammopathy of unknown significance
(MGUS) (76, 77).

Collectively, these studies demonstrate a role for inflamma-
tory cytokines and activated TLR signaling in the pathogenesis of
human bone marrow diseases. Both normal and malignant HSCs
are affected by these signals, though further studies are needed
to further define the precise roles of individual inflammatory sig-
nals on HSCs in both normal and disease states. Furthermore, the
finding of enhanced inflammatory signaling in these bone marrow
disorders suggests that targeted interruption of various inflamma-
tory pathways may provide therapeutic benefit. Indeed, immune
suppression is a cornerstone of therapy for idiopathic bone mar-
row failure, although the agents used are widely suppressive and
the precise mechanism of marrow failure is not well understood.

Anti-TNF-α agents are widely used to treat inflammatory disorders
such as rheumatoid arthritis (RA). While hematologic complica-
tions are relatively uncommon, there are reports of neutropenia
and other forms of bone marrow suppression in patients receiv-
ing this type of therapy (78). Notably, Papadaki and colleagues
reported an increase in bone marrow erythroid precursors in
patients receiving anti-TNF-α therapy for RA, and thus, as with
mice, the effects of this cytokine on human stem and progenitor
cells may be complex (79). In contrast to anti-inflammatory ther-
apies, pro-inflammatory cytokines are used therapeutically in the
treatment of various infections and immune disorders (e.g., IFN-α
in hepatitis and IFN-γ in chronic granulomatous disease), and yet
the known effects of these agents on the survival, cycling status,
differentiation, and repopulating ability of HSCs in mouse studies
suggest that the long-term effects of such therapies on the bone
marrow warrants further study. Of note, bone marrow suppression
is a common side effect of interferon therapy, often requiring dose-
reduction or the use of hematopoietic growth factors to maintain
acceptable neutrophil, red blood cell and platelet numbers (80).

SUMMARY AND FUTURE DIRECTIONS
Accumulating evidence support a role for HSCs as truly “front
line”players in the immune response. Pro-inflammatory cytokines
and pathogen- or damage-associated molecules influence HSCs
directly, shaping their proliferation status, lineage-bias, and repop-
ulating ability (Figure 3). The acute response of HSCs to these
signals is to stimulate the proliferation and production of myeloid
cells, likely as a means to increase short-term production of innate
immune cells. However, these inflammatory signals also lead to a
loss of HSC self-renewal and repopulating capacity, and chronic
inflammatory signaling in HSCs may contribute to bone marrow
failure and/or hematopoietic malignancies.

While the evidence discussed above clearly suggest an active
role for HSCs in the response to inflammatory signals, several
important questions remain. In particular, the role of inflamma-
tory cytokines and TLR signaling under baseline conditions is not
clear. The finding of increased HSC quiescence in Ifng−/− mice
and a repopulating advantage of HSCs deficient for IFN-γ, TNF-α,
or TLR signaling under normal conditions suggest that inflamma-
tory signals may play a role in regulating the size of the HSC
pool and the proliferation and repopulating potential of HSCs
at baseline. Further studies are needed to elucidate the source of
the endogenous ligands of these inflammatory signals and further
delineate their role in maintaining HSCs. Commensal flora, for
example, could conceivably provide a stimulus for TLR signaling.
Clarke et al. (81) demonstrated that bacterial peptidoglycan could
be found in the serum and bone marrow following gut coloniza-
tion of otherwise germ-free mice, supporting the idea that normal
host flora can provide systemic signals to immune cells. It is also
worth considering that irradiation, the most common condition-
ing regimen used in mice, induces local expression of DAMPs
and pro-inflammatory cytokines in the bone marrow (82). It is
presently unclear what role these inflammatory mediators play in
regulating engraftment, and whether the repopulating advantage
seen with HSCs from mice lacking inflammatory signaling path-
way components is influenced by the conditioning regimen of the
recipient mice.
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FIGURE 3 | HSC regulation by inflammatory mediators. Multiple
cytokines and pathogen-associated ligands regulate hematopoietic
stem cells (HSCs). Tumor necrosis factor (TNF), interferons (IFNs),
mobilizing cytokines such as granulocyte colony-stimulating factor
(G-CSF), and various pathogen- and danger-associated molecular
patterns (PAMPs/DAMPs) act either directly via their cognate receptors

on HSCs or indirectly via stromal cells in the stem cell niche to affect
HSCs. Short-term signaling induces HSC proliferation and myeloid
differentiation, supplying effector cells of the innate immune response.
Sustained exposure to these signals, however, reduces HSC long-term
repopulating activity and self-renewal and may contribute to bone
marrow failure and/or malignancy.

The effects of inflammatory signals on HSCs at baseline or
during times of stress or infection are likely dependent upon
the level and duration of signaling, with short-term exposures
facilitating the development of an effective immune response
and chronic signaling potentially contributing to HSC dysfunc-
tion. Further studies are necessary to determine these dose- and
duration-dependent effects, as well as the effects of combinations

of inflammatory mediators as would be present in most cases of
infection or tissue injury. A more clear understanding of the effects
of inflammatory signals on HSCs, both direct and indirect, as well
as an understanding of the signals that are dysregulated in var-
ious human bone marrow diseases, will potentially provide an
avenue for targeted therapies in these diseases by interfering with
(or augmenting) such signals.
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