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Recent early stage clinical trials evaluating the adoptive transfer of patient CD8™ T-cells re-
directed with antigen receptors recognizing tumors have shown very encouraging results.
These reports provide strong support for further development of the therapeutic con-
cept as a curative cancer treatment. In this respect combining the adoptive transfer of
tumor-specific T-cells with therapies that increase their anti-tumor capacity is viewed as a
promising strategy to improve treatment outcome. The ex vivo genetic engineering step
that underlies T-cell re-direction offers a unique angle to combine antigen receptor delivery
with the targeting of cell-intrinsic pathways that restrict T-cell effector functions. Recent
progress in genome editing technologies such as protein- and RNA-guided endonucleases
raise the possibility of disrupting gene expression in T-cells in order to enhance effec-
tor functions or to bypass tumor immune suppression. This approach would avoid the
systemic administration of compounds that disrupt immune homeostasis, potentially avoid-
ing autoimmune adverse effects, and could improve the efficacy of T-cell based adoptive

therapies.
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INTRODUCTION

Although there is still controversy over the role of the immune
system in protecting the organism against the development of
neoplasms in a natural setting (1) it is well accepted that artificial
immunity can efficiently contain and even eradicate established
tumors (2). Harnessing the anti-tumor potential of T-cells, and
particularly CD8™" T-cells, is a promising approach for curative
cancer treatment. Because of their relative ease of administration
and documented low toxicities therapeutic vaccines that trigger
T-cell responses are a very attractive approach. However, even
though they efficiently induce antigen-specific immunity, the clin-
ical benefit of cancer vaccines has so far been limited (3). In
contrast adoptive cell therapies (ACT), where T-cells are modified
ex vivo and re-infused in a patient’s circulation, are more difficult
to implement and require important infrastructural investment.
Yet a number of studies have now reported long-term remissions
or tumor clearance (4—6), warranting further development of the
therapeutic concept.

While conferring the immune system with the ability to recog-
nize tumors through vaccination or ACT is a pre-requisite for the
induction of efficient anti-tumor responses it is likely insufficient
to achieve long-term clinical benefit in a majority of patients. An
increasing body of evidence points to the necessity of combining
different therapeutic approaches in order to improve treatment
outcome (7, 8). For instance several small-molecule compounds
that target oncogenic pathways also enhance tumor destruction
by immune mechanisms, e.g., by sensitizing cancer cells to cytol-
ysis (9, 10). The coordinated delivery of these compounds with
immunotherapies is expected to improve clinical responses in an
additive or even synergistic manner. Similarly the combination of
immune-based therapies also holds great potential. Monoclonal

antibodies (mAbs) blocking immune checkpoint receptors have
recently emerged as promising therapeutics and many believe
that the recent marketing authorization of Ipilimumab, target-
ing CTLA-4, heralds great strides in this area. Immune checkpoint
receptor blocking agents are currently marketed or developed as
single therapies but are expected to achieve maximal efficacy in
combination with immune stimulatory approaches such as vacci-
nation or ACTs (11, 12). Although generic treatment combinations
will undoubtedly provide some degree of clinical benefit it is the
prospect of developing personalized therapies tailored to individ-
ual needs that holds the greatest potential to improve clinical out-
come in cancer therapy. The heterogenous nature of similar tumor
histologies as well as individual genetic variability are believed
to account for the varied response levels to generic treatments
and the wider availability of prognostic tools should help define
adequate treatment options that improve patient response. With
respect to cancer vaccines or ACTs information about the nature
of the immune checkpoint pathway(s) relevant to a tumor would
be particularly useful in order to counteract immune suppression.

T-cell-based ACTs rely on the infusion in a patient’s circula-
tion of ex vivo expanded tumor-infiltrating lymphocytes (TILs)
or peripheral blood T-cells transduced with viral vectors express-
ing a tumor-specific antigen receptor. This engineering step offers
the opportunity to transfer additional genetic material conferring
T-cells with enhanced anti-tumor activity. Targeted genome edit-
ing relying on viral gene transfer could readily be combined with
the delivery of antigen receptors at little additional cost in one
unique therapeutic entity. This approach would avoid the draw-
backs associated with combining treatment modalities of different
nature requiring distinct administration regimens, e.g., cellular
therapy and mAD injection. In addition cell-intrinsic disruption
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of immune checkpoints in tumor-specific T-cells is likely to display
a better safety profile than the systemic administration of block-
ing agents. Recently developed gene targeting technologies such
as zinc-finger proteins (ZFPs), transcription activator-like pro-
teins (TALs), and RNA-guided endonucleases (RGENs) could thus
be harnessed in order to silence the expression of T-cell-intrinsic
genes that restrain their anti-tumor potential.

MAIN TEXT

TECHNICAL ASPECTS AND CHALLENGES TO THE MODULATION OF
GENE EXPRESSION IN T-CELLS

RNA interference (RNAi) often is the technique of choice to silence
gene expression in somatic cells and lentivirus-mediated RNAi is a
good option for sustained and efficient silencing. Most lentivi-
ral RNAi systems express short-hairpin RNAs (shRNAs) from
RNApollIl promoters, which drive high levels of transcription
using precise initiation and termination sites. A recurrent problem
of lentivirus-mediated RNAi, which is particularly salient in T-cells
(13), is that the constant generation of shRNAs interferes with
endogenous miRNA biogenesis and can result in the deregulation
of gene expression (14, 15). This issue has prompted investigators
to seek alternative methods to silence gene expression (16).

Recently developed genome editing technologies based on
DNA-targeting proteins have the potential to revolutionize ACTs
by offering convenient tools to alter gene expression. TAL
effector-nucleases (TALENSs) and ZFP-nucleases (ZFNs) effect
complete gene knockout (Figure 1A) and are promising alter-
natives to RNAI for therapeutic applications (17-19). TALs are
bacterial DNA-binding proteins consisting of near identical 34
amino-acid modules that bind one nucleotide with high affin-
ity. The variable 12th and 13th amino-acids of TALs, called
repeat-variable di-nucleotide confers base specificity (NN — G/A,
NI— A, NG — T, NK — G, HD — C, and NS — A/T/C/G) and
TAL arrays that target a nucleotide sequence can be generated
by assembling individual modules (17, 20). ZFPs are eukary-
otic DNA-binding proteins. Cys2-His2 fingers, which are used
for genome editing, are the most common ZFP motif (21) and
are each specific for a nucleotide triplet. Artificial ZFP domains
that target specific DNA sequences, usually 9-18 nt long, can be
constructed by assembling individual fingers (18). ZFPs and TALs
have similar modular configurations but TALs can in theory target
any stretch of nucleotides beginning with a thymidine whereas
some structural incompatibilities between individual ZFP mod-
ules due to overlapping DNA-binding domains make the assembly
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FIGURE 1 | (A) Schematic diagram of the ZFN, TALEN, and CRISPR/Cas9
genome editing tools. (B) Inhibition of T-cell activation by immune checkpoint
receptors and downstream signaling proteins. Several co-inhibitory receptors
(PD-1, BTLA, and LAIR-1) inhibit T-cell signaling by recruiting the SHP-1 and/or
SHP-2 tyrosine phosphatases at proximity of the TCR signaling complex via
ITIMs and ITSMs. This results in the dephosphorylation of proximal kinases
downstream of TCR triggering. In addition PD-1 ligation was shown to induce
increased expression of the Cbl-b E3 ubiquitin ligase, which targets signaling
molecules for degradation. Activation of the CD200R leads to the recruitment
of DOK2 and RasGAP to its intra-cellular domain, resulting in the inhibition of
downstream MAP kinases. The adenosine receptor 2A and PGE2 receptors
EP2 and EP4 modulate T-cell activation through mobilization of the
cAMP-PKAI-CSK pathway. CSK phosphorylates the inhibitory C-terminal
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tyrosine residue of Src kinases and negatively regulates TCR signaling. A2AR,
adenosine A2a receptor; APC, antigen-presenting cell; BTLA-4, B- and
Tlymphocyte attenuator; Cbl-b, casitas B-cell lymphoma; CTL, cytotoxic
Tlymphocyte; DOK-1/2, docking protein 1/2; EP2/4, prostaglandin E receptor
2/4; Erk, extra-cellular signal regulated kinases; ITIM, immunoreceptor
tyrosine-based inhibition motif; ITSM, immunoreceptor tyrosine-based switch
motif; GPCR, G-protein coupled receptor; LAG-3, lymphocyte-activation gene
3; LAIR-1, leukocyte-associated immunoglobulin-like receptor 1; Lck,
lymphocyte-specific protein tyrosine kinase; MHC1, major histocompatibility
complex class 1; PD-1, programed death receptor 1; PD1-L1, programed death
receptor 1-ligand 1; SHP-1, Src homology 2 domain containing protein tyrosine
phosphatase; TCR, T-cell receptor; TIGIT, T-cell immunoreceptor with Ig and
ITIM domains; TIM-3, T-cell immunoglobulin domain and mucin domain 3.
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of oligomeric ZFPs error-prone and narrow down the diversity of
possible target DNA sequences. A successful and popular applica-
tion of these technologies is the fusion of customized ZFPs or TALs
to the catalytic domain of the restriction nuclease Fokl (ZFNs
and TALENSs). Fokl nucleases catalyze DNA double strand breaks
(DSBs) when they dimerize (22). TALENs and ZFNs are there-
fore designed in pairs that target adjacent sequences on opposite
DNA strands, thereby promoting Fok1 dimerization, separated by
aspacer region where DNA cleavage occurs. Non-homologous end
joining (NHE]) repair of DSBs results in insertions or deletions at
the DNA cleavage site (17, 23) and bi-allelic frameshift mutations
that result in complete knockout occur at low frequencies (18,
24). The overall efficiency of the approach is sufficient to gener-
ate knockout cells following appropriate selection procedures. Of
note TALEN design is more flexible as they can accommodate
spacers of different lengths (25) whereas ZFNs strictly require
5-7nt (26). Taking this into account, as well as structural con-
straints mentioned above, it is estimated that the frequency of
target sequences is 1 in 500bp for ZFNs and 1 in 35bp for
TALENS (20).

RNA-guided endonucleases provide a distinct and attractive
alternative to genome editing compared with protein-guided
nucleases. The functions of clustered regularly interspaced short
palindromic repeats (CRISPR) and CRISPR-associated (Cas) pro-
teins as a system providing adaptive immunity to bacteria against
bacteriophages (27, 28) was recently harnessed for genome engi-
neering (29, 30). The Cas9 nuclease binds to a short complemen-
tary RNA (crRNA) providing DNA-targeting specificity and to a
trans-activating crRNA (tracRNA), required for crRNA process-
ing, expressed individually or combined as a chimeric guide RNA
(gRNA) (Figure 1A). CRISPR-Cas9 systems displayed a cleavage
efficiency comparable (31) or superior (32) to TALENs in human
cells. The clear advantage of RGEN is that it can be easily adapted
to target different genomic sequences by customizing the syn-
thetic crRNA/gRNA delivered in combination with Cas9 (33). In
comparison ZFNs and TALENSs require extensive engineering and
validation steps.

The delivery of genome editing agents to T-cells is a crucial
aspect of their successful application to ACTs. Because nuclease-
based genome editing relies on generating transmissible muta-
tions, protein- or RNA-guided nucleases only need to be tran-
siently expressed. In fact transient expression probably minimizes
off-target DNA cleavage (34). Provasi et al. have used integration-
deficient lentiviruses as well as adenoviruses in order to modify the
genome of T-cells with ZFNs (35). Of note it was recently shown
that, due to their very repetitive nature, TAL arrays were incompat-
ible with efficient reverse transcription required for the delivery of
genetic material using lentiviruses (36), thereby limiting the range
of delivery methods for TALENS.

APPLICATION OF THERAPEUTIC GENOME EDITING TO T-CELLS

Crucially therapies based on T-cell genome editing have already
entered clinical development. A phase II clinical trial based on
preventing the expression of the CCR5 gene, acting as a co-receptor
for HIV in CD4™" T-cells, using ZFNs (37) was recently initiated
for the treatment of HIV/AIDS (NCT01252641). The safety results
will be of huge importance for ZFN-based therapies and for

genome editing in T-cells in general. Moreover a recent study pro-
vided proof of concept for the combination of TCR gene delivery
with genome editing by using ZFNs specific for the endogenous
constant TCR gene segments in order to prevent mispairing with
ectopic TCR chains (35). The success of this approach provides a
good rationale for wider applications of ZFN genome editing to
T-cells.

Enhancing the anti-tumor potential of CD8* T-cells through
genome editing can be done in many ways. Here we will focus
on disrupting the expression of genes that inhibit T-cell func-
tions as a result of the suppressive activity of the tumor micro-
environment. T-cell inhibitory pathways targeted by genome edit-
ing in the context cancer ACTs should meet several criteria. First,
their mechanism of action should be strictly cell-intrinsic. Sec-
ond, they should be relevant to effector T-cells as opposed to
naive T-cells. For instance CTLA-4 does not meet these two crite-
ria since it works at least partly by reducing the availability of
co-stimulatory molecules on the surface of antigen-presenting
cells during the priming of naive T-cells (38). Finally, since only
anti-tumor T-cells are modified, one of the advantages of this
approach is that it allows targeting ubiquitous suppressive path-
ways whose systemic blockade or inhibition might result in serious
adverse effects. Because it is clinically validated the most obvious
target is probably PDCD1: the gene encoding the co-inhibitory
receptor PD-1. PD-1 is expressed on activated T-cells and its
engagement by its two known ligands PD-L1 and PD-L2 inhibits
proximal signaling events triggered by TCR stimulation through
recruitment of the phosphatase SHP-2 (39) and increased expres-
sion of the E3 ubiquitin ligase Cbl-b (40), which impair key
components of the TCR signaling cascade through dephospho-
rylation and proteasomal degradation (Figure 1B). High cellular
expression levels of PD-1 are characteristic of exhausted CD8*
T-cells in chronic viral infections as well as TILs and corre-
late with impaired effector functions (41). Histological analyses
have revealed that numerous tumor types express one or both
PD-1 ligands (42, 43), prompting the targeting of this pathway
in order to augment anti-tumor immunity. PD-1 blockade has
shown promising objective response rates in a range of cancer
indications and it is anticipated that PD-1 blocking agents will
be approved for marketing authorization as mono-therapies. In
addition these therapeutics are evaluated in combination with can-
cer vaccines, small-molecule signaling inhibitors, tumor-targeting
mAbs, and cytokine therapy (http://clinicaltrials.gov/ct2/results?
term=pd1&Search=Search). The combination of PD-1 blockade
with these treatments, as well as with cancer ACTs, is expected
to further enhance anti-tumor activity (11). Several other co-
inhibitory receptors expressed by T-cells qualify as targets for
gene editing coupled with antigen receptor delivery (Table 1;
Figure 1B). In vivo and in vitro pre-clinical data strongly support
the development of reagents targeting TIM-3 and LAG-3. Dual
targeting of PD-1 and TIM-3 or LAG-3 with mAbs synergistically
enhanced anti-tumor responses (44) and pre-clinical evaluations
of a soluble Fc-LAG3 complex, which has now entered clinical
development, were promising (45). Other targets are currently
under similar evaluation procedures and might expand the list
of druggable co-inhibitory receptors for cancer immunotherapy
(Table 1; Figure 1B).
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Table 1 | Potential immune checkpoint receptor targets for genome editing in the context of cancer adoptive cellular therapies.

Name (gene) Function Ligand Intra-cellular Recognition References
signaling/second  motif
messengers
Co-inhibitory PD-1 (CD279) Inhibition of T-cell activation and PD-L1 (B7-H1) SHP-1 ITIM Keir et al. (56), Parry et
receptors promotion of tolerance PD-L2 (B7-DC) SHP-2 ITSM al. (57)
LAG-3 (CD223) Down regulation of T-cell cytokine  MHCII - - Pardoll (12), Turnis et al.
secretion and proliferation (58)
BTLA (CD272) Suppression of T-cell response HVEM SHP-2 ITIM Murphy et al. (59),
Watanabe et al. (60)
OX2R (CD200R)  Inhibits T-cell function CD200 DOK2 NPxY Kretz-Rommel et al.
(61), Moreaux et al.
(62), Pallasch et al. (63)
TIM-3 Down regulation of T-cell cytokine  Galectin 9 - - Pardoll (12), Zhu et al.
secretion and proliferation Phosphatidylserine (64)
TIGIT Inhibition of T-cell activation VR, PVRL2, and - ITIM Joller et al. (65)
PVRL3
LAIR-1 Inhibits cytotoxic activity Collagen SHP-1 ITIM Lebbink et al. (66),
SHP-2 Meyaard (67)
Receptors for  PGE2 receptors  Inhibition of T-cell activity PGE2 Adenylyl cyclase - Mahic et al. (68),
soluble EP2/4 cAMP Oberprieler et al. (53)
regulatory Adenosine Blocks T-cell activity Adenosine Adenylyl cyclase - Pardoll (12), Ohta et al.
mediators receptor 2A cAMP (50), Raskovalova et al.
(A2AR) (69)

Non-extensive list of immune checkpoint receptors known to impair anti-tumor T-cell immunity in a cell-intrinsic manner. The relevant intra-cellular signaling and second

messenger pathways, when known, are indicated.

The presence of cognate ligands within the tumor micro-
environment is a crucial aspect for targeting co-inhibitory recep-
tors and other immune checkpoint receptors. In the case of PD-1
retrospective analysis of patient biopsies in the phase Ib clinical
trial assessing the blocking mAb BMS-936558 showed that the
objective response rate in patients whose tumors expressed PD-L1
reached 36% compared with 18% in the entire cohort and 0%
among patients with PD-L1-negative tumors (46). These striking
results highlight the importance of prognosis and patient strat-
ification for the design of appropriate cancer immunotherapies
based on PD-1 inhibition. Such a strong correlation is still to be
established for other immune checkpoint receptors but it is tempt-
ing to speculate that similar principles are applicable. However,
even though their relevance in tumor immunity is established,
it is not entirely clear what the actual ligands for several co-
inhibitory receptors are in the context of anti-tumor immunity.
More fundamental and clinical investigations are required in order
to unambiguously identify relevant inhibitory ligands and assess
their presence in the tumor environment.

Several soluble regulatory mediators also act as immune check-
points in anti-tumor immunity. For instance high levels of extra-
cellular adenosine are found in the vicinity of many solid tumors
because of the hypoxic environment, a well-known environmen-
tal factor promoting adenosine release. Suppressive adenosine
is also generated through direct dephosphorylation of extra-
cellular adenosine nucleotides by the cell-surface nucleotidases
CD39 and CD73 expressed by regulatory T-cells (Tregs) and some
tumors, e.g., ovarian carcinomas (47, 48). The adenosine receptor

2A (A2AR), belonging to the G-protein coupled receptor family
(GPCRs), is expressed on T-cells and has been identified as a target
for immunotherapy for over a decade (12, 49-51). The A2AR
inhibits T-cell activation through the cAMP-PKAI-CSK pathway
(Figure 1B) and pre-clinical in vivo models have shown that
A2AR knock-down or antagonism in adoptively transferred T-
cells dramatically increased anti-tumor immunity (50). Inhibiting
adenosine-mediated immune suppression is therefore believed to
be an efficient strategy for cancer immunotherapies. Yet because
adenosine receptors are ubiquitously expressed and involved in
many physiological processes, especially in neurotransmission,
classical antagonistic approaches are likely to result in a number of
side effects. Such systemic adverse effects could be avoided in the
context of adoptive T-cell therapies through T-cell-intrinsic gene
editing or the in vitro selection of desensitized and irresponsive T-
cells (52). Similarly, prostaglandin E2 (PGE2) directly suppresses
T-cell activation through the cAMP second messenger pathway
in effector/memory CD8™ T-cells (53). Tumor-associated Tregs as
well as colorectal cancer cells express high levels of immunosup-
pressive PGE2 (54). Interfering with EP2/EP4 receptors expression
in T-cells may therefore enhance their anti-tumor potential.

A broader, possibly riskier, alternative to targeting individ-
ual immune checkpoint receptors would be interfering with
the expression of downstream molecules conveying intra-cellular
inhibitory signals. For instance several co-inhibitory receptors use
the tyrosine phosphatases SHP-1 and/or SHP-2 to inhibit T-cell
activation (Figure 1B). Inhibition of SHP-1/2 expression may
therefore confer resistance to several checkpoint pathways used by
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tumors. Stromnes and colleagues reported that conditional knock-
out of SHP-1 in mature murine CD8" T-cells improved effector
cell functions and tumor clearance in an adoptive transfer setting
similar to cancer ACTs without resulting in autoimmune toxicity,
thereby providing a good rationale for such an approach (55).

CONCLUDING REMARKS

T-cell based ACTs that rely on the re-infusion of patient T-cells
expressing an artificial antigen receptor is an epitome of personal-
ized medicine. These therapies require the identification of specific
tumor antigens and/or patient HLA-type and would undoubtedly
benefit from further prognostic analysis and subsequent treatment
customization. Based on recent successes in cancer immunother-
apy, immune checkpoint receptors that suppress T-cells represent
a particularly attractive class of targets for such an approach. We
believe that enhancing the anti-tumor potential of re-directed T-
cells by targeting inhibitory pathways through genome editing
can further improve the efficacy of cancer ACTs. Moreover cell-
intrinsic inhibition of these pathways may display an advantageous
safety profile compared with immune checkpoint blockade relying
on the systemic administration of mAbs, recombinant proteins, or
small molecules.
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