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Overproduction of reactive oxygen species, i.e., oxidative stress, is associated with the
activation of redox signaling pathways linking to inflammatory insults and cardiovascular
diseases by impairing endothelial function and consequently blood flow dysregulation due
to microvascular dysfunction.This review focuses on the regulation of vasomotor function
in the coronary microcirculation by endothelial nitric oxide (NO) during oxidative stress and
inflammation related to the activation of L-arginine consuming enzyme arginase. Superox-
ide produced in the vascular wall compromises vasomotor function by not only scavenging
endothelium-derived NO but also inhibiting prostacyclin synthesis due to formation of per-
oxynitrite.The upregulation of arginase contributes to the deficiency of endothelial NO and
microvascular dysfunction in various vascular diseases by initiating or following oxidative
stress and inflammation. Hydrogen peroxide, a diffusible and stable oxidizing agent, exerts
vasodilator function and plays important roles in the physiological regulation of coronary
blood flow. In occlusive coronary ischemia, the release of hydrogen peroxide from the
microvasculature helps to restore vasomotor function of coronary collateral microvessels
with exercise training. However, excessive production and prolonged exposure of microves-
sels to hydrogen peroxide impairs NO-mediated endothelial function by reducing L-arginine
availability through hydroxyl radical-dependent upregulation of arginase.The redox signaling
can be a double-edged sword in the microcirculation, which helps tissue survival in one way
by improving vasomotor regulation and elicits oxidative stress and tissue injury in the other
way by causing vascular dysfunction. The impact of vascular arginase on the development
of vasomotor dysfunction associated with angiotensin II receptor activation, hypertension,
ischemia-reperfusion, hypercholesterolemia, and inflammatory insults is discussed.
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A normal function of the vascular endothelium involving
responses to physical (1), chemical (2, 3), and electrical (4, 5)
stimuli is essential to maintain microvascular homeostasis and reg-
ulate local blood flow by changing vasomotor activity via release of
endothelium-derived vasodilators, e.g., nitric oxide (NO), prosta-
cyclin (PGI2), C-type natriuretic peptide, and hyperpolarizing
factors (EDHF). The endothelium also releases vasoconstric-
tors such as endothelin-1, prostaglandin H/F, thromboxane, and
angiotensin. Endothelial dysfunction is one of the earliest markers
of vascular abnormalities observed in many cardiovascular dis-
eases associated with oxidative stress due to excessive production
of reactive oxygen species (ROS). Redox regulation of proteins
by moderate levels of ROS is indispensable for signaling pathways
underlying the regulation of subcellular and cellular activity as well
as cardiovascular function (6–8). Notably, superoxide and hydro-
gen peroxide (H2O2) are the most common and important ROS
involved in the physiological and pathophysiological events (6–8).

Superoxide is produced by several enzyme systems in the cell
and it is converted to H2O2 by superoxide dismutase. H2O2 itself
is a potent oxidizing agent that can be converted to hydroxyl rad-
ical in the presence of ferric compounds. H2O2 can be degraded
by catalase to form H2O and an oxygen molecule. Compared with

superoxide, H2O2 is stable, lacks charge, has longer half-life, is cell
permeable, and can diffuse across longer distances. Therefore, its
physical properties are suitable for second-messenger signaling (7,
8). Because a proper delivery of oxygen and nutrients to the tissue
is essential for the normal function of an organ, in this review
we will discuss the roles of superoxide and H2O2 in the physio-
logical and pathophysiological regulation of vasomotor activity of
resistance arterioles where blood flow is primarily controlled, with
special focus on the coronary microcirculation. The deficiency of
endothelium-derived vasodilators such as NO and PGI2 in relation
to oxidative stress and the l-arginine consuming enzyme arginase
is discussed.

L-ARGININE, NITRIC OXIDE SYNTHASE, AND ARGINASE
l-Arginine is the precursor for NO synthesis from three different
isoforms of NO synthase (NOS). The endothelial NOS (eNOS) is
the main isoform contributing directly to the regulation of vaso-
motor activity. In healthy human adults, it was estimated that
1.2% of arginine flux in the plasma contributes to the formation
of NO and about 54% of whole body NO formation is derived
from plasma arginine (9), although the fraction of l-arginine flux
for NO production in the vasculature is unclear. Experimental
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data demonstrate that acute exogenous arginine provision can
increase NO production (10, 11) and NO-mediated vasodilation
(11, 12) despite the fact that the intracellular arginine level far
exceeds the K m of eNOS (13). It appears that the extracellular l-
arginine exerts a significant impact on the synthesis of NO from
the membrane-bound eNOS.

Besides NOS, arginase is another major l-arginine consuming
enzyme, which converts l-arginine to ornithine and urea. Arginase
is expressed most abundantly in the liver for ammonia detoxifica-
tion via the urea cycle (14). Studies in the cardiovascular system
have shown that endothelia (12, 15–18), vascular smooth mus-
cle cells (12, 17, 19), macrophages (20, 21), and red blood cells
(22), which do not possess the complete urea cycle enzymes, also
express arginase. In humans, about 15% of plasma arginine flux
is associated with extrahepatic arginase activity (9). There are two
isoforms of arginase. Type 1 arginase (Arg-I) is cytosolic and pre-
dominately expressed in the liver. In extrahepatic tissues and cells,
a low level of Arg-I expression has also been detected. Type 2, or
mitochondrial, arginase (Arg-II) is expressed with low levels in
brain, kidney, intestine, red blood cells, and immune cells. Arg-I
and -II are derived from distinct genes located on different chro-
mosomes (14) and can be induced or regulated independently
by a wide array of agents/factors (23, 24). Although these two
arginase isoforms are expressed in a variety of cells, their distribu-
tion varies with tissue/organ and cell types (25). In the vasculature,
both isoforms of arginase have been identified and their expres-
sion is highly regulated for physiological and pathophysiological
processes (17) but the relative level of expression may be species
dependent (19, 26–28).

Synthesis and release of the vasodilator NO from eNOS, in
response to various physiological or pharmacological stimula-
tions, can be related to the substrate bioavailability (10, 11)
and thus influence vasomotor activity (11, 12). In this regard,
change of protein expression and activity of arginase is expected
to have an impact on NO synthesis by affecting the l-arginine
level. From the biochemical standpoint, the K m of arginase for l-
arginine in mammals, including humans, is reported to be around
0.5–29 mM (14). Although the K m of NOS (1–20 µM) (29) is
much lower than that of arginase, taking into consideration their
V max enzyme activities (1400 µmol·min−1

·mg−1 for arginase vs.
900 µmol·min−1

·mg−1 for NOS), the arginase is capable of com-
peting with NOS for their substrate arginine (24). Based on the
kinetic analysis of these two enzymes, the relative activity of NOS
to arginase, in terms of consuming arginine, is diminished with
either increasing arginine concentration or decreasing NOS to
arginase molar ratio (24). Therefore, arginase activity can exceed
NOS activity at higher levels of arginine or at higher arginase to
NOS molar concentrations. Interestingly, the competition between
NOS and arginase for arginine is more pronounced at lower levels
of arginine (24). In terms of functional interpretation, the com-
petitiveness (or importance) of arginase against NOS becomes
apparent under conditions with upregulated arginase protein and
limited supply of l-arginine.

Interestingly, intravenous administration of arginase causes
constriction of cerebral arterioles and enhances platelet aggrega-
tion in mice (30), implicating that exogenous arginase may influ-
ence endothelial function through attenuation of NO production.

However, the direct role of arginase in vasomotor regulation is
unclear since the confounding effects from the changes in systemic
hemodynamics and neuro-humoral factors cannot be excluded in
this in vivo preparation. Using an isolated vessel approach, the
role of endogenous arginase in vasomotor regulation of NO-
mediated vasodilation was demonstrated for the first time in
pressurized coronary arterioles (12). It was found that coronary
arterioles express Arg-I in both endothelial and smooth muscle
cells, and the NO production, as well as NO-mediated vasodila-
tion, is enhanced by inhibiting arginase activity (12). It appears
that endogenous arginase plays a counteracting role in the regula-
tion of NO production and thus its associated vasomotor activity.
The l-arginine-dependent NO-mediated vasodilation was also
observed in various microvascular beds (11, 30–32) including
human coronary arterioles (33), suggesting that l-arginine can
be a limiting factor for the stimulated NO synthesis in the micro-
circulation. On the other hand, recent studies on cardiovascular
diseases have implicated that upregulation of a specific arginase
isoform in the vasculature may contribute to the development of
vascular disease linked to l-arginine deficiency and reduced NO
production (34,35), especially under conditions with elevated level
of angiotensin II (Ang II), hypertension, and inflammation, all of
which are closely associated with oxidative stress (36).

VASOMOTOR REGULATION BY ANGIOTENSIN II
In animal models of hypertension and myocardial hypertrophy,
the excessive ROS release associated with renin-angiotensin sys-
tem activation has been well documented (37, 38). However, the
vasomotor action of Ang II in the intact heart is controversial. For
example, a decrease (39, 40), an increase (41, 42), or a transient
decrease followed by an increase (43, 44) in coronary blood flow by
Ang II was reported. Although this inconsistency may be a result
of using different animal models or experimental approaches, the
complexity of flow regulation in the intact heart may be largely
responsible for these diverse findings. Moreover, coronary vaso-
motor responses are influenced by the neural activity and by the
changes in local hemodynamics and cardiac metabolism (44–46).
The precise action of Ang II in the coronary microvasculature
is difficult to assess in the intact heart because this peptide has
direct and indirect actions on these biological factors (43, 44). It is
also unclear whether the ROS generated by Ang II can modulate
coronary microvascular reactivity in view that enhanced superox-
ide production by Ang II in endothelial cells is well recognized
(47, 48).

Using isolated vessel approaches to eliminate the confound-
ing influences from systemic and local effects inherited in in vivo
preparations, it was found that Ang II, via activation of its type 1
(AT1) receptors, evokes a moderate vasoconstriction of porcine
coronary arterioles (50–80 µm in diameter) at low concentra-
tions (∼1 nM) but a marked vasodilation at higher concentrations
(>10 nM) via AT2 receptor activation (49). This vasodilator effect
is likely mediated by the released endothelial NO via bradykinin
receptor signaling (50). Interestingly, in the human coronary cir-
culation AT2 receptors were found expressed in the microvascu-
lature only (50). Depending upon the concentration used, Ang
II appears to exert different vasomotor activities in the coronary
microvessels, and thus may explain the inconsistent observations
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on coronary flow changes in vivo. Moreover, pre-treating the
isolated coronary arterioles with a sub-vasomotor concentration
of Ang II (0.1 nM) for 60 min caused an elevation of superox-
ide production in the vessel wall and inhibited NO production
and endothelium-dependent, NO-mediated dilation in response
to adenosine, a potent metabolic vasodilator in the heart. This
inhibitory effect was prevented by AT1 receptor blocker losartan,
superoxide scavenger TEMPOL, or NAD(P)H oxidase inhibitor
apocynin (49). These microvascular findings indicate that Ang II,
at the level without causing vasomotor activity, exerts an adverse
effect on NO-mediated vasodilator function via superoxide gener-
ated by AT1 receptor-dependent activation of NAD(P)H oxidase.
Because acute myocardial ischemia (<60 min) upregulates the
cardiac renin-angiotensin system and impairs coronary flow regu-
lation (51, 52), it is speculated that the small elevation of local Ang
II at sub-vasomotor levels in the heart during disease states may
cause oxidative stress at the local microvascular domain and elicit
focal vasoconstriction and myocardial ischemia secondary to the
reduced NO bioavailability. In addition to the local vascular spasm,
the deficiency of basal NO release from the endothelium, which
is subjected to continuous shear stress stimulation, is expected to
aggravate ischemic insult by promoting platelet aggregation and
thrombosis formation (53, 54) in the microvasculature.

The blunted endothelium-dependent vasorelaxation in aging
animals was recently reported to be associated with excessive vas-
cular formation of ROS and upregulation of NAD(P)H oxidase
subunits (e.g., Nox-1 and p22-phox), Arg-I, and AT1 and AT2
receptor expression in a manner sensitive to NAD(P)H oxidase
inhibition and antioxidants (55). These findings suggest the ini-
tiation of vascular dysfunction by oxidative stress linking to Ang
II receptors and arginase. However, the role and signaling path-
way for Ang II receptor activation leading to NO deficiency in
relation to arginase activity and vasomotor regulation is incom-
pletely understood. In cultured bovine aortic endothelial cells,
Ang II (0.1 µM, 24 h incubation) was recently shown to increase
arginase activity and Arg-I expression through Gα12/13 protein-
coupled AT1 receptor activation (56). The upregulated Arg-I
appears to reduce l-arginine bioavailability and hamper NO pro-
duction. The adverse effect of Arg-I is mediated by the activation of
p38 mitogen-activated protein kinase (MAPK) pathways through
RhoA/Rho kinase signaling (56). Although the threshold concen-
tration of Ang II necessary for evoking NO deficiency and endothe-
lial dysfunction in the above cell-culture study is unclear, chronic
administration of Ang II (42 µg/kg/h, 2 weeks) in the mice was
recently shown to impair endothelium-dependent NO-mediated
relaxation of a tissue strip from corpus cavernosum (57). In agree-
ment with the findings in cell culture (56), the Ang II-evoked
endothelial dysfunction is mediated by the p38 MAPK-dependent
upregulation of arginase (57). However, the responsible isozyme
is Arg-II rather than Arg-I. Interestingly, inhibition of p38 MAPK
not only prevents the effects of Ang II on endothelial function
and arginase activity/expression, it also attenuates the increased
systemic blood pressure by Ang II.

VASOMOTOR REGULATION IN HYPERTENSION
Hypertension is a major risk factor for coronary artery disease
by impairing endothelium-dependent NO-mediated vasodilation

(58) in the form of diminished bioavailability of NO, increased
Ang II-dependent production of superoxide (59), and decreased
endothelial levels of eNOS co-factor tetrahydrobiopterin (BH4)
(60) or substrate l-arginine (61). In some studies, administration
of l-arginine has been shown to restore endothelium-dependent
vasodilator function in patients with essential hypertension (61)
and to normalize coronary hemodynamics (62) and systemic
blood pressure with enhanced NO production in hypertensive rats
(63, 64). In deoxycorticosterone acetate (DOCA)-salt hyperten-
sive rats, expression and activity of Arg-I protein in the aorta are
elevated and correlate positively with blood pressure, suggesting
the participation of this enzyme in pathophysiology of arterial
hypertension (65). The upregulation of Arg-I in the coronary
arteriolar wall was reported to contribute in part to the impair-
ment of endothelial NO production and vasodilation by reducing
l-arginine availability in hypertensive pigs (66). In the animal
model of genetic (67, 68) or metabolic (69) form of hyperten-
sion, chronic inhibition of arginase was recently shown to improve
endothelium-dependent vascular function (67–69), reduce cardiac
fibrosis (68), prevent vascular remodeling and Arg-I overexpres-
sion (68), inhibit insulin-resistance (69), reduce oxidative stress
(69), and alleviate hypertension (67–69). Although the evidence
for the link of oxidative stress and inflammation to the patho-
genesis of hypertension, and vice versa, is well supported in both
experimental and clinical studies (70), it is unclear whether the
direct elevation of mechanical stress on the vascular wall or the
associated oxidative stress and inflammation contribute to the
upregulation of vascular arginase during hypertension. More-
over, oxidative stress can probably promote inflammation and,
conversely, inflammation per se may induce tissue damage and
promote oxidative stress. Their individual contributions to the
vasomotor dysfunction related to NO deficiency are difficult to
define in vivo due to the complex and intertwined biological events
and multifactorial processes involved in the development of vas-
cular pathophysiology. However, recent studies using cell culture
(71–75) and isolated vessel (49, 73, 76–80) approaches suggest that
pro-inflammatory factors such as C-reactive protein (CRP), tumor
necrosis factor-α (TNF-α), and oxidized low-density lipoprotein
(Ox-LDL) are capable of causing endothelial NO deficiency and
vasomotor dysfunction through elevated arginase and oxidative
stress.

VASOMOTOR REGULATION BY PRO-INFLAMMATORY
FACTORS
The dysfunction of coronary microvascular endothelial cells is
closely associated with the development of various inflamma-
tory diseases in the heart (81, 82). The inflammatory marker
CRP, which has recently been established as a cardiovascu-
lar risk factor, also exhibits adverse effects on endothelium-
dependent NO-mediated vasodilator function and NO produc-
tion in isolated coronary (78) and retinal (83) arterioles by
enhancing NAD(P)H oxidase-mediated superoxide production
via p38 MAPK activation. Since activation of the endothelial p38
MAPK pathway by oxidative stress also has been documented
(84, 85), the positive feedback between p38 MAPK and super-
oxide production is expected to exacerbate the oxidative insult
on the vascular wall. In rats, treatment with human CRP at
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concentrations achievable in patients with cardiovascular disease
impairs endothelium-dependent vasomotor function linked with
uncoupling of eNOS due to reduction in dimerization of the
enzyme, as well as inhibition of GTP cyclohydrolase I (GTPCH1),
the rate-limiting enzyme in BH4 biosynthesis, and decrease in BH4

levels (86). Human CRP also causes the activation of NAD(P)H
oxidase resulting in eNOS uncoupling directly or via inhibition of
GTPCH1 or oxidation of BH4 (86). These studies provide the first
evidence for the adverse action of human CRP in vivo manifested
by impairing eNOS-dependent vasodilation and uncoupling of
eNOS. Thus, given the importance of CRP-induced pro-oxidative
effects and resultant eNOS inhibition, CRP appears to be a key
molecule to accentuate endothelial dysfunction and contribute to
blood flow dysregulation.

The CRP also displays an adverse effect on arachidonic acid-
prostanoid pathways in the endothelium (79). The formation
of peroxynitrite from NO (basal release) and superoxide (CRP-
stimulated release) in the endothelium appears to compro-
mise PGI2 production, and thus PGI2-mediated vasodilation, by
inhibiting PGI2 synthase activity through tyrosine nitration (79).
Peroxynitrite also contributes to eNOS uncoupling by oxidizing
the co-factor BH4 (87) and thus reduces NO production. Although
there is no evidence at the present time to suggest a direct impact
of CRP on vascular arginase expression or activity, the elevation
of serum Arg-I has been shown to correlate positively with CRP in
asthmatic patients (88). Interestingly, the imbalance in l-arginine
metabolism via arginase and NOS has been considered as a uni-
fying element of asthma pathophysiology (89). The upregulation
of arginase in the vasculature is expected to compromise endothe-
lial NO with enhanced oxidative stress promoting peroxynitrite
formation and hypertension during inflammatory insults in a
manner similar to the development of allergic asthma in chronic
inflammatory airway diseases (90) with primary and secondary
forms of pulmonary hypertension (91–93). The recent report on
the close relation between asthma and metabolic syndrome (94),
a major risk of cardiovascular disease with dysregulation of l-
arginine metabolism (69), supports the emerging role of arginase
in the general regulation of NO production and oxidative stress in
inflammatory diseases.

Tumor necrosis factor-α is a pro-inflammatory cytokine and
an important mediator of cardiovascular complications such as
acute myocardial infarction, ischemia-reperfusion injury, ather-
osclerosis, chronic heart failure, and coronary arterial disease
in association with diminished coronary blood flow. Treating
the isolated coronary arterioles with a pathological concentra-
tion of TNF-α (1 ng/ml, 90 min) caused a significant reduction
of NO release, enhanced superoxide production, and c-Jun N-
terminal kinase (JNK) phosphorylation in arteriolar endothelial
cells and impaired endothelium-dependent dilation to adeno-
sine (77). TNF-α participates in the pathogenesis and progression
of myocardial injury induced by ischemia-reperfusion (95). In
the model of ischemia-reperfusion injury of porcine coronary
arterioles, the upregulation of Arg-I, via de novo protein synthe-
sis pathway, causes endothelial dysfunction and NO deficiency
(96). Using genetic tools to manipulate TNF-α expression in
the mouse, it was found that myocardial ischemia-reperfusion
evokes superoxide-dependent endothelial dysfunction and NO

deficiency via upregulation of Arg-I, in a manner correlating
with TNF-α expression (97). In contrast with the insults elicited
by Ang II and CRP, the TNF-α induced oxidative stress and
endothelial dysfunction are associated with the activation of
ceramide-induced activation of JNK and subsequent production
of superoxide via xanthine oxidase (77, 98) rather than the signal-
ing via p38 MAPK-activated NAD(P)H oxidase (49, 78). Recent
clinical evidence has shown that arginase blockade improves
endothelium-dependent NO-mediated vasodilation in patients
with coronary artery disease (99) and increases NO-dependent
microvascular perfusion in patients with heart failure (100). Inter-
estingly, the systemic level of Arg-I correlates with the severity
of heart failure (100) and Arg-I polymorphisms are associated
with myocardial infarction and vascular remodeling (101). The
elevated level of Arg-I appears to be a major risk and/or patho-
genic factor in developing coronary ischemic disease and vascular
pathophysiology.

Experimental studies have shown that the expression of
arginase is elevated in a variety of vascular and immune cells
with inflammation and oxidative stress (20, 21, 102–104), the
conditions that are known to be associated with atherogene-
sis. Interestingly, l-arginine deficiency coupled to impaired NO-
mediated vascular function has been reported in animals (105–
108) and humans (109–112) with hypercholesterolemia or ather-
osclerosis, possibly due to upregulation of arginase in the disease
state (34). Furthermore, transgenic mice with overexpression of
endothelial Arg-II exhibit increased aortic atherosclerotic lesions
(113). In apolipoprotein E deficient mice, the arginase activ-
ity of atherosclerotic aorta is significantly elevated (28, 108). In
the same mouse model, inhibition of arginase activity or dele-
tion of Arg-II gene alleviates oxidative stress in the endothelium,
prevents NO deficiency, and restores endothelial function, sug-
gesting the critical role of Arg-II in triggering ROS-dependent
endothelial dysfunction in hypercholesterolemia (114). Since Arg-
II blockade reduces superoxide formation via a pathway sensi-
tive to NOS inhibition (114), the uncoupling of eNOS, due to
l-arginine deficiency, appears to be involved in the arginase-
dependent oxidative stress. It was found that Arg-II activity
positively correlates with RhoA protein level in atherosclerotic
aortas and that manipulation of RhoA/Rho kinase activity and
expression directly affects enzymatic activity of Arg-II (28). In
this regard, RhoA/Rho kinase activation is likely responsible for
the increased Arg-II activity leading to vascular dysfunction and
atheroma formation. Rho kinase activation also contributes to
Arg-I-mediated coronary vascular dysfunction in diabetic rats
and to NO deficiency induced by hyperglycemia in bovine aor-
tic endothelial cells (115). In the rabbit model of hypercholes-
terolemia, the expression of both arginase isozymes is elevated in
atherosclerotic aortas (27). However, the regulation and role of
specific arginase isoforms in disease development remains to be
determined.

In the coronary microcirculation, the endothelium-dependent
NO-mediated dilation, compared to that mediated by the EDHF
and the endothelial prostanoids, is more susceptible to the insult
of Ox-LDL (116) than that of native LDL (3). The enhanced
superoxide production and reduced l-arginine bioavailability are
responsible for the observed endothelial dysfunction of coronary
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arterioles (3). In cultured human aortic endothelial cells, Ox-LDL
activates lectin-like Ox-LDL receptor-1 (LOX-1) and subsequently
increases Arg-II activity/expression and reciprocally inhibits NO
production via RhoA/Rho kinase activation (117). Interestingly,
the NO deficiency, as well as the increased arginase activity and
ROS production, evoked by hypercholesterolemia or Ox-LDL are
not observed in endothelial cells absent of LOX-1, suggesting
the critical role of LOX-1 in mediating arginase-dependent NO
deficiency and oxidative stress (117). The accumulation of super-
oxide is likely derived from the uncoupled eNOS and NAD(P)H
oxidase because blockade of these enzymes attenuates oxidative
stress (117). In the intact porcine coronary arterioles, the upreg-
ulated Arg-I contributes, in part, to the reduced NO production
and impaired endothelium-dependent dilation evoked by Ox-LDL
(118). However, it is unclear whether LOX-1 plays a role in this
experimental model.

VASOMOTOR REGULATION BY H2O2
The elevated level of H2O2 has been detected under various
pathophysiological conditions, including ischemia-reperfusion,
inflammation, hypertension, diabetes, and atherosclerosis. The
H2O2 can be released from various types of cells, including
vascular cells (119, 120) and has been implicated, in some tis-
sues, as an endothelium-derived hyperpolarizing factor exhibiting
vasodilator activity (119). Extraluminal administration of H2O2

(1–100 µM) elicits concentration-dependent dilation of isolated
coronary arterioles in part via an endothelium-dependent mecha-
nism through cyclooxygenase (COX)-1-mediated release of PGE2

(121). H2O2 can also cause smooth muscle hyperpolarization and
lead to vasodilation through the opening of calcium-activated
potassium channels (121, 122). This vasodilator response plays
a role in regulating coronary perfusion by recruiting blood flow
to the heart during pressure reduction (i.e., autoregulation) (123)
or metabolic activation (i.e., functional hyperemia) (124). Inter-
estingly, in disease states, the vasodilator action of H2O2 appears
to compensate for the impaired NO-mediated dilation linking to
the uncoupling of eNOS with its co-factor BH4 (125) and to pro-
tect ischemia-reperfusion injury in the coronary microcirculation
(126). In the pig model of coronary ischemia, the impaired NO-
mediated vasodilation in collateral-dependent arterioles distal to
chronic coronary occlusion was restored by exercise training (127).
The beneficial effect of exercise on coronary arteriolar function
was abolished by catalase, suggesting the contribution of H2O2

in compensating and restoring endothelium-dependent vasomo-
tor function in the phase of collateral microvessel adaption to
myocardial ischemia (127).

On the other hand, H2O2 can exert an adverse effect by reducing
endothelial release of NO for vasodilation when the endothelium
is exposed to a prolonged (e.g., 60 min) elevation of excessive
H2O2 (e.g., 100 µM) (128). Interestingly, the dilation mechanisms
involving the activation of COX, guanylyl cyclase, cytochrome-
P450 monooxygenase, and potassium channels are not affected
by H2O2 (128). Moreover, supplementation of l-arginine or inhi-
bition of arginase restores H2O2-impaired vasomotor function,
and the adverse effect of H2O2 can be prevented by inhibiting
hydroxyl radical production (128). It appears that a high intravas-
cular level of H2O2 selectively impairs endothelium-dependent

NO-mediated dilation of coronary microvessels by reducing l-
arginine availability. The formation of hydroxyl radicals leading
to Arg-I overexpression is responsible for the adverse effect of
H2O2 (128). Interestingly, it was recently shown that the oxidative
stress elicited by peroxynitrite or H2O2 increases Arg-I activ-
ity/expression through protein kinase C-mediated activation of
RhoA/Rho kinase in bovine aortic endothelial cells (129). It
remains unclear whether hydroxyl radicals and protein kinase C
contribute to the activation of Rho kinase in intact microvessels.

COX AND ARGINASE IN VASCULAR REGULATION
Although COX activation is known to mediate tissue inflamma-
tion and participate in vasomotor regulation (130), its linkage to
arginase, another important enzyme related to the inflammation
process (89), remains unclear. A recent study has shown that inhi-
bition of arginase improves endothelial function and attenuates
vascular COX-2, thromboxane synthase, and PGI2 synthase activ-
ities in the rat model of adjuvant-induced arthritis (131). Thus,
arginase activation contributes to the augmentation of inflamma-
tory enzyme activity related to prostanoid synthesis. Interestingly,
arginase inhibition improved endothelial function, but it had no
effect on the arthritis severity of the animal (131). It appears
that this type of inflammatory insult targets vascular arginase and
consequently leads to vascular disorder. While COX-2 inhibitors
have been shown to reduce tumor growth through arginase inhi-
bition (132, 133), administration of diclofenac, a non-steroidal
anti-inflammatory drug against COX-2 (134) and phospholipase
A2 (135), was found to cause tumor suppression via a mecha-
nism related to the inhibition of tumor vascularization (136).
Although the expression and activity of arginase in the vascu-
lature was not evaluated in this study, it is speculated that the
observed tumor suppression is attributable to the inhibition of
vascular arginase since this enzyme has been shown to play an
important role in the growth of vascular cells (35, 137–139).
Although the direct link between COX and arginase in vasomo-
tor regulation remains to be determined, the finding of the close
association between these two enzymes in tumor-promoted angio-
genesis (140) and in alleviating chronic hypertension and improv-
ing vascular endothelial function and vasomotor activity (68)
may provide new direction and insights into this underdeveloped
research area.

ARGINASE ISOZYMES AND VASOMOTOR DYSFUNCTION
The arginase inhibitors currently available are not isoform selec-
tive and their specificity may be species dependent (17). There-
fore, it is difficult to identify the role and function of a specific
arginase isoform using pharmacological tools. With above lim-
itations, genetic manipulation of an arginase isoform becomes
an important strategy for more precise study of arginase func-
tion in a living system. Homozygous deletion of Arg-I is lethal to
the animal in the perinatal period (141). In contrast, homozy-
gous deletion of Arg-II in the mice does not cause significant
changes in phenotype, except an elevation of plasma level of argi-
nine (142). The observed increase in endothelial NO production
and NO-mediated vasorelaxation, in conjunction with reduced
vasoconstrictor response, in carotid arteries from Arg-II knock-
out mice (143) supports the idea that endothelial Arg-II plays a
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counteracting role in NO production and the associated vaso-
motor dysfunction. Deletion of Arg-II gene attenuates vascular
disorder (i.e., impaired NO-mediated endothelial function and
enhanced sympathetic vasoconstriction) in corpora cavernosal
tissue of mice with type 1 diabetes, suggesting the detrimen-
tal role of Arg-II in this disease model (144). Arg-II appears
to modulate not only vasomotor reactivity but also the phys-
ical property of the vascular wall by influencing NOS activity
because Arg-II deficient mice exhibit decreased vascular stiff-
ness in a manner sensitive to NOS inhibition (143). On the
other hand, selective overexpression of human Arg-II gene in the
endothelium causes systemic hypertension, impairs endothelium-
dependent NO-mediated vasorelaxation, and promotes athero-
sclerotic lesions (113). These in vivo findings are in agreement with
the observed adverse effect of Arg-II on NO-mediated endothe-
lial function in cell culture. Moreover, the experimental data from
an Arg-II knockout study indicate that the renal injuries observed
in spontaneous or streptozotocin-induced diabetes animals are
also mediated by Arg-II (145). However, genetic manipulation of
Arg-I (partial deletion) in Arg-II deficient mice shows that upreg-
ulation of vascular Arg-I, rather than Arg-II, contributes to the
diabetes (type I)-induced endothelial dysfunction, vascular stiff-
ness, and coronary fibrosis (146), in which Rho kinase activation
can be responsible for the observed pathophysiology (147). Using
the same genetic approach, the detrimental role of Arg-I in mediat-
ing blood pressure elevation and vascular endothelial dysfunction
was recently reported in the mice subjected to systemic hyperten-
sion induced by DOCA-salt (148). In diabetic human patients,
Arg-I upregulation appears to be responsible for the impair-
ment of coronary arteriolar dilation to an endothelium-dependent
NO-mediated agonist (149).

Surprisingly, a recent study by Huynh et al. showed that Arg-
II knockout mice start to display hypertension at 8 weeks old,
despite the reduction in vasoconstrictor responsiveness (150). The
observed changes in systemic hemodynamics are associated with
left ventricular hypertrophy, diastolic dysfunction, and increased
sympathetic activity (150). In contrast to the previous report
in carotid arteries with Arg-II deletion by Lim et al. (143), the
aortic relaxation to an NO-dependent agonist was not signifi-
cantly enhanced in the Arg-II knockout mice (150), suggesting
that the observed reduction in the vasoconstrictor response was
not attributable to alterations in NO production. There is no
clear explanation to the apparent discrepancies between these two
Arg-II knockout studies, especially in the observed global changes
in cardiovascular function and vasomotor regulation related to
endothelial NO. Nevertheless, the study of Huynh et al. demon-
strated a correlation between Arg-II and Rho kinase, suggesting a
contribution of downregulation of Rho kinase to the observed
reduction in the vasoconstrictor response in Arg-II deficiency
(150). This is in agreement with the context that upregulation
of arginase in the disease state may enhance Rho kinase activ-
ity/expression and consequently alter vasomotor activity because
numerous studies have implicated a close association between Rho
kinase and arginase in the development of vascular dysfunction
(28, 56, 115, 117, 129).

Although recent studies using genetic approaches have pro-
vided significant insights into the contribution of specific arginase

isozymes in vasomotor regulation in health and disease, the incon-
sistent results are often reported as discussed above. In view that
arginase gene deletion might also alter expression of other genes
or activate alternate signaling pathways to confound the con-
sequences of initial gene deletion (151, 152), the interpretation
of these results should be cautious. The gene–gene interaction
and the development of compensatory and/or decompensatory
biological responses, at local or systemic levels, with gene manip-
ulation may contribute to the observed discrepancies, in addi-
tion to the variation of involved signaling molecules, age, gender,
tissue/organ, species/strain, and experimental conditions.

At the protein level, although Arg-I and -II carry out the same
catalytic function, they have different physicochemical character-
istics, including immunological cross-reactivity, charge, and sub-
cellular location (14). Because the expression pattern of specific
arginase isoforms can be cell/tissue and animal species depen-
dent (17), it is unclear at the present time why and how Arg-I
and -II can be targeted differently. Interestingly, recent studies
suggest that the catalytic efficiency of arginase can be modulated
without altering protein expression (153). It appears that cysteine
residues 303 in Arg-I can undergo S-nitrosylation and subse-
quently increase stability of the arginase trimer and reduce its K m

for arginine (153). This increase in arginase activity can contribute
to the endothelial dysfunction and reduced NO bioavailability
(153). On the other hand, there is no cysteine in mammalian
Arg-II that corresponds to cysteine 303 in Arg-I, suggesting that
the post-translational modulation via S-nitrosylation might not
occur in Arg-II (17). It is likely that S-nitrosylation elicited by the
excessive production of NO during iNOS induction (e.g., inflam-
mation) or by the formation of peroxynitrite during oxidative
stress may contribute to a selective activation of Arg-I lead-
ing to endothelium-dependent vasomotor dysfunction. Moreover,
uric acid has been demonstrated to increase arginase activity by
increasing the affinity for arginine (154). This phenomenon is
unlikely isoform selective because it is observed in the pulmonary
arterial endothelial cell lysates (Arg-II) and rat kidney (Arg-II) and
liver (Arg-I) homogenates (154). However, it was recently found
that uric acid, at the concentrations reported to affect arginase
activity (154), does not alter Arg-II activity in cultured human
umbilical vein endothelial cells (155). The explanation for these
inconsistent findings on uric acid-arginase interaction remains
unclear. Hydroxyl radicals derived from H2O2 appear to specifi-
cally induce Arg-I expression and lead to endothelial dysfunction
in coronary microvessels (128). Interestingly, biochemical studies
in vitro indicate that Arg-I enzyme activity can be enhanced by
hydroxyl radicals (156). Although it has not been demonstrated
whether hydroxyl radicals also alter Arg-II activity, the activa-
tion of Arg-I, both in protein expression and activity, by oxidative
stress (i.e., peroxynitrite and H2O2) in cultured endothelial cells
also has been reported recently (129). In view that the increase
of Arg-I activity (50%) is more than that of protein expres-
sion (35%) (129), the direct impact of these insults on arginase
enzyme activity per se is apparent. Collectively, the above studies
suggest the differential activation of arginase isozymes, depend-
ing upon the environment and the nature of the stimulation, in
addition to the selective regulation of its protein expression in
the vasculature. These differential regulation mechanisms may
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also contribute to the observed diversity and heterogeneity in
involved arginase isoforms in vascular cell, as well as the exerted
function, in different tissues, species, and diseases. Further stud-
ies on the differential activation of specific arginase isoforms are
required.

CONCLUSION AND PERSPECTIVES
Collectively, the NO bioavailability, determined by the synthe-
sis/release and utilization/scavenging at the level of the endothe-
lium, plays an important role in maintaining vascular homeostasis
and function, as well as disease development linking to oxida-
tive stress and inflammation. Redox signaling with a low level of
ROS released from cardiomyocytes and/or vascular cells displays
an indispensable role in maintaining microcirculatory homeosta-
sis by regulating vasomotor activity in response to physiological
challenges. The release of H2O2 from the vasculature helps to
restore vasomotor function by compensating for NO deficiency
in coronary collateral microvessels adapted to chronic myocar-
dial ischemia with exercise training. Depending upon the dis-
ease model and the pathophysiological insult, the excessive and
prolonged production of superoxide, via stress kinase-activated
NAD(P)H oxidase or xanthine oxidase, and the subsequent exor-
bitant formation of H2O2, appear to generate oxidative stress and
inflammation, which outweighs the benefits of vasoregulation by
impairing endothelial function and possibly exhausting vasodila-
tor reserve (Figure 1). The status and the balance of redox signaling
in the vascular cells and their surrounding parenchymal tissues
appear to modulate the vasomotor function of microvessels in
health and disease.

The converging evidence suggests that NO-mediated vascular
function, including vasomotor activity, can be influenced by the
arginase activity in the endothelium and/or its surroundings. The
upregulation of arginase, in either protein or activity, contributes
to vascular dysfunction in various vascular diseases by initiat-
ing or following oxidative stress and inflammation (Figure 1).
Therefore, therapeutic inhibition of arginase may be useful for
disease treatment. However, a global Arg-II deletion can develop
hypertension, ventricular hypertrophy, and cardiac dysfunction
with age (150). Because these cardiovascular disorders are not
present at young age with Arg-II ablation, chronic Arg-II defi-
ciency appears to elicit a series of cardiovascular remodeling
(e.g., compensation and decompensation). Moreover, biochemi-
cal studies indicate that Arg-I and -II can exhibit different enzyme
kinetics for substrate binding and products, as well as different
sensitivities and responsiveness toward inhibitors (17, 157). These
isozyme-dependent characteristics, in combination with the use
of different experimental models and animal species, may com-
plicate the experimental results, interpretations, and conclusions
on the effect of arginase inhibition on endothelial function and
vasomotor regulation under physiological and pathophysiologi-
cal conditions. In this regard, the clinical benefits of inhibition
of specific arginase isoforms for cardiovascular disease treatment
are uncertain and deserve further investigation. It is worth not-
ing that the systemic supplementation of antioxidants showed
no benefit but instead promoted possible harmful effects in car-
diovascular disease prevention or therapy (158–161). Oxidative
stress and inflammation are two sides of the same coin and can

FIGURE 1 | Potential pathways for redox and arginase modulation of
vasomotor function. The low level of superoxide and hydrogen peroxide
(H2O2) is essential for maintaining normal homeostasis of the endothelium
to exert vasodilation in response to physiological stimulation. The excessive
production of superoxide from the activated NAD(P)H oxidase and/or
xanthine oxidase by insults from inflammatory cytokines, C-reactive protein
(CRP), ischemia/reperfusion, oxidized low-density lipoprotein (Ox-LDL), or
vasoconstrictor peptides such as angiotensin II (Ang II) and endothelin-1
(ET-1) (162–165) scavenges the released nitric oxide and subsequently
forms peroxynitrite. The prolonged and elevated production of H2O2 from
superoxide dismutase (SOD) suppresses NO production by up-regulating
vascular arginase via p38 mitogen-activated protein kinase or
c-Jun-N-terminal kinase (JNK) signaling following the hydroxyl radical (•OH)-
or protein kinase C (PKC)-mediated activation of Rho kinase. The
upregulated arginase limits substrate L-arginine availability to nitric oxide
synthase (eNOS) for nitric oxide synthesis and also uncouples eNOS to
promote superoxide production. The production of nitric oxide from eNOS
and prostacyclin (PGI2) from cyclooxygenase (COX) and PGI2 synthase
(PGI2-S) is inhibited by peroxynitrite due to uncoupling of eNOS and
nitration of PGI2-S (see text for details). Peroxynitrite also activates arginase
and consequently reduces nitric oxide production. These redox events, in
company with arginase upregulation, compromise endothelial function and
thus augment vascular tone and reduce nitric oxide-mediated arteriolar
dilation for blood flow recruitment and regulation. +,
enhance/increase/upregulate; −, inhibit/reduce/downregulate.

be the cause or result of arginase upregulation in the vascula-
ture via diverse signaling mechanisms. Localized manipulation
of the redox system and arginase activity in a diseased vessel
might be a useful strategy to improve flow regulation and thus
enhance oxygen and nutrient delivery for tissue survival and
recovery.
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