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T cell activation induces homing receptors that bind ligands on peripheral tissue vascula-
ture, programing movement to sites of infection and injury. There are three major types of
CD8 effectorT cells based on homing receptor expression, which arise in distinct lymphoid
organs. Recent publications indicate that naïve, effector, and memory T cell migration is
more complex than once thought; while many effectors enter peripheral tissues, some re-
enter lymph nodes (LN), and contain central memory precursors. LN re-entry can depend
on CD62L or peripheral tissue homing receptors. Memory T cells in LN tend to express
the same homing receptors as their forebears, but often are CD62Lneg. Homing receptors
also control CD8 T cell tumor entry. Tumor vasculature has low levels of many periph-
eral tissue homing receptor ligands, but portions of it resemble high endothelial venules
(HEV), enabling naïveT cell entry, activation, and subsequent effector activity.This vascula-
ture is associated with positive prognoses in humans, suggesting it may sustain ongoing
anti-tumor responses. These findings reveal new roles for homing receptors expressed by
naïve, effector, and memory CD8T cells in controlling entry into lymphoid and non-lymphoid
tissues.

Keywords: T cell trafficking, T cell memory, T cell heterogeneity, tumor infiltrating lymphocytes, T cell migration,
T cell recirculation, memoryT cell trafficking, effectorT cell migration

INTRODUCTION
T cells are capable of assuming an impressive array of functional
phenotypes. Much of this variation can be traced to differences
in the place, context, or time since antigen exposure. The best
recognized example of effector cell heterogeneity is the subset
specialization of CD4 T cells based on cytokine secretion pro-
files (Th1, Th2, Th17, and Treg) (1). However, another example of
functional specialization is the programing of CD4 and CD8 T cells
to express different selectins, integrins, and chemokine receptors,
which enable homing to different sites in the body. The particular
constellation of such “homing receptors” expressed by individual
cells depends on antigen encounter, and on microenvironmental
characteristics of the secondary lymphoid organs (SLO). Just as
importantly, however, the ability of such T cells to enter any par-
ticular tissue is dependent on which homing receptor ligands are
expressed on the associated vasculature. Here we review the range
of trafficking programs expressed by naïve, effector, and memory
CD8 T cells, and the extent to which they dictate T cell entry into
SLO and peripheral tissues, particularly tumors.

T CELL HOMING RECEPTOR HETEROGENEITY DURING THE
PRIMARY RESPONSE
T cell entry into tissues from the bloodstream is controlled by a
multistep adhesion cascade involving interactions between hom-
ing receptors on the surface of T cells with their respective ligands
on vasculature (2). Naïve T cells enter lymph nodes (LN) via
L-selectin (CD62L) and chemokine receptor CCR7, which bind

ligands on high endothelial venules (HEV) (3). Upon differentia-
tion into effectors, CD62L and CCR7 are downregulated, and new
homing receptors upregulated (Tables 1 and 2). Integrin α4β7 and
CCR9 support homing to gut-associated tissue, the vasculature of
which expresses the ligands MAdCAM-1 and CCL25 (4–7). In
contrast, the ligands for E-selectin and P-selectin (ESL and PSL
respectively) enable homing to skin, where inflamed vasculature
expresses these selectins (8–11). While CCR4 is reported to be
necessary for CD4 T cell entry into inflamed skin (12), other work
has shown that CD4 and CD8 T cell infiltration does not require
CCR4 and instead may depend on CCR10 (13), or CXCR3 and
CCR5 (14). Much less is known about which homing receptors
enable T cell entry into other tissues. α4β1 integrin, which binds
VCAM-1, has been implicated in T cell infiltration into the brain
(15, 16), lung (17), and bronchus-associated lymphoid tissue (18,
19). While activated CD8 T cells express many different chemokine
receptors (Table 2), there is remarkably little direct information
about the expression of their ligands in different tissues, which is
essential in understanding the role they might play.

Expression of some homing receptors on effector T cells is
determined by their activation site. CD4 T cells activated in cuta-
neous LN upregulate PSL, while those activated in mucosal LN
upregulate α4β7 (20). This is mirrored in vitro using dendritic cells
(DC) to activate CD8 T cells. DC from skin-draining LN induce
ESL and PSL, while DC from mesenteric LN or Peyer’s patches
induce α4β7 and CCR9 (21–23) based in part on their synthe-
sis and presentation of retinoic acid (24, 25). However, α4β7 can
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Table 1 | Adhesion molecules expressed by murine CD8T cells.

Adhesion

molecule

Expression Primary ligand/

binding partner

Constitutive ligand

expression

Inducible ligand

expression

Ligand expression in

tumor vasculature

α4β1 Low on naïve, upregulated

upon activation

VCAM-1 Bone marrow, low

levels in HEV

Inflamed brain, lung (BALT),

liver

Sometimes detected

α4β7 Reported low on naïve,

upregulated upon activation

MAdCAM-1 Mesenteric LN,

Peyer’s patch HEV,

small intestine

postcapillary venules

Increased by inflammation,

including in some sites

beyond gut mucosa

Not known

αEβ7

(CD103)

None or low on naïve,

upregulated on T cell subsets

at epithelial surfaces

E-cadherin Epithelia N/A Often downregulated

during epithelial to

mesenchymal transition

αLβ2

(LFA-1)

Present on naïve and

activated T cells

ICAM-1 Postcapillary venules Increased by inflammation Frequently detected

CD44 Low on naïve T cells,

upregulated upon activation

Hyaluronan Connective,

endothelial, neural

tissue

Increased by tissue injury Accumulates in many

tumors

ESL Absent on naïve T cells,

upregulated upon activation

E-selectin (CD62E) Low levels in dermal

postcapillary venules

Inflamed dermal postcapillary

venules, other inflamed

postcapillary venules

Unclear, but blockade

can reduce T cell

infiltration

L-selectin

(CD62L)

Naïve T, memory subsets,

downregulated upon

activation

Peripheral node

addressin (PNAd)

LN HEV endothelial

cells

Inflamed non-HEV blood

endothelium

Subset of vessels in

some tumors

PSL Low on naïve T cells,

upregulated upon activation

P-selectin (CD62P) Low levels in dermal

postcapillary venules

Inflamed dermal postcapillary

venules, other inflamed

postcapillary venules,

activated platelets

Unclear, but blockade

can reduce T cell

infiltration

be also induced without RA (23, 24, 26). Similarly, induction of
CCR10 on human T cells is promoted by DC processing of Vitamin
D3 to 1,25(OH)2D3, but this effect is less pronounced for mouse
T cells (27). IL-2 and IL-12 are potent inducers of PSL expression
on T cells in vitro, but dispensable in vivo (28, 29). In vitro studies
have shown that induction of CCR5 on activated mouse CD4 and
CD8 T cells requires IL-12 (30), while CXCR3 induction requires
IFN-γ (31). Even less is known about the factors that control the
induction of other homing receptors.

Recently, we examined homing receptor expression during CD8
T cell activation in different LN and spleen. Intravenous (IV)
immunization with bone marrow derived DC activates T cells
in mediastinal LN and spleen, most of which upregulate α4β1
integrin and PSL but not ESL or α4β7 (32–34). Intraperitoneal
(IP) immunization activates T cells in mesenteric and mediastinal
LN, which express α4β7 integrin and PSL (32, 33). Finally, sub-
cutaneous (SC) immunization activates T cells in skin-draining
LN, most of which express ESL and PSL, and some of which also
express α4β1 (33). This work defines three major CD8 T cell effec-
tor populations that differentially express α4β7,α4β1, or ESL. Each
of these molecules mediates the initial capture and tethering inter-
action of T cells with the vasculature (35–37), providing a basis
for tissue selectivity, while α4β1 can also mediate firm adhesion

(38). In contrast, expression of chemokine receptors shows little
variation with activation site. Most activated CD8 T cells in all
LN express CXCR3, and smaller subsets co-express CCR3, CCR4,
CCR5, CCR6, and CCR9 (33). Only CCR9 expression varies sig-
nificantly, with the largest fraction present on cells activated in
mesenteric LN.

These results identify a previously unrecognized subset of effec-
tors that uniformly expresses α4β1, but little ESL or α4β7, which is
generated in the mediastinal LN and spleen by IV immunization.
Other work has shown that IV immunization induces T cells that
are incapable of mediating contact hypersensitivity (39), entering
the gut (32), or controlling SC melanomas (40). Our work suggests
that these observations reflect a homing receptor profile that does
not enable T cell entry into skin or gut tissue. Conversely, as induc-
tion of α4β1 is weak after SC immunization, T cells generated by
this route may only poorly infiltrate sites that require this inte-
grin for entry. The layered coexpression of multiple chemokine
receptors by CD8 T cells contrasts with a study that associated
expression of CXCR3, CCR4, and CXCR5 with functionally dis-
tinct CD4 T cell subsets (41), but is consistent with another study
showing coordinate expression of CCR4, CCR6, and CCR10 by
human CD4 T cells (42). Thus, individual CD8 T cells may be more
multipotential in their homing specificity than CD4 T cells. In any
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Table 2 | Chemokine receptors expressed by murineT cells.

Receptor T cell receptor expression Ligand Constitutive ligand

expression

Inducible ligand expression Ligand expression in

tumor vasculature

CXCR3 Activated Th1, activated CD8 CXCL11 (ITAC) Induced by Th1 inflammation Not known

CXCL10 (IP-10)

CXCL9 (MIG)

CXCR4 Low to absent on naïve,

upregulated after activation

CD8 > CD4

CXCL12 (SDF-1) Bone marrow

endothelium, thymus,

lung, lymphoid organs

Not known

CXCR6 Th1 activated CD8 T cells CXCL16 Induced by Th1 inflammation Induced by radiation

CCR1 Memory T cells CCL3 (MIP-1a) Induced by inflammation Not known

CCL5 (RANTES)

CCL7 (MARC)

CCL16 (LCC-1)

CCR2 Subsets of CD4 and CD8 T

cells, activation dependence

unclear

CCL2 (MCP-1) Induced by inflammation Not known
CCL7 (MARC)

CCL12 (MCP-5)

CCR3 Th2 >Th1 activated CD8 T

cells

CCL5 (RANTES) Induced by inflammation Not known
CCL7 (MARC)

CCL8 (MCP-2)

CCR4 Th2 in vitro activated CD8 T

cells

CCL17 (TARC) Induced by inflammation,

particularly in dermis

Not known
CCL22 (MDC)

CCR5 Th1 activated CD8 T cells CCL5 (RANTES) Induced by inflammation Not known

CCL4 (MIP)

CCL3 (MIP)

CCR6 Th17 activated CD8 T cells CCL20 (MIP-3a) Skin, intestinal villi Upregulated in dermis after

inflammation

Not known

CCR7 Naïve CD4, CD8 T cells,

memory T cell subsets

CCL19 (MIP-3b) Lymphoid organs Not known
CCL21 (SLC)

21-Leu periphery

21-Ser in LN

CCR8 Subset of Th2 memory,

negligible on CD8 T cells

CCL1 (TCA-3) Induced by Th2 inflammation Not known

CCR9 Subsets of naïve and

activated CD4 and CD8 T cells

CCL25 (TECK) Small intestine Not known

CCR10 Skin-homing activated CD4

and CD8 T cells CD4 > CD8

CCL27 Skin Upregulated in epidermis

after inflammation

Not known

case, infiltration is ultimately dependent on expression patterns of
the chemokines themselves, which remains somewhat poorly char-
acterized (43). The multipotential chemokine-sensing capability
of CD8 T cells may also provide a failsafe mechanism to ensure
the entry of these effector cells into peripheral sites occupied by
pathogens or tumors.

CD8 T CELL REDISTRIBUTION AMONG LN
While some activated CD8 T cells leave SLO bound for inflamed
peripheral tissues, others traffic to antigen-free LN (34, 44). These
LN-redistributed cells resemble fully differentiated effectors by

dividing extensively and secreting IFNγ (34). However, at least
some were central memory precursors (34). LN redistribution
depends in part upon residual expression of CD62L by some of
these differentiated CD8 T cells (34). α4β7 integrin has long been
known to enable activated T cell entry into mesenteric LN (34,
45). Recently, we found that activated CD8 T cells also redistribute
into antigen-free LN using α4β1 and ESL (46); α4β1 enables entry
into all LN, and ESL mediates selective entry into skin-draining
LN. This results in differential accumulation of ESL+ and α4β1+

T cells in skin-draining vs. non-skin-draining LN after SC immu-
nization or transfer of SC-primed effectors into naïve hosts. Others
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have shown that CD62Lneg T cells can enter inflamed, but not rest-
ing, LN using CXCR3 (47) or PSL (48). Thus, homing receptors
normally associated with trafficking to peripheral non-lymphoid
tissues also control the distribution of activated T cells among
different lymphoid tissues, even in the absence of inflammation.

HOMING RECEPTOR EXPRESSION AND REGIONAL
LOCALIZATION OF T CELL MEMORY
Like effector cells, memory T cells are made up of distinct subsets.
Central memory T cells (TCM) are defined as CD62L+CCR7+

and are found primarily in LN, while effector memory cells (TEM)
are defined as CD62LnegCCR7neg and are found predominantly
in peripheral tissue, spleen, and blood (49–52). Resident TEM

(rTEM) (52, 53) are retained permanently at epithelial surfaces,
likely through expression of the E-cadherin receptor αEβ7, which
is detected using anti-CD103 specific for the αE subunit (54–56).
Migratory TEM (mTEM) are CD103neg and recirculate (54, 57,
58). TEM can express homing receptors associated with entry into
peripheral tissue (54, 59–62).

Expression of CD62L and CCR7 and LN residence have been
used somewhat interchangeably to define central memory cells
(TCM) (49, 63). However, many memory cells in LN do not express
one or both of these molecules (34, 64, 65). It has been proposed
that mTEM cells exit peripheral tissue through the afferent lym-
phatics (66, 67), and utilization of this pathway by CD4 T cells
has recently been directly demonstrated (68). Because the affer-
ent lymphatics drain into LN, mTEM could be a component of
what is generally thought of as TCM despite their lack of CD62L
expression. We found that CD62Lneg memory CD8 T cells in LN
continue to express ESL, PSL, and α4β1 in patterns that mirror
those of primary effectors (46). The distribution of these memory
cells also reflects that of LN-redistributing effectors, with ESL+

memory CD8 T cells tending to reside in skin-draining LN, and
ESLneg α4β1+ T cells tending to reside in non-skin-draining LN
and spleen. Importantly, SC immunization, which induces ESL+

memory T cells, results in enhanced memory T cell residence in
skin-draining LN and augmented recall responses to skin immu-
nization challenge (46). Thus, the CD8 T cells we have identified
share properties of both TCM and TEM. They seem analogous to a
recently described population of recirculating ESL+ memory CD4
T cells in skin and LN that do not express CD62L (68).

Interestingly, we found that these CD62Lneg LN-resident CD8
memory T cells can be reprogramed to express new peripheral
tissue homing receptors, with minimal loss of those previously
expressed (46). Thus, we have defined cells with enhanced rep-
resentation in skin-draining LN, which expand upon rechallenge
in vivo, and are plastic enough to be reprogramed to express new
homing receptors. This is perhaps the best of both worlds in terms
of host protection: enhanced regional memory as well as a systemic
component that can be reprogramed. Thus T cell memory is com-
prised not only of cells that permanently reside in non-lymphoid
tissue, and cells that almost exclusively recirculate among SLO,
but also cells that recirculate between tissue and LN. These latter
cells may include both classically defined mTEM as well as cells
that also have characteristics of TCM. CD103 is useful for distin-
guishing migratory and resident memory in peripheral tissues,
and CD62L is useful for defining classical TCM. However, we lack

phenotypic markers to distinguish LN-resident CD62Lneg sub-
populations, and they currently must be studied by examining
functional phenotype and migration. Vaccination strategies must
consider the patterns of homing receptors induced by different
immunization routes. These results also suggest that appropri-
ate prime-boost regimens might be able to generate protective
memory with multipotential homing capability.

CD8 T CELL HOMING TO TUMORS
While we have a good understanding of control of CD8 T cell
infiltration into LN, skin, and gut, the requirements for entry
into other tissues are poorly defined. Of particular interest is
infiltration into tumors. Several studies have demonstrated that
the presence of a CD8 T cell infiltrate in tumors is associated
with a positive prognosis in human cancer patients (69–72). A
panoply of homing receptors have been implicated in T cell infil-
tration in various tumor models, including LFA-1, α4β1, CD44,
ESL/PSL, CXCR3, CCR2, CCR5 ((73–79), our unpublished obser-
vations). However, seemingly conflicting roles have been reported
for LFA-1 ligand ICAM-1 (73, 74). In addition, chemokine CCL5
has been correlated with both positive and poor prognosis (80,
81). This may reflect differences in ligand expression in different
tumor types, locations, or differential recruitment of additional
cell populations. An important factor limiting T cell entry is the
minimal expression of homing receptor ligands, including ICAM-
1, E-selectin, and CXCR3 ligands on tumor vasculature. (82–84).
Endothelin B receptor, CD73, and vascular endothelial growth fac-
tor (VEGF) have been shown to limit ligand expression (73,85, 86).
This is consistent with the overall poor infiltration of adoptively
transferred effector T cells in murine and clinical studies (87–90).
Conversely, inflammatory stimuli and radiation have been shown
to enhance CD8 T cell entry through upregulation of homing
receptor ligands (79, 83, 91) Thus, one approach to improve can-
cer immunotherapy is to identify and manipulate the expression
of homing receptors and vascular ligands to enhance infiltration
of CD8 effectors into tumors.

Although naïve T cells are generally excluded from peripheral
tissues, we have found that they infiltrate and are activated in
tumors of multiple tissue origins growing in the lungs, SC space,
or peritoneal cavity (92). Naïve T cells infiltrate tumors by inter-
acting with tumor associated vasculature that resembles that of
LN HEV by expressing PNAd and CCL21, the ligands for CD62L
and CCR7, respectively (Peske et al., manuscript submitted). While
PNAd+ vessels are normally found only in LN, chronic inflamma-
tion induces their development in many peripheral organs, often
in the context of accumulations of hematopoietic and stromal
cells that organize into structures termed tertiary lymphoid organs
(TLO) (93–95). PNAd+ vessels have also recently been identified
in several human tumors, although it was not shown whether
they were associated with TLO (96). Other studies have identi-
fied TLO in human tumors associated with CCL21 expression
(97–99). PNAd expression on HEVs in LN and TLO is primar-
ily controlled by signals through the lymphotoxin-beta receptor
(LTβR) (94, 100–105). In contrast, we found that PNAd expression
in tumors does not require LTβR signaling (Peske et al., manuscript
submitted). Instead, effector lymphocytes induced the develop-
ment of LN-like vasculature in part via secretion of IFNγ, which
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enhanced CCL21 expression. Thus, novel pathways control the
development of HEV-like tumor vasculature. Importantly, HEV
density or presence of TLO in human tumors correlates with pos-
itive prognosis (96, 97). The work of our lab and others suggests
this is due to the recruitment of naïve T cells and subsequent gen-
eration of anti-tumor immune responses directly in the tumor (92,
106). Therefore, inducing HEV development in tumors may be a
valuable therapeutic intervention.

CONCLUSION
T cell homing to inflamed peripheral tissues is controlled by
expression of homing receptors induced by activation that vary
according to the route of immunization. Our and others’ work has
built upon this understanding by illuminating surprising new roles
for homing receptors expressed by naïve, effector, and memory
CD8 T cells in controlling their entry into both lymphoid tissues

and tumors. It remains to be seen whether additional homing
receptors are involved in trafficking to regional LN, peripheral
tissues other than skin and gut, and tumors in different body loca-
tions. A critical and still poorly described aspect is which homing
receptor ligands are expressed by different tissues and tumors, and
how this is positively and negatively regulated. It also is not clear
how tissue-resident, lymphoid-resident, and migratory memory
T cells interact to confer protection, or how to achieve an opti-
mal mixture by vaccination. Finally, the notion of enhancing T
cell immunity against localized pathogen infection or metastatic
tumors growing in different locations by regional immunization
to induce expression of appropriate homing receptors has yet to
be incorporated into vaccine strategies. Nonetheless it is clear
that T cell trafficking patterns are a source of both great speci-
ficity and flexibility waiting to be fully exploited for therapeutic
benefit.
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