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NOD-like receptor proteins (NLRPs) are emerging key players in several inflammatory path-
ways in Mammals. The first identified gene coding for a protein from this family is Nlrp5
and was originally called Mater for “Maternal Antigen That Mouse Embryos Require” for
normal development beyond the two-cell stage. This important discovery was followed
by the identification of other NLRPs playing roles in inflammatory disorders and of the
first maternal-effect gene in humans, NLRP7, which is responsible for an aberrant form of
human pregnancy called hydatidiform mole (HM). In this review, we recapitulate the various
aspects of the pathology of HM, highlight recent advances regarding NLRP7 and its role in
HM and related forms of reproductive losses, and expand our discussion to other NLRPs
with a special emphasis on those with known roles in mammalian reproduction. Our aim
is to facilitate the genetic complexity of recurrent fetal loss in humans and encourage
interdisciplinary collaborations in the fields of NLRPs and reproductive loss.
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HISTORICAL VIEW ABOUT HM
Hydatidiform mole (HM) is an aberrant human pregnancy with
no embryo that has fascinated and puzzled scientists in all civ-
ilizations. The recognition and description of this condition is
very ancient and appears in Hippocrates’ manuals under the name
“dropsy of the uterus” (1). In addition, a famous physician in the
Byzantine period, Aetius of Amida, who was the private physi-
cian of Emperor Julian, wrote about moles and interestingly used
the term inflammation to describe them, “an inflammation or
strenuous walking” (2, 3). The etiology of HM continues to fas-
cinate scientists in several aspects. HM is the only disease or
tumor that may be formed by androgenetic, non-self-cells from
a woman’s sexual partner as opposed to all other tumors and
cells in our body. Despite their common histopathological fea-
tures, different HM tissues may have different parental contri-
butions. Depending on its mode of formation, a HM’s genotype
might be diploid biparental, diploid androgenetic monospermic,
diploid androgenetic dispermic, triploid dispermic, triploid dig-
ynic, tetraploid, aneuploid, or mosaic. These diverse possibilities
generate an important diagnostic complexity and therefore con-
tinue to challenge scientists and clinicians in various disciplines. In
this chapter, we review the pathology of HMs and describe recent
advances in our understanding of its pathogenesis.

EPIDEMIOLOGY OF HM
The common form of HM is sporadic and not recurrent. The
geographical distribution of its incidences varies widely, with a
frequency of 1 in every 600 pregnancies in western countries (4)
and 2–10 times higher frequencies in developing and undeveloped
countries (5–7). Depending on populations and studies, 1–6% of
women with a prior HM will develop a second HM (8–14). Cases

in which a single family member has recurrent HM (RHM) are
called singleton cases and those in which at least two women have
one or several HM are called familial cases. Familial RHM is rarer
and its exact frequency is not known.

CLINICAL AND ULTRASOUND MANIFESTATIONS
The clinical manifestation of moles has changed with the advances
of medicine, largely because of the introduction of ultrasonog-
raphy in the second half of the twentieth century as a routine
exam to monitor all pregnancies starting from the eighth week of
gestation. Consequently, many moles are now detected by ultra-
sound examination at the first gynecological visit or even earlier
in cases of vaginal bleeding, which is the most common present-
ing symptom that would precipitate early medical consultation
and diagnosis. Ultrasound indications of moles include the pres-
ence of echogenic structures in the placenta, the absence of a
gestational sac, and/or the absence of fetal heart activity. These
initial ultrasound observations are followed by a blood test of the
human chorionic gonadotropin (hCG), the pregnancy hormone
that is secreted mainly by syncytiotrophoblast cells of the chori-
onic villi (CV) into the intervillous space, whereupon it is carried
to the maternal systemic blood circulation. HCG is much higher in
women with molar pregnancies than in women with normal preg-
nancies of matching gestational stages, which is believed to be the
consequence of the increased proliferation of syncytiotrophoblast
cells. Depending on ultrasound findings, the gestational stage of
the pregnancy, and the level of blood hCG, further ultrasound
examinations and hCG follow-up tests may be required before a
clinical decision is reached regarding the arrest of the pregnancy
and the requirement of a surgical evacuation of the product of
conception (POC). A non-viable pregnancy accompanied with
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FIGURE 1 | Gross-morphology of HMs. (A) A photograph of
gross-morphology of a HM directly after surgical evacuation. Note the
presence of vesicles (only four are indicated by arrows) which represent
edematic chorionic villi (CV) that have accumulated fluid and are covered
with blood. (B) Another gross-morphology photograph of a HM after
removing the blood. Note the hydropic degeneration of the CV and their
appearance as a grape-like structure (only two are indicated by arrows). In
(B) photo courtesy of Professor Edward C. Klatt, School of Medicine,
Mercer University.

a high hCG test will necessitate dilatation and curettage suction
of the POC. The evacuated tissues (Figure 1) are submitted for
histopathological examinations and the diagnosis is made based
on histopathological findings and criteria.

HISTOPATHOLOGY AND DIAGNOSIS
The original definition of HM was a pregnancy devoid of a fetus
in which the chorion is replaced by grape-like vesicles. A long time
ago, the severe form of this condition was believed to originate
from pathologic ovaries (15) and was originally called“true moles”
or “classical moles,” which correspond to what we now call com-
plete HMs. This classification evolved and other terms emerged
later to describe milder forms of the same condition such as “tran-
sitional,” “partial,” and “incomplete” moles (16–18). The current
histopathological classification of spontaneously arrested preg-
nancies includes three entities designated complete HM (CHM),
partial HM (PHM), and non-molar spontaneous abortion (SA)
(19). CHMs display circumferential trophoblastic proliferation
affecting most CV (Figure 2) and do not contain extra-embryonic
membranes (chorion and amnion), a fetal cord, fetal nucleated
red blood cells, or any other embryonic tissue of inner cell mass
origin. Both SAs and PHMs may contain extra-embryonic mem-
branes (chorion and/or amnion), a fetal cord, fetal nucleated red
blood cells, other embryonic tissues (cartilage, bones, etc.), or even
a normal or an abnormal complete fetus (Figure 2). PHMs display
mild and focal trophoblastic proliferation that can be observed
on some CV and in several microscopic fields, whereas SAs do
not display abnormal circumferential trophoblastic to warrant
close hCG follow-up (Figure 2). The histopathological subdivi-
sion of spontaneously arrested pregnancies into CHMs, PHMs,
and SAs has always been challenging and several scientists have
noted the continuous variation in the molar degeneration (18).
This challenge is more problematic nowadays because of the early
evacuation of arrested pregnancies based on ultrasonography and
before the manifestations of all their histopathological features.
Consequently, there is a wide inter-observer and intra-observer

variability in distinguishing non-molar SAs from PHMs and in
distinguishing PHMs from CHMs (20–22). Practically, the diffi-
culty for the pathologists is to know where to draw the lines of
separation between the three entities due to the continuous spec-
trum of abnormalities and due to the fact that histopathology is
a qualitative descriptive science (mild, excessive, focal, occasional,
etc.) that lacks quantitative measurements to assess the degree and
extent of trophoblastic proliferation.

KARYOTYPE AND GENOTYPE DATA
Karyotype and genotype analyses have shown that sporadic
moles may have different genotypic types with the majority of
CHMs being diploid androgenetic and the majority of PHMs
being triploid diandric dispermic. Among androgenetic moles, the
majority are monospermic and 10–20% are dispermic (23–27). In
a minority of cases, some CHMs have been reported to be diploid
biparental (25), triploid diandric dispermic (23), tetraploid trian-
dric (3 paternal and 1 maternal sets of chromosomes) (28) or
digynic (29), aneuploid, or mosaic with two cellular populations.
Sporadic PHMs are mostly triploid diandric dispermic, but they
have also been reported with diploid biparental, triploid digynic
(29), triploid monospermic (30), tetraploid triandric (31, 32), or
aneuploid genomes. Based on the major categories of complete
and partial moles, different hypothetical models at the origin of
moles’ formation were proposed and have been accepted by the sci-
entific community over the last 30 years. One of these models pos-
tulates that an androgenetic monospermic mole results from the
fertilization of an empty oocyte by a haploid sperm that undergoes
an endoreduplication of its genome to form the diploid androge-
netic monospermic mole. Similarly, androgenetic dispermic moles
would result from the fertilization of an empty oocyte by two sper-
matozoa,while triploid diandric (or dispermic) moles would result
from the fertilization of a haploid oocyte by two different haploid
spermatozoa. These accepted models were recently challenged by
Golubovsky (33) who refutes the existence of empty oocytes at the
origin of androgenetic moles. Instead, he proposes that dispermic
fertilization followed by complex postzygotic abnormalities and
diploidization is at the origin of the various genotypic types of
moles as well as mixoploidies, trisomies, and various aneuploi-
dies. These different models and their implications in the genesis
of HMs are discussed below.

POST-EVACUATION hCG SURVEILLANCE AND
MALIGNANCIES
Molar pregnancies are the most common gestational tumors and
are benign in about 80% of cases. In these cases, hCG falls to non-
pregnant levels after the surgical evacuation of the molar concep-
tion. However, in about 20% of cases in western countries, elevated
hCG levels persist for several weeks post-evacuation or rise after
falling down, which indicates the retention of some trophoblastic
tissues. Such conditions are termed persistent gestational tro-
phoblastic diseases (PGTDs) or gestational trophoblastic neo-
plasias (GTNs) and may necessitate a second surgical evacuation
and/or chemotherapy treatments. GTNs occur most commonly
after CHMs (15–29%), less frequently after PHMs (0.5–4%), and
rarely after SAs, ectopic pregnancies, or normal pregnancies (34–
36). Several classification systems of GTNs have been elaborated
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FIGURE 2 | (A) Hematoxilin and eosin (H&E) staining of a section of
chorionic villi (CV) from a CHM. Note the presence of excessive
circumferential trophoblastic proliferation around all CV (arrows) and the
beginning of hydropic degeneration in two CV (asterisks). (B) H&E staining
of a section of CV from a PHM. Note the presence of circumferential
trophoblastic proliferation (arrows) around one chorionic villus (indicated by
CV) while the others have no or few sprouts of trophoblastic proliferation

(arrows). Note the presence of nucleated red blood cells inside the chorionic
villus (on the right corner) in the conception that led to PHM. (C) One CV
from a PHM displaying trophoblastic inclusions (arrows and magnified view
on the right corner). (D) A view from a PHM showing phalanges of fetal
foot. (E) Another view from a PHM showing fetal membranes. (F) H&E
staining of a section of CV from a spontaneous abortion. Note the absence
of trophoblastic proliferation around the CV.

over time and are used to help standardize and optimize treatments
of these conditions. For good reviews on these topics see (37–39).
In recent times, the most commonly used guidelines are those
of the World Health Organization (WHO) and the Fédération
Internationale de Gynécologie et d’Obstétrique (FIGO).

The most common malignant degeneration of HMs or GTNs
are invasive moles and gestational choriocarcinomas (CCs). The
diagnosis of invasive moles is based on persistent or rising lev-
els of hCG and histopathological identification of CV within
the myometrium (the deep layer of uterine tissues beneath the
endometrium), maternal blood vessels, or within extrauterine tis-
sues. Invasive moles affect approximately 20 and 2–4% of patients
with CHMs and PHMs, respectively (34).

CCs may occur after any type of pregnancy in the following pro-
portions: 35–60% after CHMs, 0.5–2% after PHMs, 15–20% after
SAs, 1–2% after ectopic pregnancies, and 25–42% after normal
pregnancies (40, 41). The diagnosis of CC is based on high hCG
levels and both clinical and laboratory evidence demonstrating the
presence of tumor cells in distant maternal tissues such as the lung,
lower genital tract, brain, liver, kidney, gastrointestinal tract, and
spleen. A definitive diagnosis of CC is based on histopathologi-
cal findings demonstrating the presence of cytotrophoblastic and
syncythiotrophoblast cells, without organized villous structures in
distant maternal tissues (42). CCs are the most aggressive GTNs
because of their ability to spread hematogenously. They may be
fatal in the absence of appropriate follow-up and management.
Again, both invasive HMs and CCs have higher frequencies in
both developing and underdeveloped countries than in developed
countries (40).

THE IMPORTANCE OF CROSSING OUR DISCIPLINE
Despite the ancient clinical recognition of HMs and the presence
of several reports describing cases of recurrent moles (15, 43–46)
no attempts were made to identify causative genes for the recur-
rent form until the report by Seoud et al. (47) that led to the
mapping of the first maternal locus to 19q13.4 (48). At that time,
only six other familial cases of RHMs had been reported in the
English PubMed literature since 1980 (49–52). Consequently, we
and others believed that the familial form of moles was extremely
rare. However, this was not true and approximately 30 new famil-
ial cases have been reported since 1999 (47, 53–69) indicating that
familial RHMs are not extremely rare as originally believed, but
were probably under-reported. In addition, about 88 singleton
cases of RHMs have been described since 1999. The importance
of the case reported by Seoud and his collaborators (47) is in the
fact that the authors crossed the boundaries of their disciplines, a
common practice in many medical specialties, but a rare one in the
field of Obstetrics and Gynecology. These authors sought the help
of scientists from other disciplines at a time where small nuclear
consanguineous families were an opportunity for gene mapping
by homozygosity analysis. This original family as well as another
(51) led to the mapping of the first maternal-effect locus responsi-
ble for recurrent moles to 19q13.4 (48) and opened a new avenue
of research aimed at identifying maternal genes causing RHMs
and recurrent fetal loss.

LESSONS FROM STUDYING EXTREME PHENOTYPES
One difficulty associated with homozygosity mapping and study-
ing rare families is in narrowing down the size of the candidate
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intervals. This was the case of 19q13.4 candidate region, which
was originally four megabases and is a gene-dense region. Con-
sequently, the identification of the causative gene, NLRP7, was
tedious and required the screening of 80 different genes until
the first causative mutations were identified (70). The mutations
segregated in the studied families and each patient had two defec-
tive alleles, each inherited from one parent as expected for an
autosomal recessive disease. Later, others and we confirmed the
causality of NLRP7 mutations in patients from different popula-
tions (54, 60, 63, 66, 67, 69, 71, 72), demonstrating that NLRP7
is a major gene for RHMs. To date, approximately 42 differ-
ent mutations have been reported in patients with two defective
alleles (Figure 3) (73) Of these mutations, 65% are protein-
truncating (stop codon, splice mutations, small insertions and
deletions, and large rearrangements) and 35% are missense muta-
tions, which are, respectively, higher and lower than the frequen-
cies of these two categories of mutations observed in all human
diseases, 56 and 44% (http://www.hgmd.cf.ac.uk/ac/index.php).
Although, this difference is not statistically significant, it indicates
that patients with RHMs and two mutations may represent the
most severe phenotype of the disease.

The identification of NLRP7 is therefore one of many exam-
ples where rare families segregating severe monogenic Mendelian
forms of common conditions have led to the identification of
causative genes [for an interesting review on the subject see
(74)]. This raises an important question: do familial RHM cases
with NLRP7 mutations have more severe mutations than single-
ton cases? The originally reported families tended to have more

protein-truncating mutations than singleton cases. However, this
is no longer the case since reports of singleton cases with protein-
truncating mutations have increased lately. This could be due to
the fact that many singleton cases do not manifest as familial cases
because of the small size of families in current societies and/or
the lack of other female siblings who have tried to conceive. These
factors may have prevented the familial manifestation of many
singleton cases with inherited mutations from the two parents.

NLRP7 EXPRESSION
Before the identification of the causal link between NLRP7 and
RHMs, NLRP7 transcripts were shown to be expressed in a large
number of human tissues including liver, lung, placenta, spleen,
thymus, peripheral blood leukocytes, testis, and ovaries (75, 76).
After our group linked NLRP7 to RHMs,we investigated its expres-
sion in oocytes and detected its transcripts in all stages of immature
oocytes, fertilized eggs, and early embryo cleavage stages (70).
These data were later confirmed in an interesting study that showed
that NLRP7 transcripts decrease progressively during oocyte mat-
uration and reach their lowest level on day 3 post-fertilization,
which corresponds to the morula stage, then increase sharply from
day 3 to day 5, which corresponds to the blastocyst stage and the
activation of the fetal genome transcription (77).

At the protein level, NLRP7 expression was shown in all
stages of growing follicles and in all these stages, its expres-
sion was restricted to oocytes (72). In another study reported
by our group, we detected variable levels of NLRP7 protein in
seven analyzed hematopoietic cells: Epstein Barr virus transformed

FIGURE 3 | Schematic representation of NLRP7 protein structure
and identified mutations and variants in patients with
hydatidiform moles and reproductive loss. PYD, stands for the pyrin
domain, NACHT, stands for found in the NAIP, CIITA, HET-E, and TP1
family proteins; ATP for adenosine 5′-triphosphate binding motif; and
LRR, for leucine rich repeats. The ATP binding domain is a small motif
of 8 amino acids and starts at position 178. Mutations found in patients

with two defective alleles are in red and include nonsense, frameshift,
invariant splice site, and missense mutations. Variants found in patients
in a heterozygous state and not in controls are mostly missenses and
are in blue. Variants found in patients and in subjects from the general
population are in black. Mutation nomenclature is according to the
Human Genome Variation Society (HGVS) guidelines
(http://www.hgvs.org/mutnomen/recs.html).
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B-lymphocytes, BJAB, Raji and Ramos (all of B-cell origin), Jurkat
(of T-cell origin), and THP1 and U937 (both of monocytic
origin) (78).

NLRP7 DOMAINS
The NLRP7 protein consists of three domains: (i) an N-terminal
pyrin, (ii) a NACHT termed after four proteins containing an
NTPase domain with significant similarities, neuronal apoptosis
inhibitor protein (NAIP), MHC class II transcription activators
(CIITA), incompatibility locus protein from Podospora anserine
(HET-E), and mammalian telomerase-associated proteins (TP1);
and (iii) a C-terminal stretch of 9 or 10 leucine rich repeats (LRRs)
depending on splice isoforms (Figure 3).

The pyrin domain is a small domain (92 amino acids) found
in all NLRPs and apoptotic proteins. The pyrin domain func-
tions as an adaptor that helps to connect proteins of the pro-
gramed death machinery. Pyrin domains can self-associate to form
homodimers or associate with other proteins containing struc-
turally related domains to form heterodimers. Domains known
to interact with the pyrin domain include the death domain
(DD), the death-effector domain (DED), and the caspase acti-
vation and recruitment domain (CARD). These pyrin-mediated
associations result in the formation of protein complexes and net-
works that transmit signals from receptors to downstream effectors
that function in various cell-death pathways (79). The NACHT
domain has an ATP/GTPase-specific P-loop domain, which is a
very ancient domain found in bacteria, plants, and all eukaryotes.
NTPase domains are found in both apoptotic and anti-apoptotic
proteins; they control programed cell-death during development
by regulating cytochrome c efflux from the mitochondria, which
stimulates apoptosis (80). The LRR domain is found in other pro-
teins with divergent functions such as Toll-like receptors (TLRs),
Ran GTPase, and RNAse inhibitor proteins. TLRs are components
of the innate immune system, from which the LRR extends into
the extracellular milieu where it senses extracellular danger signals
and transmits the signals to cytoplasmic proteins. Ran GTPases
are essential for transporting RNAs and proteins through the
nuclear pore complex by interacting with shuttling transport pro-
teins and changing their ability to bind or release cargo molecules.
Finally, RNase inhibitor proteins bind RNAse A and angiogenin
and regulate RNA degradation and angiogenesis (81).

KNOWN FUNCTIONS AND ROLES OF NLRP7
The most studied functions linked to the different NLRP domains
are those involved in the activation of the innate immune system in
response to various microbial and chemical products. With respect
to NLRP7, four studies have addressed its functional roles to date
and their results are recapitulated in Table 1. Using transient
transfections, two studies showed that NLRP7 down-regulates the
intracellular level of mature IL1B (76, 78). While the first study
showed that this is due to the down-regulation of pro-IL1B pro-
cessing (76), the second, by our group, showed that this is due to
the lower production of intracellular pro-IL1B (78). In addition,
we found that in transient transfections, NLRP7 inhibition of pro-
IL1B production is mediated concomitantly by its three domains,
with the strongest effect being mediated by the LRR, followed by
the NACHT and the pyrin domains (78). In the study by Kinoshita

et al., the authors showed that NLRP7 binds pro-IL1B and pro-
caspase 1 and inhibits IL1B secretion induced by caspase 1, ASC, or
NLRP1-delLRR. They also showed that both recombinant mouse
IL1B and LPS stimulation enhance NLRP7 transcription, which in
turn down-regulates IL1B secretion. They concluded that NLRP7
is a negative feedback regulator of IL1B and consequently plays an
anti-inflammatory role (76).

Part of the study conducted by our group was performed
on ex vivo LPS-stimulated peripheral mononuclear blood cells
from patients with one or two mutations in NLRP7. This exper-
iment demonstrated the requirement of wild type NLRP7 for
normal IL1B secretion (78). Within monocytes, which are the
main cells that secrete IL1B, NLRP7 co-localized with the Golgi
apparatus and microtubule organizing center (MTOC) (Figure 4)
(78). Moreover, treatment of EBV lymphoblastoid cell lines with
nocodazole, a drug that depolymerizes microtubules resulted in
the fragmentation of NLRP7 signal. This suggested that nor-
mal NLRP7 associates with microtubules and that its muta-
tions may impair cytokine secretion by disrupting microtubules
structures and consequently affecting intracellular trafficking of
IL1B vesicles. The role of NLRP7 in IL1B secretion was con-
firmed in another independent study involving silencing NLRP7
in macrophages using small interfering RNA (82). In this study,
the effect of silencing eight other NLRPs was also tested, but
only NLRP7 knockdown significantly decreased IL1B secretion.
This study by Khare et al. also confirmed the physical interaction
between NLRP7, ASC, and caspase 1 via the pyrin domain, and
that the LRR of NLRP7 is required for sensing bacterial acylated
lipopeptides.

Khare et al. (82) also revealed another function of NLRP7
by demonstrating that NLRP7 silencing promotes intracellular
growth of Staphylococcus aureus and Listeria monocytogenes. A
prior study implying a role for NLRP7 in cellular proliferation,
but in the opposite direction, was reported by Okada et al. (75),
who showed that silencing NLRP7 reduces the proliferation of
human embryonal carcinoma cell lines, suggesting that the nor-
mal protein promotes cellular growth and has an oncogenic role.
The mechanisms leading to both functions are currently unclear
and need to be explored in future studies. However, from the HM
perspective, we tend to believe in the role suggested by Khare et al.
(82), because an important feature of molar tissues from patients
with two NLRP7 defective alleles, which are diploid biparental
and obligate carriers of one mutated copy of NLRP7, is the exces-
sive proliferation of their trophoblastic cells. This is in line with
the data by Khare et al., and is a further indication that NLRP7
mutations promote cellular growth.

UNDERSTANDING THE VARIABILITY OF A PHENOTYPE: BACK
TO THE GENETIC COMPLEXITY OF REPRODUCTIVE LOSS
An important aspect of our understanding of any disease or system
is to understand its variability and determine its extreme pheno-
types with its most and less severe manifestations. Despite the
fact that we named the 19q13.4 locus as responsible for RHMs,
affected patients from the original family, MoLb1, experienced, in
addition to their moles, other forms of reproductive loss, namely
SAs, stillbirths, an early neonatal death, one malformed live birth,
and two live births that led to healthy adults. This large variability
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Table 1 | Recapitulation of the functional roles of NLRP7 in different studies and cellular models.

(75) (76) (78) (82)

LPS or rm-IL1B induce NLRP7

transcription in PBMC and THP1

Transient transfection in HEK293 Ex vivo PBMC Macrophages

NLRP7 inhibits IL1B secretion

induced by NLRP1-delLRR, IL1B,

caspase 1, and ASC in transient

transfection

Cells with NLRP7

mutations have

low secreted IL1B

NLRP7 silencing reduces IL1B

secretion in macrophages

NLRP7 down-regulates

pro-IL1B and pro-caspase 1

processing leading to lower

intracellular mature IL1B

NLRP7 down-regulates

pro-IL1B production

leading to lower

intracellular mature IL1B

NLRP7 mutations

increase slightly

pro-IL1B production

NLRP7 interacts with

transfected pro-caspase 1 and

pro-IL1B

NLRP7 and IL1B

subcellular

localization overlaps

NLRP7 interacts with caspase 1 and

ASC in HEK293 cells through the pyrin

domain

Cells with NLRP7

mutations have low

secreted TNF

NLRP7 Silencing does not affect IL6 or

TNF secretion by macrophages

NLRP7 silencing

with siRNA reduces

cellular proliferation

NLRP7 Silencing with siRNA increases

intracellular bacterial growth
NLRP7 LRR is necessary to sense

bacterial acylated lipopeptides

LPS stands for lipopolysaccharides; PBMC for peripheral blood mononuclear cells; NLRP1-delLRR stand for NLRP1 in which the leucine rich repeat is deleted; siRNA

for small interfering RNA; rm-IL1B, indicates recombinant mouse IL1B. Conclusions obtained by at least two independent studies are in bold character.

FIGURE 4 | NLRP7 expression in monocytes using immunofluorescence. NLRP7 stains two small dots specific for the microtubule organizing center,
which is also revealed with γ-tubulin as previously reported (78).

in the reproductive outcomes of three patients from MoLb1 was
intriguing because such variability is unusual in recessive diseases.
However, this variability was not restricted to one family, but
was observed, to a lesser extent, in other families studied by our
group. Furthermore, this variability was in agreement with data
from a large epidemiological study showing increased frequencies
of moles, preterm births, stillbirths, and ectopic pregnancies in
women with at least two SAs (83). These observations led us to
extend our inclusion criteria for NLRP7 sequencing to women
with at least three SAs and no moles as well as to women with the

sporadic, common, non-recurrent moles. This analysis showed
that two of the 26 analyzed women with recurrent SAs (8%) and
eight of the 64 analyzed women with a single HM (associated with
and without other forms of reproductive losses) (13%) have novel
NLRP7 non-synonymous variants (NSVs), all missenses in het-
erozygous state, which were not found in a large number of control
subjects from the same ethnicity of the patients (Figure 5) (84).
One of the two patients with >3SAs and a missense mutation had a
persistent gestational trophoblastic disease requiring chemother-
apy after one of her miscarriages. Moreover, six of the patients
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with one HM and a NSV in NLRP7 had at least two other repro-
ductive losses, in addition to their HMs, indicating their genetic
susceptibility to recurrent reproductive loss. In addition, patients
with one defective allele statistically had less severe reproductive
outcomes and more live births than patients with two defective
alleles (p-value= 2.809e−06) (Figure 6).

In conclusion, this analysis did provide a positive answer to our
search for mutations in milder phenotype of RHMs. However, it
raised challenging questions that all scientists working on complex
traits are currently facing: how do we define a pathological NSV?
And what tells us that these rare NSVs, found in heterozygous states
in a so far believed autosomal recessive disease, have functional
consequences on the protein and confer genetic susceptibility for
reproductive loss?

FIGURE 5 | Summary of NLRP7 mutation and non-synonymous
variants found in 135 unrelated patients with varying histories of
reproductive wastage. HM stands for hydatidiform mole; SA, stands for
spontaneous abortion; NSV, for non-synonymous variant. Mutations in
NLRP7 were most frequently observed in patients with at least two HMs,
followed by patients with one HM, and then by patients with at least three
SAs (84).

SIGNIFICANCE OF RARE NLRP7 NSVs FOUND IN
HETEROZYGOUS STATE IN PATIENTS
To date, a total of 17 rare NSVs, 16 missenses, and one non-
sense, have been observed in heterozygous state in a total of
24 patients but not in controls (67, 85–89) (Figure 3). Some
of these NSVs were later found in the 1000 Genomes database
but at very low frequencies. Among patients analyzed in our
laboratory, 19% of singleton cases with RHMs have one rare
NSV in a heterozygous state. At this point in time, it is not
clear whether these NSVs are pathologic or not. Consequently,
such novel NSVs are not for clinical use and should not be
reported to patients to predict the outcomes of future pregnan-
cies. However, they cannot be ignored by scientists aiming at
understanding the pathology of RHMs and its relationship to the
sporadic common form of HMs, recurrent SAs, and other forms
of reproductive loss.

To better understand the significance of these NSVs and elabo-
rate strategies to investigate their pathogenicity, it is important to
look at similar situations in other diseases with both rare severe
recessive forms and common milder forms. A selection of such dis-
eases is shown in Table 2. The best example is Parkinson disease
(PD), for which several causative genes have been identified. Some
of these genes are responsible for recessive forms of PD, while oth-
ers are responsible for dominant forms. Among the causative genes
for recessive forms, PINK1 is responsible for an early onset form
of PD and has two mutated alleles in several patients from familial
and non-familial sporadic cases of PD. However, other patients
were found to have single rare NSVs in heterozygous state. When
compared to controls from the same ethnic group, patients with
PD were found to have an excess of rare PINK1 NSVs in heterozy-
gous state. Consequently, these rare NSVs are believed to underlie
the genetic susceptibility of these patients for PD (90–92). The
same principle applies to other genes: ATP13A2 responsible for
a juvenile onset of PD (93), GBA responsible for Gaucher’s dis-
ease (94, 95), ABCA1 responsible for Tangier disease (96), and
MEFV responsible for familial Mediterranean fever (FMF) (97).
In most of these cases, patients with single heterozygous variants
have a milder form of the same disease in terms of clinical severity

FIGURE 6 | A comparison of reproductive outcomes between women
with two or one defective NLRP7 allele. In both histograms, n indicates the
total number of pregnancies from patients in either category. HM,

hydatidiform mole; SA, spontaneous abortion; SB, stillbirth; and LB, live birth.
A higher incidence of HMs and a lower incidence of live births are observed in
patients with two defective alleles.
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Table 2 | Examples of genes causing rare severe recessive diseases and confering susceptibility to common or related forms of the same disease.

Gene Two defective alleles Single mutated allele Reference

PINK1 Autosomal recessive Parkinson diease (PD)

with early onset

More rare variants in patients vs. controls (10 vs. 2) (90, 92)
Milder phenotype and later onset in heterozygous relatives of severely

affected patients in large pedigrees

(91)

ATP13A2 Juvenile onset Parkinson disease <21 years Young onset Parkinson disease (93)

GBA Gaucher’s disease More rare variants in patients with PD vs. controls. This seems specific to

some ethnic groups, e.g., Ashkenas, French

(94, 95)

MEFV Familial mediterranean fever In 15% of patients (97)

ABCA1 Familial hypoalphalipoproteinemia More rare variants in individuals with low HDL-C than in those with high

HDL-C (16% vs. 2%)

(96)

or/and age of onset or have a related condition that include some
of the features of the severe disease (93–97).

With respect to RHMs, the age of onset is not an appropriate
indicator of severity; however, a severe genetic defect would trans-
late into recurrence and would be expected to lead to the same
genetic defect every time a patient tries to conceive. On the con-
trary, a milder genetic defect, which can be modulated by other
environmental factors, would be expected to lead to more vari-
ability in the reproductive outcomes of the patients. This is exactly
the conclusion we reached in the last analysis performed on three
categories of patients (RHM, sporadic HM, and recurrent SA),
which showed that patients with RHM have the highest frequency
of NLRP7 mutations (60%), and these patients had mostly two
defective alleles, each. However, 13% of patients with one mole
and other reproductive wastage had a single variant in a heterozy-
gous state, while 8% of patients with at least three SAs had rare
NLRP7 variants in heterozygous state (Figure 5). Similar results
were obtained from patients with sporadic HM and reproductive
wastage in a different population (Tunisian) and again showed the
presence of NLRP7 variants in heterozygous state in 13% of the
patients (59). Additional case-control studies designed to screen
all NLRP7 exons in patients with sporadic HM and recurrent SAs
are needed to assess whether the burden of NLRP7 mutations and
rare NSVs is higher in patients than in ethnically matched controls.
In the meantime, a number of other tests can be used to investi-
gate the pathogenicity of encountered variants. These include (i)
the absence of the variants in controls of matching ethnicity to
the patients; (ii) the conservation of the changed amino acids
throughout evolution; (iii) the predicted functional consequences
of the identified variants using various algorithm; (iv) the segre-
gation of the variants on different haplotypes when present with
other known deleterious mutations; (v) the functional impact of
the variants on the protein subcellular localization; and ideally (vi)
the impact of the variants on the protein function in any type of
cellular assays.

GENOTYPE OF HM TISSUES IN PATIENTS WITH NLRP7
MUTATIONS
To date, the parental contribution to approximately 70 HM tis-
sues from patients with two defective alleles in NLRP7 have been
characterized and all of them were found to be diploid biparental

(55, 62, 63, 87, 98–100) with the exception of one tissue that was
digynic (101). However, this is not the case for HM tissues from
patients with single heterozygous rare NLRP7 variants. In this
category of patients, few HM tissues were genotyped; some were
found to be diploid androgenetic monospermic (67, 85, 87, 89)
and others were found to be triploid diandric dispermic (102).
The reason for this difference is not yet clear and needs to be
addressed in future studies. Such studies may also clarify whether
specific single heterozygous rare NLRP7 variants confer a genetic
susceptibility to a specific genotypic type of moles. This would help
elucidating the mechanisms of the formation of different geno-
typic types of moles. This is particularly important because the
currently accepted mechanisms of mole formation are hypotheti-
cal and the emerging ideas propose a single model stemming from
dispermic fertilization followed by postzygotic abnormalities (33).

NLRPs AND REPRODUCTION
NLrp5
Nlrp5 (originally called Op1 then Mater, and lately Nlrp5) is the
first NLRP gene shown to play a causative role in mammalian
reproduction (103). Nlrp5 was isolated from a mouse model of
autoimmune oophoritis (also termed premature ovarian failure)
generated by neonatal thymectomy. Female mice thymectomized
in the third day after birth spontaneously develop autoimmune
disorders characterized by organ-specific inflammation and lym-
phocyte infiltration (104). In some mouse strains, the predom-
inant autoantibody is directed against the ovary where it reacts
with NLRP5. To gain insights about the role of NLRP5 in autoim-
mune oophoritis, the authors generated knockout null females,
NLRP5−/−, and found that these females ovulate normally and
their oocytes fertilize in vivo with no apparent abnormalities.
However, their embryos stop developing at the two-cell stage, a
time at which major embryonic genome activation takes place.
The role of NLRP5 in preimplantation embryonic development
was also confirmed in monkeys where its knockdown in MII
oocytes resulted in a significant reduction in the number of
embryos that reached the blastocyst stage (105). In mouse oocytes,
NLRP5 is part of specialized oocyte cytoskeletal structures (called
cytoplasmic lattices) that are responsible for the distribution of
organelles, maternal mRNA, and maternal proteins in the oocytes
(106–108). Also, previous studies on NLRP5 showed that within
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oocytes, NLRP5 localizes to mitochondria and nuclear pores and
is implicated in oxidative stress during oocyte aging (109).

NLRP14
To date, a single study has implicated NLRP14 in spermatogenic
failure in humans based on the presence of one stop codon and
four missense mutations, all of which were found in heterozygous
state and each in a single patient and were not found in controls
(110). However, no additional studies replicating the causal role of
NLRP14 or explaining its potential role in spermatogenic failure
have been reported.

NLRP2
NLRP2 is the closest human gene to NLRP7 in terms of pro-
tein homology and both genes are believed to have originated
from the same mouse paralog during evolution (109, 111–113).
NLRP2 was shown to be responsible for a single familial case of
Beckwith–Wiedemann syndrome (BWS) based on the presence
of a frameshift mutation in a homozygous state in an unaffected
mother and in her two children affected with BWS (114). The
presence of a homozygous NLRP2 mutation in the mother of
two children with BWS is interesting because of the relationship
between BWS and HM, and their association with reproductive
loss and abnormal imprinting. However, since that report, no
other cases of BWS were shown to have mutations in NLRP2,
which makes this finding either a rare causal event occurring in a
small minority of cases or a coincidental association. In addition,
Nlrp2 knockdown in murine oocytes at the germinal vesicle stage
was shown to lead to embryonic arrest at the two-cell stage (115).

Nlrp4e
Recently a new study investigating the role of mouse Nlrp4e in
female reproduction has been reported. In this study, Nlrp4e was
found expressed in all follicular stages, unfertilized eggs, and early
embryo cleavage stages. Again, Nlrp4e knockdown in fertilized
eggs resulted in a reduced number of embryos that reach the blas-
tocyst stage, which is an indication that maternal Nlrp4e is required
for early embryo development (116).

CONCLUSION
Since the identification of Nlrp5 and NLRP7, the list of NLRP
genes with maternal-effects continues to grow. We expect this list
to expand even further because of the presence of four additional
NLRPs besides NLRP4 and NLRP2 that show oocyte-specific
expression and have not yet been linked to reproduction in any
organism: NLRP8, 9, 11, and 13 (112). All of these NLRPs are
highly expressed in germinal vesicle oocytes and decrease during
preimplantation development to reach their lowest levels at the
blastocyst stage, which is in favor of their maternal-effect role.

With respect to NLRP7, we do not yet know the exact role of
its protein in human oocytes. However, based on several obser-
vations, we believe that oocytes from patients with mutations are
defective at several levels and are not able to sustain early embry-
onic development. Consequently, the embryos stop developing
very early in these conceptions. Because these patients also have
decreased cytokine secretion, we believe that they fail to mount
an appropriate inflammatory response to reject these arrested
pregnancies as normal women would. As a result, the retention
of these dead pregnancies with no embryos to later gestational
stages leads to the hydropic degeneration of CV. This, combined
with the potential role of NLRP7 mutations in enhancing pro-
liferation, may lead to the three fundamental aspects of moles:
aberrant human pregnancies with no embryo, abnormal excessive
trophoblastic proliferation, and hydropic degeneration of CV. We
believe that fully understanding the three aspects of the pathol-
ogy of HM would greatly benefit from collaborations between
scientists in various medical fields.
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