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Systemic Sclerosis (Scleroderma, SSc) is an autoimmune disease characterized by vascu-
lopathy, inflammation, and fibrosis that can lead to loss of organ function.Type I interferons
(IFNs) are family of cytokines that mitigate the deleterious effects of viral and bacterial
infections in the innate immunity system. Past several years, research efforts have been
focused on the role of type I IFN and IFN-inducible genes in the pathogenesis of SSc.
Polymorphisms in the Interferon regulatory factor (IRF )-5, IRF7, and IRF8 are associated
with SSc, Similarly, polymorphism of SignalTransducer and Activator ofTranscription (STAT)-
4, has been established as a genetic risk factor of SSc. IRFs and STAT4 proteins are key
activators of type I IFN signaling pathways. An IFN signature (increased expression and acti-
vation of IFN-regulated genes) has been observed in the peripheral blood and skin biopsy
samples of patients with SSc. Furthermore, a plasma IFN-inducible chemokine score cor-
related with markers of disease severity and autoantibody subtypes in SSc. In this review,
we summarize our current knowledge of the role of type I IFNs and IFN-inducible genes
in the pathogenesis of SSc and their potential role as biomarkers and therapeutic targets.

Keywords: systemic sclerosis, innate immunity, type 1 IFN, interferon regulatory factor, IFN-inducible cytokines and
chemokines

INTRODUCTION
Systemic sclerosis (Scleroderma, SSc) is characterized by immune
dysregulation, fibrosis, and vasculopathy although its pathogenesis
is not completely understood (1). Disease morbidity and mor-
tality remain high (2, 3). There is no definite cure for SSc and
the available treatments have limited efficacy. The major hur-
dle in developing effective therapies for SSc is an incomplete
understanding of disease pathogenesis. A better understanding of
SSc pathogenesis is important for identifying more targeted and
effective therapeutic approaches.

Recently, there has been an increasing interest in the role of type
I interferons (IFNs) in pathogenesis and severity of SSc. IFNs are
a heterogeneous family of multifunctional cytokines. They were
originally identified as proteins responsible for induction of cel-
lular resistance to viral infections. Type I IFNs include IFN-α,
-β, and -ω, and alleviate the effects of viral and bacterial infec-
tions in the innate immunity system (4, 5). Type I IFN subtypes-α
and -β share common multicomponent, cell surface receptors, and
elicit a similar range of biological responses, including antiviral,
anti-proliferative (6), and immune modulatory activities.

In this review, we summarize the current knowledge about the
role of type I IFN and its inducible genes in the SSc pathogenesis
and biomarker development.

INNATE IMMUNITY AND SSc
The innate immune system is the first line of host defense against
pathogens. It plays an important part in triggering inflamma-
tion and promoting development of fibrosis in many organ sys-
tems. The dominant cellular components of innate immunity
are mainly neutrophils, macrophages, and dendritic cells. These
cells sense pathogens and destroy them, followed by secretion of
pro-inflammatory chemokines and cytokines to activate T cells

and other components of adaptive immune system. There is an
increasing evidence for activation of the innate immune system
in SSc. Cells involved in the innate immune system are detected
at the end organ damage site of SSc (7, 8). Being the first cells in
line in the defense against pathogens of any sort, the antigen pre-
senting cells (APCs) are often considered the most influential cell
of the innate immune system. The specific nature of these APC
and how they contribute to the development of fibrosis is still
unclear. The perivascular infiltrates in the non-lesional skin of SSc
patients mainly consists of macrophages/monocytes and CD4+ T
cells suggesting that the aberrant or dysregulated immune system
precedes fibrosis (9–11). Alternatively activated macrophages are
present in SSc skin biopsies (8, 12, 13), this type of macrophages
are potentially important source of profibrotic cytokines includ-
ing transforming growth factor β (TGF-β) which contribute to
resolving inflammation and promoting wound healing (14). The
sub-classification of macrophages into classically activated M1
macrophages and alternatively activated M2 macrophages is also of
special interest in SSc because the M1 type is clearly more inflam-
matory and the M2 type is thought to be more involved in tissue
remodeling and profibrotic phenotypes. M2 macrophages highly
express several receptors such as hemoglobin scavenger receptor
(CD163), class A scavenger receptor (CD204), and mannose recep-
tor (CD206) (15, 16). SSc patients show significantly higher serum
soluble CD163 levels, and the number of CD163+ and CD204+

activated M2 macrophages is significantly greater in SSc skin (17,
18). The role of M2 macrophages for the development of fibrosis
in SSc is still speculative, further studies are needed to clarify the
potential mechanism of M2 macrophages in this disorder.

In this non-specific immune system, mast cells, basophils,
and natural killer (NK) T cells play more specialized immune
functions. For instance, dermal mast cell number density was
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significantly higher in diffuse SSc patients than in unaffected
controls (19, 20). Electron microscopy (EM) with immunogold
labeling in skin biopsy samples revealed that patients with pro-
gressive SSc (worsening skin thickening and/or organ function in
the year preceding biopsy) had higher number of mast cells. Fur-
thermore, mast cell vesicles containing active TGF-β in patients
with SSc showed higher level of degranulation than those from
unaffected controls (21). The number of basophils, a circulating
counterpart of mast cells was increased in SSc patients. Sponta-
neous histamine releasability, its reactivity to IgE and response
to IL-3 were increased in basophiles from patients with SSc (22).
On the other hand, the absolute number and proportion of NK T
cells were decreased in patients with SSc which possibly can lead to
down-regulation of the normal immune response (23). Altogether,
these observations implicate a dysregulated immune system in the
pathogenesis of SSc.

In line with those observations, large efforts have been made to
find the genetic risk factors for abnormal immune system in SSc.
These studies independently replicated genetic risk factors such as
STAT4 (24–26), BLK (27–30), BANK1 (31, 32), Interferon regu-
latory factor (IRF)-5 (33, 34), IRF-7, and -8 (35–38), and the T
cell receptor zeta-chain (CD247 ) (26) which are involved in innate
and adaptive immune system.

TYPE I IFNs AND SSc
Type I IFNs are important key regulators of the innate immune sys-
tem. They modulate immune cell differentiation and proliferation,
as well as inflammatory cytokine production. Recent studies have
provided considerable evidence that implicates a dysregulation in
type I IFN and IFN-inducible genes in the pathophysiology of
autoimmune diseases including SSc (39–43). SSc shares this com-
mon characteristic with systemic lupus erythematosus (SLE) (44).
Anti-IFNα mAb, sifalimumab, was evaluated in a phase Ia study
with an open-label extension of 67 SLE patients with moderately
active disease. Sifalimumab caused dose-dependent inhibition of
type I IFN-induced mRNAs in whole blood and corresponding
changes in related proteins in affected skin. Exploratory analyses
showed consistent trends toward improvement in disease activity
(44). In a follow-up phase Ib randomized, controlled trial with
161 SLE patients, no statistically significant differences in clinical
activity between sifalimumab and placebo were observed. How-
ever, when adjusted for excess burst steroids, change in disease
activity, and complement levels from baseline showed a positive
trend over time (45).

Approximately, half of SSc patients have an increased expres-
sion of IFN-regulated genes (termed the “IFN signature”) in their
peripheral whole blood cells (46). Recent studies demonstrated
activation of type I IFN system was present in SSc sera and plas-
macytoid dendritic cells (pDCs) were the main source of IFN-α
production (47, 48). Tan et al. first reported a distinct transcript
pattern of dysregulated type I IFN-inducible genes in periph-
eral blood cells (whole blood) from patients with SSc (40). This
finding was subsequently confirmed in peripheral blood mononu-
clear cells (41). The development of SSc has been reported in
patients undergoing IFN treatment (49). Furthermore, a random-
ized, placebo-controlled trial of subcutaneous IFN-α injection in
patients with early SSc showed that treatment with IFN-α resulted

in worsening lung function and a smaller degree of improvement
in skin thickening scores compared to placebo (50). Although the
presence of an activated IFN system could be demonstrated, the
exact mechanism by which the dysregulated type I IFN signal-
ing contributes to the pathophysiology of fibrosis in SSc is still
unknown.

The innate immune system responds rapidly to the presence of
certain motifs or patterns that microbes possess commonly such as
unmethylated DNA rich in CpG dinucleotides, dsRNA, and bacte-
rial cell wall components via pattern recognition receptors (PRRs)
(51). These PRRs are widely expressed on cells of the immune
system, as well as endothelial, epithelial, and mesenchymal cells
including fibroblasts. Some of the most prominent PRRs are the
Toll-like receptors (TLRs). TLRs located on various cellular mem-
branes to sense exogenous and endogenous danger-associated
molecular patterns (DAMPs) and pathogen-associated molecu-
lar patterns (PAMPs), and play a critical role in innate immune
responses. TLR activation triggers production and secretion of
several inflammatory cytokines including type I IFNs (52, 53). The
TLR family includes both extracellular and endosomal receptors.
The first is based on the cell surface like TLR-2, -4, -5, and -6 and
recognize patterns found primarily on bacteria, mycobacteria, fun-
gal, and parasitic organisms (54), the latter is located in endosome
like TLR-7 and -8. TLR-9 is localized in the endoplasmic reticulum
and translocated to the endosome upon response to bacteria DNA.
They recognize a wide variety of pathogen components, and all the
TLRs except TLR3 signal through the adaptor molecule MyD88,
activate and stimulate type I IFN production. Bhattacharyya et al.
reported that TLR4 was overexpressed in the skin and lung tissues,
as well as explanted skin fibroblasts from patients with SSc (55).
Our recent findings revealed that TLR3 expression was upregu-
lated in patients with SSc and IFN-α2 induced an up-regulation
of TLR3 in human dermal fibroblasts which is more prominent in
SSc patients than in unaffected control subjects (56). These find-
ings are suggesting an important role for TLR activation via type
I IFNs in fibroblast biology.

INTERFERON REGULATORY FACTORS AND SSc
Interferon regulatory factors are best characterized as transcrip-
tional regulators of type I IFNs and IFN-inducible genes and play
a pivotal role in regulation of many facets of innate and adaptive
immune response (57). This family is composed of nine members:
IRF1, IRF2, IRF3, IRF4 (also known as LSIRF, PIP, or ICSAT),
IRF5, IRF6, IRF7, IRF8 (also known as ICSBP), and IRF9 (also
known as ISGF3γ) (58, 59). As transcriptional factors, each IRF
contains a well-conserved DNA-binding domain which is located
at the amino terminus and forms a helix-turn-helix-motif. This
region recognizes a consensus DNA sequence known as the IFN-
stimulated response element (ISRE) in the promoters of targeted
genes (59–61). These IRFs coordinate the expression of type I
IFNs and type I IFN-inducible genes (57). Several genetic poly-
morphisms have been associated with SSc in multiple case–control
studies and a few family studies (Table 1). Some of these genetic
variants are associated with susceptibility for development of SSc,
while others act as disease modifiers. Recent genome-wide associa-
tion studies (GWASs) also confirmed IRFs as genetic susceptibility
loci in autoimmune diseases.
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Table 1 | Polymorphisms in the interferon regulatory factors associated with systemic sclerosis.

IRF Chromosome (human) Expression cells SSc associated SNPs Reference

IRF5 7q32 B cells; DCs; monocytes rs2004640; rs2280714;

rs10954213; rs3757385

Radstake et al. (26), Dieude et al.

(31), Sharif et al. (33)

IRF7 11p15.5 B cells; fibroblasts; pDCs;

monocytes

rs1131665; rs4963128;

rs702966; rs2246614

Carmona et al. (35)

IRF8 16q24.1 B cells; macrophages;

CD8α + DCs; pDCs; T cells

rs11642873; rs2280381 Gorlova et al. (36), Terao et al. (37),

Martin et al. (38)

IRF5 is a transcription factor which induces the transcription
of IFN-α and other early pro-inflammatory cytokines (62, 63).
In vitro experiments have shown that in virus-infected cells, IRF5
is activated by phosphorylation, resulting in nuclear transloca-
tion and stimulation of IFN-α (64). Initial analysis of the role
of IRF5 in the innate antiviral response utilizing IRF5 mutant
mice showed impairment of interleukin-6 (IL-6) and TNF-α pro-
duction in splenic dendritic cells. IRF5 mutant mice are highly
sensitive to viral infection and show lower levels of type I IFN
in the serum. IFN production was also impaired in the infected
macrophages from IRF5 mutant mice (65, 66). Genetic variants of
IRF5 are associated with SSc susceptibility (67–69).

The minor allele of the IRF5 single-nucleotide polymorphism
(SNP) rs4728142 was shown to be predictive of longer survival in
the two independent SSc cohorts. The association of this SNP with
survival was independent of age at disease onset, disease type, and
autoantibody profiles (33). This minor allele was also associated
with lower IRF5 transcript expression in monocytes of patients
and controls suggesting functional relevance of rs4728142 or it
associated SNPs for IRF5 expression.

IRF7 is one of transcription factors involved in IFN signaling
pathways which is activated by TLRs TLR3/7/9 or retinoic acid-
inducible gene 1 (RIG-1) in response to nucleic acid (both DNA
and RNA) immune complexes. Activated IRF7 leads to secretion of
a large amount of type I IFN (70). Its expression can potentially be
enhanced via a positive feedback loop through IFN receptor and
ISGF3 activation, leading to increased IRF7 over-expression and
subsequently additional IFNα, transcription (71). IRF7 is essen-
tial for the induction of IFN-α/β genes via the virus-activated,
MyD88-independent pathway and the TLR-activated, MyD88-
dependent pathway (72). Inactive IRF7 resides in the cytoplasm.
With pathogenic stimulation, IRF7 is phosphorylated, activated,
and translocated into the nucleus, where it forms a transcriptional
complex with other co-activators and binds to promoter regions
of target genes including IFN-α/-β (73, 74). IRF7 also regulates
the pro-inflammatory cytokine IL-6 in pDCs and monocytes (75,
76). The viral induction of MyD88-independent IFN-α/β genes is
severely impaired in IRF7 null fibroblasts. Consistently, markedly
decreased serum IFN-α level were also observed in IRF7 null mice
(72). These studies demonstrated the importance of IRF7 depen-
dent systemic IFN response for the innate immunity. Furthermore,
recent genetic studies have established IRF7 as a susceptibility locus
in SLE (77–80). Similarly, our group recently reported that a func-
tional variant in the IRF7 exonic region, rs1131665 was associated
with SSc (35). These findings support that IRF7 may represent a

common risk factor for systemic autoimmune disease processes,
including SSc. Microarray studies revealed up-regulation of IRF7
mRNA level in whole peripheral blood cells from SSc patients with
early diseases (40). Another independent study showed no statis-
tically significant difference in IRF7 transcript levels in PBMCs of
SSc patients compared to controls by quantitative PCR analysis
(81). However, patients with late stage disease and a smaller sam-
ple size were investigated in this study. Further investigations are
needed to determine the contributory role of IRF7 in pathogenesis
of SSc.

IRF8 is another immune cell specific IRF family member. It
participates in the MyD88-dependent signaling pathway through
interaction with TRAF6 (82). IRF8 is required for the induction
of Type I IFN genes by viruses and TLR ligands in DCs (83). IRF8
is known to be involved in the development of dendritic cells (84).
IRF8 also promotes B cell differentiation (85). Recently, the IRF8
SNP, rs11642873 was identified as a risk factor for limited and
anti-centromere positive SSc patients in a large GWAS follow-up
study conducted in European and North-American cohorts (36).
Another independent study identified rs2280381 polymorphism
in IRF8 as a susceptibility locus of SSc in the Japanese population
(37). The association of IRF8 genetic variants with SSc supports
possible involvement of B cells and dendritic cells in the devel-
opment of SSc. However, the role and importance of B cells or
dendritic cells in the fibrotic component of SSc has not been well
established (86–88).

Further fine-mapping and functional studies are crucial for elu-
cidating the role of genetic variants in the IRFs in the pathogenesis
of SSc.

INTERFERON INDUCIBLE CYTOKINES AND CHEMOKINES IN
SCLERODERMA
Interleukin-6 is one of the most prominent cytokines activated by
IFN pathway. It is involved in the pathogenesis of many immune-
mediated diseases including SSc (89–91). IL-6 is a classic inflam-
matory cytokine produced by various cells and involved in B cell
differentiation, induction of acute phase proteins in liver cells, pro-
liferation, and differentiation of T cells (92, 93). By binding to the
IL-6 receptor (IL-6R)-α chain and the signal transducing com-
ponent gp130 (CD130), pleiotropic IL-6 activates downstream
signaling mediated by STAT1 or STAT3 through tyrosine phospho-
rylation. Previous studies have shown that IL-6 plays an important
role in the initiation and promotion of fibrosis (94, 95). Pro-
duction of IL-6 and soluble IL-6R by cultured peripheral blood
mononuclear cells were significantly higher in patients with SSc
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and soluble IL-6R levels significantly correlated with the severity
of pulmonary fibrosis in patients with SSc (96). Serum IL-6 lev-
els might be predictive of disease progression in Interstitial lung
disease associated with SSc (97). IL-6 shifts T cells from regula-
tory response to pathogenic Th17 response (98), and promotes
the differentiation of CD4+ cells to a profibrotic Th2 type while
suppressing Th1 differentiation (99). IL-6 stimulation induces
increased collagen production in dermal fibroblasts (100, 101).
These studies demonstrate that IL-6 is involved in the pathogene-
sis of SSc and may contribute to progression of fibrosis and disease
severity in SSc.

A combined score of the plasma IFN-inducible chemokines,
IFNγ-inducible protein 10 (IP-10/CXCL10), and IFN-inducible
T cell α chemoattractant (I-TAC/CXCL11) highly correlated with
the IFN gene expression signature in SSc patients in the Genetics
versus Environment in Scleroderma Outcome Study (GENISOS)
cohort study (102). As expected, SSc patients had higher IFN-
inducible chemokine scores than age-, gender-, and ethnicity-
matched controls. Among 266 SSc patients, the IFN-inducible
chemokine score was associated with presence of anti-U1 RNP
antibodies while patients with anti-RNA polymerase III anti-
bodies had lower levels of this chemokine score. The lower IFN
chemokine levels in patients with anti-RNA polymerase III anti-
bodies might be of important biological significance because
these antibodies are associated with presence of diffuse cuta-
neous involvement and absence of severe interstitial lung dis-
ease. The IFN-inducible chemokine score was not associated
with disease duration, disease type, or other auto-antibodies.
The chemokine score correlated positively with the concomitantly
obtained scores on the Medsger Severity Index for muscle, skin,

and lung involvement, as well as creatine kinase levels in SSc. There
was also a negative correlation with forced vital capacity and dif-
fusing capacity for carbon monoxide. These results support the
aforementioned findings that the IFN activation is associated with
the more severe form of SSc. There was no significant change
observed in the IFN-inducible chemokine score over time in SSc
patients. The fact that the IFN chemokine score did not show a
consistent trend of change and that it was not associated with dis-
ease duration at the baseline visit indicates that the IFN signature
is a stable marker for the more severe subtype of disease rather
than a time-dependent immune dysregulation that improves after
the initial phase of SSc (102).

CONCLUSION
There are many distinct immunological and molecular mecha-
nisms that can contribute to pathogenesis and progression of SSc.
Dysregulated innate and adaptive immune responses are major
contributors to fibrosis and disease severity of SSc. This review
summarized a possible role of type I IFN and IFN-inducible
genes in pathogenesis of SSc, and provides support for a link
between type I IFN and fibrosis in SSc. Potential role of type
I IFN or IFN-inducible genes as treatment targets or biomark-
ers in SSc need to be further explored. A better understand-
ing of the relationship between type I IFN and fibrosis could
bring us closer to the ultimate goal of reversing or slowing the
fibrotic process and regenerating the normal end organ tissue
in SSc.
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