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The clinical outcome after allogeneic hematopoietic stem cell transplantation (HSCT) has
been significantly improved during the last decades with regard to the reduction in organ
failure, infection, and severe acute graft-versus-host disease. However, severe compli-
cations due to infectious diseases are still one of the major causes of morbidity and
mortality after allogeneic HSCT, in particular in patients receiving haploidentical HSCT or
cord blood transplant due to a slow and often incomplete immune reconstitution. In order
to improve the immune control of pathogens without an increased risk of alloreactivity,
adoptive immunotherapy using highly enriched pathogen-specificT cells offers a promising
approach. In order to identify patients who are at high risk for infectious diseases, several
monitoring assays have been developed with potential for the guidance of immunosup-
pressive drugs and adoptive immunotherapy in clinical practice. In this article, we aim to
give a comprehensive overview regarding current developments of T-cell monitoring tech-
niques focusing on T cells against viruses and fungi. In particular, we will focus on rather
simple, fast, non-labor-intensive, cellular assays which could be integrated in routine clinical
screening approaches.
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INTRODUCTION
The clinical outcome after allogeneic hematopoietic stem cell
transplantation (HSCT) has been significantly improved dur-
ing the last decades with regard to the reduction in organ
failure, infection, and severe acute graft-versus-host disease
(GVHD). These advances have rendered allogeneic HSCT to
an integral part of treatment for hematological malignancies
(1, 2). However, severe complications due to infectious dis-
eases are still one of the major causes of morbidity and mor-
tality after allogeneic HSCT, in particular in patients receiving
haploidentical HSCT or cord blood transplant due to a slow
and often incomplete immune reconstitution. The reduction of
immunosuppressive drugs could pave the way to strengthen T-
cell responses against pathogens after allogeneic HSCT. How-
ever, blind rapid tapering or cessation of immunosuppressive
drugs is associated with an increased risk of alloreaction with
subsequent clinical consequences such as increase of severe
acute or chronic GVHD as demonstrated previously (3, 4). In
order to improve the immune control of pathogens without an
increased risk of alloreactivity, adoptive immunotherapy using
highly enriched pathogen-specific T cells offers a promising
approach. Adoptive immunotherapy against several pathogens
has been already evaluated within clinical trials as reviewed
previously (5).

In order to identify patients who are at high risk for
infectious diseases, several monitoring assays have been devel-
oped with potential for the guidance of immunosuppressive

drugs and adoptive immunotherapy in clinical practice. In this
article, we aim to give a comprehensive overview regarding
current developments of T-cell monitoring techniques focus-
ing on T cells against viruses and fungi. In particular, we
will focus on rather simple, fast, non-labor-intensive, cellular
assays which could be integrated in routine clinical screening
approaches.

THE ROLE OF PATHOGEN-SPECIFIC IMMUNITY IN
PREVENTION AND CONTROL OF INFECTIOUS DISEASES
VIRUS-SPECIFIC T-CELL IMMUNITY
It is well-known that virus-specific T cells are important to
prevent and/or control viral infection after allogeneic HSCT.
Cytomegalovirus (CMV) is one of the most intensively investi-
gated targets of immunotherapy after allogeneic HSCT (6). After
allogeneic HSCT, the first emergence of CMV reactive antigen-
emia triggers the expansion of donor-derived CMV-specific T
cells. These expanded cells usually have a phenotype of effector-
or effector-memory type. The presence of CMV-specific T cells
in patients after allogeneic HSCT was reported to be protec-
tive against the recurrence of CMV antigenemia (7–12). Espe-
cially, CMV seropositive patients with profound immunosup-
pression or CMV seropositive patients who received stem cells
from a CMV-seronegative donor are at high risk for a signif-
icant delay in reconstitution of functional CMV-specific T cell
which is associated with persistent CMV viremia and a higher
risk of CMV disease (8–12). Furthermore, adoptive T-cell therapy
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of CMV-specific T cells was demonstrated to be effective for
the prophylaxis and treatment of CMV disease after allogeneic
HSCT (13, 14).

The importance of virus-specific T cells has been also demon-
strated with regard to other viruses such as adenovirus (15–18), EB
virus (19–21), BK virus (22–25), and JC virus (26, 27). Recently,
banked third party virus-specific T cells were reported to be safe
and effective for the treatment of viral disease after allogeneic
HSCT, which circumvents a major obstacle to the wider use of
virus-specific T cells, in particular in patients after cord blood
transplant (28).

The monitoring of T-cell immunity against these viruses can
be useful to assess the risk of viral infections. The benefit of adop-
tive T-cell therapy as prophylaxis or as treatment should be ideally
assessed in prospective clinical trials.

FUNGUS-SPECIFIC T-CELL IMMUNITY
For a long time fungus-specific T cells have not been regarded
as important to control fungal diseases. However, there is grow-
ing evidence that CD4+ T cells provide defense mechanisms
against fungal infection (29–32). The majority of patients diag-
nosed with invasive aspergillosis after allogeneic HSCT are not
neutropenic which for a long time was considered the only or at
least the most important immune mechanism to prevent fungal
disease (33, 34). Recent studies have shown that fungus-specific
T cells are detectable in healthy individuals and patients with
hematological malignancies (29, 32, 35). Due to the paucity
of clinical studies which assessed the impact of presence of
fungus-specific T cells compared to virus-specific T cells, further
prospective studies which assess the importance of fungus-specific
T cells on preventing/controlling fungal infection are urgently
needed.

In addition, the improved outcome of invasive Aspergillus fol-
lowing adoptive T-cell therapy for invasive Aspergillosis demon-
strates the clinical value of transfer of fungus-specific T cells from
the stem cell donor (36). Furthermore, recent reports showed that
the GMP-grade-Aspergillus-specific T cells could be produced for
clinical trials using commercially available enrichment protocols
(37–40).

HOW CAN PATHOGEN-SPECIFIC IMMUNITY BE
MONITORED?
Up to date, various methods are available to assess T-cell immunity
against specific antigens. However, some methods like limiting-
dilution assays are not feasible due to the labor-intensive works
which cannot be a part of routine clinical practice. Here we
summarize three simple broadly available methods which can be
performed using peripheral blood mononuclear cells (PBMC) or
whole blood without long-term ex vivo culture, and using com-
mercially available reagents. In addition, PBMC can be frozen
without the loss of the function when tested in intracellular
cytokine staining (ICS) or Enzyme-linked immunosorbent spot
(ELISPOT), which is practically very important with regard to
reproducibility and standardization with strict quality control
(41). Combinations of these assays are needed for the confirma-
tion of results and comprehensive measurement of different T-cell
functions. The advantages and disadvantages of each method are
summarized in Table 1.

ENZYME-LINKED IMMUNOSORBENT SPOT
Enzyme-linked immunosorbent spot is one of the most established
methods to detect functional immunity (42–44). In brief, PBMC
are cultured for 18–24 h on an anticytokine capture antibody-
coated membrane in the presence of an antigen. Following culture,
each antigen-specific T cells will release cytokines that will bind to
the capture antibody on the membrane. The cells are then washed
and the secreted cytokines can be detected on the membrane by use
of an enzymatically labeled antibody and insoluble chromogenic
substrate. In this assay, frequencies of cytokine-secreting T cells
can be counted after in vitro stimulation of PBMC by defined
antigens/peptides without previous ex vivo expansion. In addition,
ELISPOT assays allow the size and intensity of the spots to be cal-
culated, which correlated with the amount of cytokines secreted by
each cell. As shown in Figure 1A, we are able to detect the induc-
tion of IFN-γ after the stimulation with CMV pp65 IE-derived
peptides in patients after allogeneic HSCT.

Enzyme-linked immunosorbent spot offers several advantages:
(1) many samples can be tested simultaneously using one plate;
(2) the secretion of cytokines can be assessed in contrast to the

Table 1 | Comparison of threeT-cell assays.

Assay Advantage Disadvantage

ELISPOT No cell fixation Cell of origin of cytokine production unclear

The same cells can be retested No sorting of cytokine-secreting cells possible

Suitable to test many samples simultaneously

Cytotoxicity assay can be induced

A lower number of cells required for analysis

Intracellular cytokine

staining

Assessment of multiple cytokines at single cell level Cells have to be fixated and permeabilized
Combination with phenotyping and cytotoxicity assay No sorting of vital cell populations possible

MHC-multimer staining Combination with phenotyping

Sorting of antigen-specific T cells, which can be used for

adoptive T-cell therapy

Detection of dysfunction/non-functional antigen-specific

T cells, e.g., naïve T cells

Each tetramer has to be produced for respective HLA

typing and peptide
Not suitable for the assessment of cytokine secretion

(functionality)
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FIGURE 1 | Representative results of immune monitoring of CMV-specificT cells after allogeneic hematopoietic stem cell transplantation (A) ELISPOT
assay, (B) intracellular cytokine staining, (C) tetramer.

artificially retained cytokines in ICS; (3) the cell numbers can
be downscaled per well in comparison to flow cytometry-based
methods.

Cytotoxic activity can be assessed using granzyme B ELISPOT.
Granzyme B ELISPOT has been reported to have excellent corre-
lation with the 51Cr-release assay for measuring cytotoxic activity
of T cells (45, 46). Furthermore, multiple-color fluorospot assays
make the analysis of single cells secreting several cytokines possi-
ble (47, 48). Detecting each cytokine with a different fluorophore,
polyfunctionality of T cells can be analyzed, suggested to be
important to protect against various infectious diseases.

The disadvantages of ELISPOT are: (1) it is difficult to deter-
mine which immune cells secrete IFN-γ. This is critical to
assess the immune status after allogeneic HSCT. As Wang and
Colleagues reported, the response to 9-mer peptide, which is
expected to induce cytokines in an HLA class I-restricted, can
also be HLA class II-restricted (49, 50). Therefore, when IFN-γ
induction in ELISPOT assay is detected using stimulation with
lengths of peptides including peptide-pool, cell of origin of IFN-
γ secretion has to be determined using CD4/CD8 depletion or
HLA blocking assays; (2) sorting of cytokine-secreting cells is
impossible.

INTRACELLULAR CYTOKINE STAINING
Intracellular cytokine staining is also one of the most estab-
lished methods to detect functional immunity (51, 52). In brief,
PBMC are cultured for 6–18 h in the presence of an antigen. To
preserve the generated cytokines within the cytoplasm, a Golgi-
blocking agent (e.g., Brefeldin A or Momensin) is added during the
stimulation. After the stimulation, samples are collected, fixated
and permeabilized. Consecutively, antibodies against intracellular

cytokines are added. When surface markers whose binding is sen-
sitive to fixation and permeabilization are stained in combination
with ICS, they should be stained before fixation and permeabi-
lization. Stained cells were analyzed using a flow cytometer. A
representative result is shown in Figure 1B.

The advantages of ICS are as follows: (1) the phenotype of
each cell which secretes the cytokine can be determined (53); (2)
the cytolytic potential of the target cells can be assessed using
CD107a degranulation assay in combination with the assessment
of multiple cytokine induction.

The disadvantages of ICS are: (1) reagents such as Brefeldin A
are required to retain cytokines in the cytoplasm; (2) the cells have
to be permeabilized prior to the staining of the cells with antibod-
ies against the cytokines, which makes it impossible to expand the
sorted T cells.

MHC-MULTIMER STAINING
MHC-multimers are synthetic structures made from HLA mol-
ecules linked together to form a multimeric complex which are
loaded with antigen-specific peptide. Cells stained with multi-
mer and antibodies against surface markers can be analyzed using
a flow cytometry. The fluorescence intensity using the tetramer
loaded with a high-avidity peptide derived from virus is usually
high enough to discriminate the positive population in contrast
to the result using the tetramer loaded with a low-avidity peptide
derived from autologous antigen (54). A representative result is
shown in Figure 1C.

The advantages of multimer assays are as follows: (1) combined
analysis of phenotyping and specificity can be performed using the
antibodies against surface markers. MHC-multimer can detect T
cells which do not secrete cytokines, for instance naïve T cells. In
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combination with the phenotyping and MHC-multimer staining,
we can assess the frequency of all antigen-specific T cells including
dysfunctional/non-functional; (2) antigen-specific T cells can be
sorted with a high purity. For this purpose, the streptamer tech-
nology is demonstrated to be useful (54, 55). Sorted cells can be
used for adoptive T-cell therapy as a GMP-grade agent without
regulatory issues (55).

The disadvantages of multimer staining are: (1) the mul-
timer is not able to assess the functional status of antigen-
specific T cells simultaneously. There can be a discrepancy
in the frequency of antigen-specific T cells detected by mul-
timer and by ELISPOT/ICS. Several papers reported that T
cells detected by ICS were more important than those detected
by multimer to control infectious diseases as demonstrated
in the study of CMV infection (56–58). Multimer assays can
be combined with functional assays, but it is well-known
that the stimulation with a respective peptide leads to loss
of multimer staining due to the downregulation of T-cell

receptor, in particular when a high-avidity peptide is used
(59); (2) MHC-multimer staining is HLA-specific and peptide-
specific. Therefore the whole cell repertoire directed against
a pathogen cannot yet be determined using MHC-multimer
technology.

CONCLUSION
T-cell monitoring against specific targets including viruses and
fungi is ready to be integrated in the clinical practice. The monitor-
ing of pathogen-specific T cells may help to define the individual
MPE of a patient to develop a certain infections complication and
to assess the potential benefit of adoptive T-cell therapy against
certain pathogens.
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