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NOD-like receptors (NLRs) are a class of cytoplasmic pattern-recognition receptors.
Although most NLRs play some role in immunity, their functions range from regulating anti-
gen presentation (NLRC5, CIITA) to pathogen/damage sensing (NLRP1, NLRP3, NLRC1/2,
NLRC4) to suppression or modulation of inflammation (NLRC3, NLRP6, NLRP12, NLRX1).
However, NLRP2, NLRP5, and NLRP7 are also involved in non-immune pathways such as
embryonic development. In this review, we highlight some of the least well-understood
aspects of NLRs, including the mechanisms by which they sense pathogens or damage.
NLRP3 recognizes a diverse range of stimuli and numerous publications have presented
potential unifying models for NLRP3 activation, but no single mechanism proposed thus
far appears to account for all possible NLRP3 activators. Additionally, NLRC3, NLRP6, and
NLRP12 inhibit NF-κB activation, but whether direct ligand sensing is a requirement for this
function is not known. Herein, we review the various mechanisms of sensing and activa-
tion proposed for NLRP3 and other inflammasome activators. We also discuss the role of
NLRC3, NLRP6, NLRP12, and NLRX1 as inhibitors and how they are activated and function
in their roles to limit inflammation. Finally, we present an overview of the emerging roles
that NLRP2, NLRP5, and NLRP7 play during embryonic development and postulate on the
potential pathways involved.

Keywords: inflammasomes, NOD-like receptors, DAMPs, PAMPs, innate immunity, caspase-1, embryonic develop-
ment

INTRODUCTION
Innate immunity is initiated by germline-encoded pattern-
recognition receptors (PRRs). Among these, the nucleotide
oligomerization and binding domain (NOD)-like receptors
(NLRs) comprise a large receptor family of more than 20 members
(1–4). Only about half of the NLRs have been characterized in any
detail. However, it is well documented that NLRs play a critical
role in protection against infectious diseases, including bacteria
(5, 6), viruses (7, 8), fungi (9, 10), protists (11, 12), and helminthes
(13). Of the NLRs which have been studied, most of them fall into
one of four categories: (1) Inflammasome activators, (2) Activa-
tors of Nuclear Factor-κB (NF-κB) and mitogen activated protein
kinase (MAPK), (3) Inhibitors of inflammatory signaling, (4) and
trans-activators of MHC expression. However, several NLRs have
definite roles in embryogenesis, uterine implantation, and fetal
development (14). Intriguingly, some NLRs appear to play mul-
tiple roles within inflammation or development. This suggests
alternative functions for some NLRs in different cell types or mul-
tiple activation mechanisms with separate downstream effects for
other NLRs.

One set of NLRs that regulates NF-κB and MAPK are NLRC1
(NOD1 or CARD4) and NLRC2 (NOD2 or CARD15). NLRC1
recognizes iE-DAP, a subunit of peptidoglycan found in some
bacterial cell walls (5, 15). NLRC2 recognizes MDP, another pepti-
doglycan fragment (16–19). NLRC1 and NLRC2 then act through
the adaptor RIPK2 to activate NF-κB and MAPK signaling (20–
22). However, there are now multiple reports that demonstrate
NLRC2 can respond to cytosolic RNA during viral infection (23–
25). Although viral RNA also induces an interaction between

NLRC2 and RIPK2, this appears to regulate autophagy mecha-
nisms, instead of NF-κB, and subsequently represses inflamma-
some activation and prevents immunopathology (25). Further-
more, viral RNA mediated activation causes NLRC2 to inter-
act with the antiviral adaptor protein MAVS. This interaction
was shown to be essential for the production of IFN-β dur-
ing viral infection and for suppressing virus replication (24).
Additionally, NLRC2 regulates other antiviral pathways like 2′-
5′ oligoadenylate synthease (OAS2), which activates RNAse L
and degrades viral RNA, thus potentiating antiviral signaling
(23). It is not clear how NLRC2 would bind to both MDP
and RNA, but one possibility is that additional upstream adap-
tor proteins, which have yet to be discovered, actually provide
specificity.

In the case of NLRC4, it is activated by bacterial flagellin (26, 27)
or the rod complex of bacterial type III secretion systems (T3SS)
(28). Once activated, NLRC4 forms a multimeric complex, known
as the inflammasome, with the adaptor ASC and caspase-1 (26,
27). Inflammasome formation results in a proinflammatory cell
death termed pyroptosis (29) and the release of IL-1β and IL-18
(30–34). Recently, the ability of NLRC4 to recognize flagellin and
T3SS components was tagged to an association between NLRC4
and another class of NOD proteins known as NAIPs. NAIP5 and
NAIP6 in the mouse recognize flagellin and NAIP2 recognizes
T3SS rod complexes respectively and then activate NLRC4 (35–
37). Furthermore, NAIP1 in mice activates NLRC4 in response
to the needle protein of some T3SS (38). In human cells, only
one NAIP exists, and this recognizes the needle protein of T3SS
similar to mouse NAIP1 (38). These results demonstrate that one
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mechanism for the recognition of multiple ligands by NLRs is the
presence of upstream adaptor proteins like NAIPs.

Distinct NLRs recognize microbial or viral components such
as peptidoglycan, flagellin, or viral RNA. These pathogen specific
molecules are known as pathogen-associated molecular patterns
(PAMPs). Alternatively, some NLRs, like NLRP3, detect dam-
age associated molecular patterns (DAMPs). DAMPs consist of
byproducts of pathogen invasion or sterile cellular damage such
as uric acid crystals, reactive oxygen species (ROS), or extracellu-
lar ATP release (39–42). Sensing of DAMPs by NLRP3 is not only
critical for detection and clearance of pathogens but also for pro-
tection and repair of tissues during inflammation (43, 44). NLRP3
is one of the most ubiquitously important NLRs. Once activated,
NLRP3 also forms an inflammasome with the adaptor ASC and
caspase-1 (45, 46). NLRP3 responds to an incredibly broad range
of pathogens making it unlikely that it senses PAMPs directly.
Many lines of evidence support a role for NLRP3 in DAMP sens-
ing, where damage to the host results in the release of certain
danger signals not present under homeostatic conditions. ROS,
potassium efflux, and release of proteases from endosomes have
all been reported to activate NLRP3 (41, 42, 47–51). Although
much is know about the range of stimuli that can activate NLRP3,
much research remains to be done to understand how NLRP3
becomes activated.

The ability of NLRP3 to respond to multiple PAMPs or DAMPs
from such a broad range of pathogens strongly indicates the pres-
ence of upstream adaptors, as is the case for NLRC4, or common
danger signals which funnel into one pathway. In the case of
NLRC2, the different signaling pathways activated by MDP or
viral RNA would suggest that different modes of NLRC2 acti-
vation lead to different protein conformations or other alterations
in NLRC2 activity. This is subsequently responsible for activa-
tion of NF-κB, autophagy, or antiviral signaling. Indeed, these are
some of the great-unsolved mysteries of NLR biology. In addi-
tion, other NLRs, like NLRC3, NLRP6, NLRP12, and NLRX1,
play inhibitory roles during inflammation. Yet how these pro-
teins are activated or perform their inhibitory functions is not
well understood. Finally, there are numerous NLRs for which
there are different reports indicating a multiplicity of potential
functions. In this review, we discuss several of these unsolved
mysteries and potential future directions in the field of NLR
biology.

ACTIVATION MECHANISMS OF NLRP3
NLRP3 was initially described as an activator of caspase-1 in 2002
and was subsequently associated with autoinflammatory periodic
fevers like Muckle–Wells syndrome or bacterial infection (45, 46).
Since then, there have been many proposed mechanism for how
NLRP3 is activated. There is no evidence that NLRP3 interacts
directly with any PAMP. Although NLRP3 is activated in response
to bacteria and viral RNA (7, 52), lipopolysaccharide, and MDP
(53), most PAMPs appear to only be required for the transcrip-
tional up-regulation of NLRP3 and pro-IL-1β (54). Once NLRP3
is upregulated, a second signal, generally a DAMP or a pore form-
ing toxin like nigericin, is required for NLRP3 to interact with ASC
and caspase-1 to form an active inflammasome. This second signal
is frequently associated with the production of ROS or endosomal

rupture (41, 42, 49, 50). Changes in intracellular and extracellular
calcium (55–58) and potassium efflux (47, 48, 51) have also been
proposed to activate NLRP3, as have changes in cytosolic or extra-
cellular pH (59, 60). This dichotomy of signals for priming and
activation is required for NLRP3 inflammasome formation. The
big question that remains is how ROS, ion flux, or other DAMPs
regulate NLRP3 (Figure 1). One possibility is that the structure
of NLRP3 is sensitive to changes in ion concentrations, and expo-
sure of the pyrin effector domain occurs when ion concentrations
deviate from their homeostatic state (48, 51). Alternatively, protein
sensors of cellular redox or ion sensors could regulate NLRP3 acti-
vation following their own activation. Studies into the structure
of NLRP3 and the effects of different ions on the ATPase activ-
ity, pyrin effector domain exposure, and ASC binding affinity of
NLRP3 would greatly increase our understanding of how NLRP3
is activated.

Proteomic studies directed at understanding the NLRP3 inter-
actome using different activators of NLRP3 may also provide
further insight into potential upstream regulators such as NAIPs
or ion/ROS sensors. A recent paper by Mitoma et al. (61) found
in human macrophages that NLRP3 is activated in responses to
double stranded RNA through an interaction with the RNA heli-
case DHX33 (61). Protein kinase R (PKR) is an RNA dependent
kinase involved in antiviral defenses. Activation of NLRP3 was
also proposed to be dependent on PKR, although phosphoryla-
tion of NLRP3 was not required (62). However, another group
attempted to examine the role of PKR mediated activation of
NLRP3 but found no role for PKR (63). Finally, the adaptor pro-
tein MAVS, which is required for antiviral signaling downstream
of the RNA helicases RIG-I and MDA5, has been shown to inter-
act with NLRP3 and regulate its activation and localization to the
mitochondria (64). Although this was shown in the context of
RNA transfection, LPS+ATP treatment or nigericin, how LPS or
nigericin could activate MAVS remains to be investigated further.
In all, there is a significant body of research that would indicate
the presence of upstream PRR that tie into the NLRP3 pathway
(Figure 1).

Although multiple upstream sensors may regulate NLRP3,
it is possible that NLRP3 interacting partners regulate its acti-
vation through the addition or removal of post-translational
modifications. Post-translational modification of NLRs has been
reported to regulate their activation. For example, phosphoryla-
tion of NLRC4 by PKCδ regulates its activation during Salmonella
typhimurium infection in macrophages (65). In the case of NLRP3,
nitric oxide produced during chronic inflammation in vivo dur-
ing Mycobacterium tuberculosis infection results in nitrosylation of
NLRP3 and inhibition of inflammasome activation (66). Similarly,
the addition of NO donor compounds to macrophages or induc-
tion of NO by IFN-γ treatment inhibited NLRP3 activation (66,
67). The role of NO for NLRP3 inhibition during LPS-induced
sepsis in mice has also been reported (68). Therefore, proteins that
can regulate the nitrosylation status of NLRP3 may be able to reg-
ulate its activation. Ubiquitination and deubiquitination were also
found to regulate NLRP3 activation (69, 70). Thus far, deubiquiti-
nation by the BRCC3 deubiquitinase is the only post-translational
modification that is reported to activate NLRP3 (70). It is clear
that post-translational modifications can affect NLRP3 activation,
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FIGURE 1 | Unsolved mysteries in NLRP3 biology. Q1: Is there a common
DAMP that activates NLRP3? Do DAMPs directly activate NLRP3? Do DAMPs
induce structural rearrangement of NLRP3? Q2: How do post-translational
modifications regulate activation on a structural level? Q3: Is mitochondrial
localization essential for NLRP3 inflammasome formation? Q4: How does

autophagy inhibit NLRP3? Does autophagy directly engulf NLRP3
inflammasomes? Does it engulf damaged mitochondria where NLRP3 is
localized? Does autophagy merely remove the source of DAMPs? Q5: Are
there additional upstream sensors or adaptors that facilitate NLRP3
activation?

although how ubiquitination, or nitrosylation affect the function
of NLRP3 needs further biochemical examination (Figure 1).

The cellular autophagy pathway, which is required for recycling
damaged organelles and proteins, has been reported to inhibit
NLRP3 activation. Ubiquitinated inflammasomes are degraded
through the autophagy pathway (71). This report, in combination
with those above, may indicate that deubiquitination of NLRP3
prevents autophagic degradation and allows for inflammasome
formation. Alternatively, the removal of damaged mitochondria,
which produce NLRP3 activators like ROS or release of mito-
chondrial DNA into the cytosol, constitutes another mechanism
by which autophagy regulates NLRP3 activation (25, 72, 73). It is
also possible that autophagosomal degradation of damaged mito-
chondria simultaneously removes inflammasomes. Several recent
publications demonstrate that NLRP3 inflammasome formation
is dependent on localization to the mitochondria (64, 74). How-
ever, another report demonstrated that inflammasome activation
was not associated with any organelle but occurred in the cytosol
(75). Why there are conflicting reports regarding the mechanisms
that activate NLRP3 are unclear. However, in the case of cellu-
lar localization, differences in fixation or staining methodologies
may result in aggregation of inflammasomes with mitochondria
or their disassociation, respectively. In all, mitochondria appear
to play a role in the regulation of NLRP3 inflammasome activa-
tion, but whether they serve as an activation platform, a source of
stimuli, or both requires further investigation (Figure 1).

To more fully understand NLRP3 regulation, the interactome
of NLRP3 including kinases and ubiquitin ligases still need to
be discovered and the regulation of post-translational pathways
examined. Clearly there is need for a concerted effort from bio-
chemists, molecular and structural biologists, and immunologists
to collaborate on these issues. As NLRP3 is associated with numer-
ous autoinflammatory and autoimmune diseases, understanding

how NLRP3 is regulated will be necessary for understanding and
potentially preventing disease development, as well as for the
design of inhibitors which are useful under specific inflammatory
conditions.

REGULATION OF INHIBITORY NLRs
Intriguingly, all inhibitory NLRs studied thus far have been found
to inhibit NF-κB activation. NLRP12 was examined during colon
inflammation and colon tumorigenesis and found to negatively
regulate NF-κB down stream of Toll-like receptors (TLRs) (76,
77) or to regulate the alternative NF-κB pathway downstream of
TNF family receptors (76, 78). NLRP12 appears to interact with
NF-κB–inducing kinase (NIK), interleukin-1 receptor-associated
kinase 1 (IRAK1), and TNF receptor-associated factor 3 (TRAF3),
which are known mediators of NF-κB signaling (78, 79). These
interactions appear to regulate the phosphorylation of IRAK1 and
the degradation of NIK, thus resulting in inhibition of the alterna-
tive NF-κB pathway. However, the mechanism by which NLRP12
inhibits TLR mediated activation of the classical NF-κB pathway
is not known (Figure 2).

Currently, it is unclear how the inhibitory function of NLRP12
is regulated (Figure 2). ATP binding appears to be a requirement
for activation (79) but the mechanism by which NLRP12 struc-
tural rearrangement occurs to permit ATP binding has not been
examined. NLRP12 expression increases following NF-κB activa-
tion (80). It is also apparent that NLRP12 interacts with other
proteins which regulate its function, including HSP90, which sta-
bilizes NLRP12 and prevents its proteasomal degradation (81).
Whether expression alone is sufficient for its inhibitory function,
or if NLRP12 is regulated by post-translational modifications of
some kind is unclear.

Recently, Nlrc3-deficient mice were generated and inflamma-
tion examined in response to LPS treatment (82). Sub-lethal LPS
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FIGURE 2 | Mechanisms of inhibitory NLRs. Q1: How do inhibitory
NLRs function? Is PAMP recognition required for inhibitory NLR
function? Is NLR expression sufficient for inhibitory function? Q2: Is
NLRX1 an inhibitor of MAVS or a modulator of mitochondrial ROS?
Q3: How does NLRX1 inhibit NF-κB if it is localized to the

mitochondria? Q4: Do NLRP6 and NLRP12 regulate inflammasome
activation and how? Does gut flora play a role in inflammasome
activation in the absence of NLRP6 and NLRP12. Q5: Why are there
so many inhibitory NLRs? Do inhibitory NLRs play redundant or
context specific roles?

administration resulted in increased IL-6, increased macrophage
numbers and increased hypothermia in Nlrc3−/− mice. Examina-
tion of Nlrc3−/− macrophages showed that there was enhanced
NF-κB activation down stream of TLR signaling (82). Mechanisti-
cally, NLRC3 appears to regulate TRAF6 activation by modulating
its K63-linked ubiquitination and stability. Once again, the mech-
anisms that regulate NLRC3 activation remain to be examined
(Figure 2).

Similar to NLRC3 and NLRP12, NLRP6 also inhibits NF-κB
activation down stream of TLR signaling. NLRP6 was shown to
suppress NF-κB activation during Listeria monocytogenes and Sal-
monella typhimurium infection, and in the absence of NLRP6,
bacteria were cleared more rapidly (83). In other studies, Nlrp6
deficiency predisposes mice to increased inflammation in models
of colitis and to increased tumorigenesis in colon cancer models
(84, 85). However, the mechanisms proposed for susceptibility to
colitis and tumorigenesis are reportedly due to NLRP6 mediated
inflammasome activation. Nlrp6−/− mice have reduced IL-18 in
the colon in these models (84, 85). It should be noted, though,
that no biochemical or molecular evidence for an NLRP6 inflam-
masome has been presented to date. It is therefore possible that
NLRP6 regulates inflammasome activation indirectly. In fact, there
are significant differences in the gut microbiota in Nlrp6−/− mice
in the above models, which could result in altered inflammasome
activation (Figure 2).

NLRP12 has also been proposed to form an inflammasome.
During Yersinia pestis infection, NLRP12 is reported to recog-
nize acylated lipid A and Nlrp12−/− mice were more suscepti-
ble to infection and had reduced IL-18 levels (86). In humans,
NLRP12 polymorphisms are associated with inflammasome acti-
vation during periodic fever syndromes (87, 88). It is possi-
ble that both NLRP12 and NLRP6 have regulatory roles dur-
ing NF-κB activation as well as in inflammasome formation.

To verify these functions, however, much needs to be done on
the molecular and biochemical level to determine the mecha-
nisms by which these proteins activate the inflammasome and
what stimuli activate them to form an inflammasome verses
inhibit NF-κB activation. Finally, as discussed above, several NLR
deficient mouse strains have been found to harbor altered gut
microbiota compared to WT controls. The ability of the micro-
biome to regulate immunity is clear, but the exact effects of
these changes are still not well-understood. Especially during
models of colon inflammation, differences in gut flora between
mice may be an essential factor in the phenotypes observed.
The use of germ free or gnotobiotic mice for studying the
roles of NLRs in general, but NLRP12 and NLRP6 in partic-
ular, may help resolve their functions as immune activators or
repressors and the mechanisms by which they perform these
functions.

The last NLR with a proposed inhibitory function is NLRX1.
NLRX1 was originally reported to inhibit antiviral signaling
through inhibition of the adaptor MAVS (8, 89). Subsequently,
NLRX1 was shown to inhibit TLR mediated activation of NF-κB
(90). How NLRX1 inhibits NF-κB is not clear though, as NLRX1
is localized to the mitochondria. Furthermore, the role of NLRX1
as an inhibitor is debated. Several groups have found no role for
NLRX1 in regulating MAVS but have instead reported NLRX1 as
a modulator of mitochondrial ROS (91–93). Recently, the crystal
structure of NLRX1 was solved along with biochemical evidence
for the binding of NLRX1 to the viral RNA mimic poly(I:C) (94).
Although this finding would support a role for NLRX1 in antivi-
ral signaling, the exact function of NLRX1 will require further
examination (Figure 2).

As discussed above, the in vivo importance of inhibitory NLRs
has been demonstrated in various models of inflammation. How-
ever, why there are so many NLRs that inhibit NF-κB signaling is
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a conundrum. If expression of these inhibitory NLRs alone were
sufficient to suppress NF-κB activation, then why would there
need to be four. One possibility is that they function as a whole
to modulate NF-κB activation appropriately. Another possibility
is that they are activated only in response to certain infections or
stimuli. However, treatment with LPS or poly(I:C) both resulted
in increased NF-κB activation in Nlrp12−/− macrophages (77),
suggesting that ligand recognition is not required for its func-
tion. Understanding the individual and combined roles of NLRC3,
NLRP6, NLRP12, and NLRX1 during specific infections or mod-
els of inflammation will be important as this field moves forward
(Figure 2).

NLRs AS DOUBLE AGENTS
As discussed in the last section, NLRP12 and NLRP6 have roles
in inhibiting inflammation by modulating NF-κB activation (77–
79, 83). In addition, both of these NLRs are reported to regulate
inflammasome activation (84–86). As discussed in the introduc-
tion, NLRC2 is able to respond to both MDP and viral RNA
and activates distinct pathways including NF-κB, autophagy, or
antiviral signaling (Table 1). All of these pathways are important
for inflammation and immunity. However, NLRs are also impli-
cated in numerous non-inflammatory roles. NLRC1 and NLRC2
have been shown to regulate the differentiation of human umbili-
cal cord blood-derived mesenchymal stem cells (MSC). Although
NLRC1 and NLRC2 had no effect on MSC proliferation, they
enhanced their differentiation into chondrocytes and osteocytes
and inhibited adipocyte formation in vitro (95). The ability of
NLRC1 and NLRC2 to regulate MSC differentiation was associ-
ated with increased ERK1/2 MAPK signaling; a known function
of these NLRs (Table 1). The ability of NLRs to affect MSC may
play an important part of wound healing and the resolution of
inflammation. In fact, NLRP3 was found to play an important
function in tissue repair in the lung during influenza A virus
infection, although this was likely due to impaired recruitment

of macrophages or other cells necessary for wound repair and
healing (43).

The role of NLRs in tissue repair or MSC differentiation may
be a logical progression following inflammation but several addi-
tional NLRs have been reported to regulate seemingly disparate
functions. NLRP2 is reported to inhibit NF-κB activation (96,
97) and to enhance caspase-1 activation (96). In addition, siRNA
mediated knockdown of NLRP2 in primary human astrocytes
was recently reported to impair inflammasome activation (98).
How NLRP2 affects inflammasome activation is not entirely clear,
as knockdown of NLRP2 resulted in decreased caspase-1 expres-
sion as well. Furthermore, the stimulus used for NLRP2 activation
was the NLRP3 activator extracellular ATP (98). These findings
might indicate that NLRP2 regulates the expression of key NLRP3
inflammasome components as opposed to a novel NLRP2 specific
inflammasome. In addition to the role for NLRP2 in inflamma-
some activation and inhibition of NF-κB signaling, NLRP2 has a
definite role in embryonic development (Table 1). A truncation
mutation of NLRP2 was found in association with Beckwith–
Wiedemann Syndrome (BWS) (99). The NLRP2 mutation resulted
in developmental defects that stemmed from altered DNA methy-
lation and gene expression initially present in the maternal oocyte
(maternal imprinting) and perpetuated in the fertilized embryo
and developing fetus (99). Another study found some association
between NLRP2 and recurrent miscarriages (100). Finally, siRNA
knockdown of NLRP2 in murine oocytes or embryos leads to
nearly complete developmental arrest (101).

Other NLRs have also been proposed to regulate inflammasome
activation and development. NLRP7 regulates inflammasome acti-
vation in response to acylated lipopeptides like FSL-1 or triacylated
Pam3CSK4 (102). In addition, NLRP7 is associated with recur-
rent miscarriages and recurrent hydatidiform molar pregnancies
(100, 103–105). The above findings definitely support roles for
NLRP2 and NLRP7 in inflammation and development. Interest-
ingly, NLRP7 is not present in the mouse genome and appears

Table 1 | Functionally distinct roles of NLRs in biology.

NLR Dual roles References

NLRP12a NF-κB inhibition, caspase-1 activation Williams et al. (76), Arthur et al. (81), Ye et al. (79), Jeru et al. (87), Jeru et al. (88), Zaki

et al. (77), Allen et al. (78), Vladimer et al. (86), Chattoraj et al. (80)

NLRP6a NF-κB inhibition, caspase-1 activation Chen et al. (84), Elinav et al. (85), Anand et al. (83)

NLRC2b NF-κB and MAPK activation, type-I IFN

production, autophagy, MSC differentiation

Bertin et al. (20), Girardin et al. (21), Park et al. (22), Dugan et al. (23), Sabbah et al.

(24), Kim et al. (95), Lupfer et al. (25)

NLRP2c Embryonic development, caspase-1

activation

Bruey et al. (96), Fontalba et al. (97), Meyer et al. (99), Peng et al. (101), Huang et al.

(100), Minkiewicz et al. (98)

NLRP7c Embryonic development, caspase-1

activation

Murdoch et al. (103), Messaed et al. (104), Khare et al. (102), Huang et al. (100), Ulker

et al. (105)

The NLRs listed in this table have been implicated in multiple functional roles. However, the mechanisms by which they perform these distinct roles have not been

elucidated. aIt is unclear how NLRP6 and NLRP12 function under some inflammatory conditions as inhibitors of NF-κB but under other conditions can serve as

inflammasome activators. bNLRC2 responds to a variety of PAMPs including MDP and viral RNA, but the downstream signaling pathways triggered by NLRC2 are

distinct for specific PAMPs suggesting alterative activation mechanisms. cFinally, NLRP2 and NLRP7 may serve as inflammasome regulators, but whether their

functions in embryonic development are tied to inflammasome activation or are separate functions is unclear.
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to have arisen from a gene duplication event from NLRP2 (103).
Therefore, it is not surprising that these two NLRs possess similar
functions, but how they regulate both inflammasome activation
and development is currently unknown (Table 1). Indeed, the role
of NLRs in development is severely understudied, and many bio-
chemical and cell specific studies on the function of these NLRs
are needed to understand their differential roles. One possibility is
that inflammasome activation is the mechanism by which NLRP2
and NLRP7 regulate embryonic development. The role of IL-1β in
oocyte maturation and development has been appreciated for over
a decade and has been reviewed previously (106, 107). Intrafollic-
ular injection of IL-1β in horses induces ovulation but also inhibits
embryo development (108), which is similar to the developmen-
tal arrest seen with NLRP2 and NLRP7 mutations. Furthermore,
treatment of rabbit ovaries in vitro with IL-1β also arrests devel-
oping embryos (109). However, a lack of IL-1β signaling does not
significantly affect fertility and embryo viability as IL-1 receptor
deficient mice reproduce normally (110). Therefore, increased lev-
els of IL-1β in patients with NLRP2 and NLRP7 mutations may
be the cause of developmental arrest. However, much additional
research on the roles of NLRP2 and NLRP7 needs to be performed
before any conclusions can be reached regarding their functions
in development.

CONCLUSION
The role of NLRs in immune function is unequivocal. How-
ever, there is much molecular, biochemical and structural research
which remains to be done to better understand how NLRs are
activated and regulated. Due to the diversity of functions among
NLRs, understanding their activation and regulation should pro-
vide a cornucopia of new opportunities to modulate the immune
system. The activation of proinflammatory NLRs has already been
demonstrated to be important for the function of many adju-
vants used in research or in the clinic (111, 112). Targeting NLRs

specifically for the generation of novel adjuvants may provide for
more effective vaccines. On the other hand, targeting NLRs may
provide for new treatments against numerous diseases such as
arthritis (40, 113), diabetes (114, 115), colitis (44, 85, 116), mul-
tiple sclerosis (117–119), Alzheimer’s (49, 120), and many other
diseases associated with mutations or disregulation of NLRs.

Several unstudied NLRs have recently been assigned some puta-
tive functions. NLRP10 has been reported to play a critical role in
the induction of Th1 and Th17 mediated T cell responses through
a defect in dendritic cells migration during Candida albicans infec-
tion (121, 122). As discussed above, NLRP7 was recently reported
to assemble an inflammasome in response to bacterial diacylated
lipopeptides (102). The fact that after a decade of research, new
inflammasome activators are still being discovered may indicate
that more NLRs fill this function than those previously described.
Furthermore, recent studies have also validated roles for NLRP5 in
embryonic development, although the exact mechanisms under-
lying these observations have not been elucidated (123–125). With
more than 10 NLRs unstudied, it will be of interest to deter-
mine the function of these remaining NLRs in inflammation and
development.
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