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In the past decade, evidence has accumulated that human immunodeficiency virus (HIV)-
induced chronic immune activation drives progression to AIDS. Studies among different
monkey species have shown that the difference between pathological and non-pathological
infection is determined by the response of the immune system to the virus, rather than
its cytopathicity. Here we review the current understanding of the various mechanisms
driving chronic immune activation in HIV infection, the cell types involved, its effects on
HIV-specific immunity, and how persistent inflammation may cause AIDS and the wide
spectrum of non-AIDS related pathology. We argue that therapeutic relief of inflamma-
tion may be beneficial to delay HIV-disease progression and to reduce non-AIDS related
pathological side effects of HIV-induced chronic immune stimulation.
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CHRONIC IMMUNE ACTIVATION IS THE PRIMARY DRIVER IN
HIV PATHOGENESIS
Upon discovery of the virus that causes AIDS, the name human
immunodeficiency virus (HIV) was coined because the virus even-
tually causes severe immune deficiency. This was based on the
clinical symptoms with which end-stage HIV-infected patients
presented and on the gradual decline of CD4+ T-cell numbers
in the blood, which is still considered a hallmark of HIV-disease
progression. The finding that HIV is confined to CD4+ leuko-
cytes and is cytopathic for CD4+ T cells established the hypothesis
that HIV causes immune deficiency by directly killing CD4+

T cells and impeding CD4+ T-cell renewal (1). The molecular
mechanisms involved in CD4+ T-cell killing by HIV infection
have been studied in great detail, leading to novel insights into
the down-stream effects of abortive infection and viral integra-
tion on cell death (2–4). However, increased apoptosis rates in
HIV-infected individuals are not confined to infected CD4+ T
cells, but are also observed in non-infected CD4+ T cells and
in cell types that are not even targets for HIV infection, sug-
gesting that the cytopathic effects of HIV are not the full story
(5, 6).

Paradoxically, HIV induces strong cellular immune responses,
both with respect to magnitude and breadth (7–11), and even in
progressive HIV infection, high avidity HIV-specific CD8+ T cells
are being induced (12). Both CD4+ and CD8+ T cells are more
activated in acute and chronic HIV infection, and hence prolif-
erate rapidly and have a short half life. This explains why both
T-cell production and death rates are increased throughout HIV
infection (13, 14). At first, the high division rate of CD4+ T cells in
untreated HIV-infected patients was interpreted to reflect a home-
ostatic response to the loss of CD4+ T cells (15–18). Studies in
patients on combination anti-retroviral therapy (cART) pointed

out, however, that T-cell proliferation rates drop concomitant with
the loss of virus, even when CD4+ T-cell numbers are still far below
healthy control levels, suggesting that the increased T-cell division
rates are caused by the virus itself. It became clear that chronic
immune activation is a hallmark of pathogenic HIV infection,
exemplified by the increased expression of soluble and cellular
immune activation markers, including IFNα, TNFα, and sTNFR
and the increased fraction of activated CD8+ T cells; markers that
have long been used as surrogate markers for HIV-disease pro-
gression (19–27). In fact, the level of immune activation is the best
predictor of progression to AIDS (28, 29) and death (22, 30–32),
independent of HIV viral load. HIV-2 infection is characterized
by an overall slower progression rate, lower viral loads, and higher
CD4+ T-cell numbers than HIV-1 infection (33). Yet, the cyto-
pathicity of HIV-2 for human CD4+ lymphoid cells is not lower
compared to HIV-1 (34). A striking difference between the two
viral subtypes is that the level of immune activation is lower in
HIV-2 compared to HIV-1 infection, although expression patterns
and prognostic values for immune activation markers were found
to be similar when patients with HIV-1 or HIV-2 infection were
matched for CD4+ T-cell depletion levels (35, 36) These observa-
tions were paralleled by insights from simian immunodeficiency
virus (SIV) infection in sooty mangabeys (SMs) and African green
monkeys (AGMs). SIV infection in these animals is characterized
by high viral loads without high levels of immune activation, and
does not lead to AIDS, which will be discussed in detail in the
Box 1 below (37, 38). Together, these observations have gradu-
ally shifted the paradigm from the classical hypothesis that viral
cytopathicity is the primary driver of CD4+ T-cell depletion and
immune deficiency, to the hypothesis that chronic immune acti-
vation is the cause of T-cell depletion and immune deficiency
(35, 39).
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Box 1 Damage control in non-pathogenic SIV infection.

In pathogenic SIV infection in rhesus macaques (RMs), high levels of immune activation are associated with progression to AIDS. SIV
infection in sooty mangabeys (SMs) and African green monkeys (AGMs), in contrast, do not lead to AIDS despite high viral loads (37,
87–91). Interestingly, SM do not mount stronger cytotoxicT-cell or neutralizing antibody responses to SIV compared to RM, and productively
infected CD4+ T cells in SIV-infected SM and RM have similar life spans (92–94). Several lines of evidence show that systemically LPS
induces features of pathogenic SIV infection (95), that pre-existing microbial translocation and loss of GI integrity in pigtail macaques was
associated with faster SIV disease progression (96). In non-pathogenic, like in pathogenic SIV infection, however, a severe depletion of
memory T cells in the gut occurs, apparently without causing generalized immune activation in non-pathogenic SIV infection (54, 55).

As the dynamics of virus and virus-infected CD4+ T cells in these animal models of SIV infection are comparable, excessive indirect
activation-induced killing of T cells in rhesus macaques has been proposed to be the major pathological difference (37, 38, 87, 97–100).
Indeed, despite the fact that RM develop strong immune responses upon SIV infection, these responses fail to clear the virus, resulting in
persistently high levels of immune activation throughout infection (38, 101).

Compelling evidence has been obtained for a SM-specific polymorphism in TLR signaling, leading to attenuated production of type I
IFN by pDCs induced via TLR7/9 activation in SIV-infected SM (102, 103). The gene involved, IRF-7, is a signaling protein downstream of
TLR7 and 9. Interestingly, TLR7- and 9-induced production of TNFα appeared to be unaffected in SM, which agrees with the fact that TNFα

release is mediated by the NF-κB and not by the IRF-7 pathway. This observation suggests that release of type I IFNs, but not TNFα, may
be critical for SIV pathogenesis, which makes IFNα and IRF-7 potential drug targets. Despite the inability of SM to produce high levels of
type I IFNs upon TLR7/9 activation by SIV, peak viremia during acute SIV infection in these animals is accompanied by clear signs of an
innate and adaptive immune response, including the induction of IFN-stimulated genes (ISGs) (104, 105). Gene expression profiling showed
the induction of ISGs, acute inflammatory genes, and genes associated with chemotaxis and neutrophil recruitment, DC activation and
maturation, apoptosis, and cytotoxic T-cell responses during the acute phase of both pathogenic and non-pathogenic SIV infection (83,
104–106). In SM and AGM, expression of ISGs returns to normal levels after 30 days of infection. Since this decline in inflammation is
paralleled by a gene expression program of immune regulatory genes, including genes that down-regulateT-cell responses [e.g., indolamine
2,3 dioxygenase (IDO), IL-10, LAG3, and PD-L1] and genes that down-regulate IFN responses (e.g., adenosine deaminase), it has been
proposed that active downregulation may be involved (83, 104). Further detailed mechanistic studies are required to reveal whether – and
if so which – specific down-regulatory pathways are involved. Of note, also host genes implied in intracellular viral restriction are rapidly
up-regulated in non-pathogenic infection (83, 104).

If type I IFN is one of the main causes of immune activation in HIV and SIV infection, it remains puzzling how the clear difference in IFNα

production by pDC from SIV-infected SM and RM can be reconciled with the apparent similarity of immune responses, and specifically the
expression of IFN-inducible genes, observed during acute SIV infection of both species. There is, however, evidence that upregulation of
ISGs in acutely SIV-infected SM is induced even though IFNα production by their pDCs is severely diminished (66, 83, 104). Interestingly,
Favre and colleagues (66) found upregulation of IFNα, but not IL-12 and IL-6, in acute SIV infection in AGM, although IFNα release was very
limited in duration compared to the sustained release of all three cytokines in pathogenic SIV infection. Also the detailed characteristics
of immune activation in acutely SIV-infected RM and SM are quite different. Acute SIV infection in SM (and AGM) is not accompanied by
increased CD4+ T-cell turnover, but strong increases in CD8+ T-cell activation, division (Ki67 expression) and apoptosis have been observed
(99, 102, 107, 108). Thus, both timing and quality of gene expression of pro-inflammatory cytokines seem to be critically different between
pathogenic and non-pathogenic SIV infection (109). Taken together, current data are compatible with the idea that SM and AGM respond to
SIV with a limited and transient innate response and with an adaptive response that is mainly restricted to CD8+ T cells. In pathogenic SIV
infection, an excessive innate response is generated with sustained IFNα and ISG induction which induces proliferation of NK cells and a
broad SIV-specific and bystander CD4+ and CD8+ T-cell response (83, 102, 108). It could be that in SM and AGM, low and transient type I
IFN responses during acute SIV infection induce a different gene expression program, allowing for resolution and/or downregulation of the
immune response during subsequent chronic SIV infection.

It has been proposed that damage control in SIV-infected SM may in part be due to the preservation of central memory CD4+ T cells (Tcm)
which are thought to provide protection against the harmful side effects of bacterial translocation (110). Depletion of memory T cells from
the gut and bacterial translocation occur only transiently during acute SIV infection in SMs (54). In contrast to rhesus macaques, SMs are
able to avoid epithelial barrier breakdown and thereby limit the undesired side effects of bacterial translocation during chronic SIV infection
(111). SM are able to spare Tcm from viral infection because of low CCR5 expression (112), while in AGM Tcm may be protected against
SIV infection by CD4 downregulation (113). In pathogenic SIV and HIV infection, in contrast, Tcm are thought to be selectively lost through
viral infection (112) However, the observation that the number of activated and naive T cells, and not the number of Tcm, is predictive for
HIV-disease progression does not support the idea thatTcm numbers are most critical (114). High levels of immune activation in pathogenic
SIV infection may promote SIV infection of Tcm, resulting in Tcm depletion which may contribute to the vicious cycle of loss of immune
control. Further investigations are needed to better quantify the contribution of the various mechanisms that cause CD4+ Tcm activation
and death.

In conclusion, non-pathogenic SIV infection of SM and AGM are examples of a pathogen-host symbiosis with an established state of
tolerance. This is not immunological tolerance in the strict sense, but a state of tolerance in which the host resists the pathological effects
of the virus by avoiding excessive inflammation (115, 116). Further investigation into the various and potentially different mechanisms by
which SM and AGM avoid chronic immune activation is warranted and of great importance for our understanding and the treatment of HIV
disease.

CAUSES OF IMMUNE ACTIVATION IN HIV INFECTION
It has long been known that innate and adaptive immunity
get activated upon acute HIV infection, as extensively described

and reviewed elsewhere (35, 39–46). Chronic HIV infection is
now known to be characterized by increased expression of pro-
inflammatory cytokines, including type I IFNs, IL-6, TGFβ, IL-8,
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IL-1α, and IL-1β, serum markers of inflammation including
sCD14, CRP, cystatin C, D-dimers, and activation of the coagu-
lation system (47). In the last couple of years much attention has
focused at the causes of immune activation in HIV infection, with
a redirection of research focus from T-cell immunity to innate
immunity.

BREACH OF GASTRO-INTESTINAL IMMUNITY
In the late 1990s, acute SIV infection in rhesus macaques (RMs)
was shown to induce a severe and rapid depletion of memory
CD4+ T cells from the gut (48). Later, in both humans and mon-
keys, it was found that this breach of the gut immune system
resulted in a significant increase in bacterial components, includ-
ing lipopolysaccharide (LPS), in the blood (49–51). LPS is a known
activator of innate immune cells via Toll-like receptor (TLR) 4,
and LPS concentrations in the circulation of HIV-infected indi-
viduals correlated strongly with T-cell activation levels (51, 52).
It was concluded that translocation of immune stimulatory bac-
terial products contributes to systemic immune activation, via
TLR activation of various leukocyte populations. LPS was used as
an indicator for bacterial translocation, but other bacterial prod-
ucts, such as flagellin, peptidoglycan, and bacterial CpG-rich DNA
domains that are recognized by TLR2, 5, and 9 respectively, may
also contribute to immune activation. It was proposed that the
early attack on the memory CD4+ T-cell population in the gut
may be a critical determinant of disease progression (53). How-
ever, also in non-pathogenic SIV infection a severe depletion of
memory T cells in the gut occurs, apparently without causing
generalized immune activation (54, 55). Moreover, an attenuated
variant of pathogenic SIVmac239 was shown to spare mucosal
CD4+ T cells and yet to cause T-cell activation, CD4+ T-cell loss,
and progression to AIDS without any signs of microbial translo-
cation (56), showing that immune activation due to gut damage
is not required to develop AIDS. On the other hand, in patients
on cART, with very low HIV viral load, residual levels of bacterial
translocation were positively correlated with immune activation
levels suggesting that bacterial translocation may be a dominant
driver of immune activation in patients treated with anti-viral
drugs (57–63).

The breach of gut integrity in pathogenic SIV and HIV infec-
tion has been shown to be associated with depletion of CD4+

Th17 cells, a cell type that is normally abundant in the mucosa
and is known to be involved in immunity to commensal bacte-
ria (64). It is assumed that the immune system normally keeps
a delicate balance between T regulatory (Treg) cells and Th17
cells, to protect against pathogens but avoid collateral damage
from excessive immune responses (65). The selective loss of Th17
CD4+ T cells from the gut – possibly due to selective infection –
has therefore been held responsible for the long-term loss of the
intestinal integrity and thereby for chronic immune activation
in pathogenic HIV infection (64, 66, 67). More recently, deple-
tion of IL-21-producing CD4+ T cells has been observed in both
the blood and rectal mucosa of SIV-infected RMs (68). Treat-
ment of these animals with IL-21 resulted in the maintenance
of intestinal Th17 cells, and a reduction of microbial translo-
cation and systemic inflammation (69). The dynamics of the
Th17/Treg balance and the role of Th17 cells and Th17-derived

cytokines in HIV infection is currently subject of intensive
study.

SINGLE-STRANDED RNA, TOLL-LIKE RECEPTORS, AND TYPE I IFN
PRODUCTION
In 2004 it was reported that TLR7 and 8 recognize RNA from
various viruses (70, 71), and it has been demonstrated that single-
stranded (ss) HIV RNA directly activates the innate immune
system via these TLRs (72, 73). After endosomal binding of ssHIV
RNA to TLR7, HIV induces the release of type I interferons by
plasmacytoid dendritic cells (pDCs) through the upregulation of
TRAIL (72–75). Single stranded HIV RNA has also been shown to
activate NK cells in a TLR7 and 8 dependent way, and this process
is dependent on cell–cell contact between pDCs and monocytes
(76). Finally, pro-inflammatory responses can be induced through
intracellular recognition of HIV DNA intermediates. These inter-
mediates can be the result of abortive HIV infection of CD4+ T
cells, and induce the production of IFN-β and IL-1β (4). In agree-
ment with these in vitro observations, gene expression analyses
of lymphocytes from HIV-infected persons were shown to have
a dominant signature of IFN-stimulated genes (ISGs) (77, 78).
Immediately after start of cART – when virus production and
viral load rapidly decline – markers of T-cell activation, expres-
sion of pro-inflammatory cytokines such as IFNα, IL-6, IL-1-β,
and macrophage inflammatory protein-1α, adhesion molecules
VCAM-1 and ICAM-1, and the levels of soluble markers for
endothelial cell and coagulation activation are all rapidly and
strongly reduced, although not to normal levels (15, 18, 73, 79–81).
These data suggest that HIV itself, most likely through its ssRNA or
DNA intermediates, is an important driver of immune activation
in untreated HIV infection.

Type I IFNs provide an important link between chronic innate
and adaptive immune activation in HIV infection, because they
induce activation and maturation of pDCs, NK cells, T cells, and B
cells (82). Gene expression profile data from pathogenic and non-
pathogenic SIV-infected primates suggest that persistent release of
type I IFNs is a particular feature of pathogenic infection (83). It
is well established that pDCs are mass producers of type I IFNs
(82). At a certain point, pDCs typically become refractory to res-
timulation by TLR ligands, thereby avoiding excessive immune
activation and collateral damage in the course of viral infection
(84, 85). Bhardwaj and colleagues (86) nicely showed that HIV, in
contrast to other TLR7 agonists such as influenza virus and herpes
simplex virus, induces a partially matured phenotype in pDCs.
Because of this phenotype, pDCs are not rendered refractory and
continue to produce type I IFNs during ongoing HIV exposure.

Interestingly, and similar to what is observed in SIV-infected
SMs (102, 104) and AGMs (83), chronically HIV-infected individ-
uals who do not progress to AIDS despite their high viral loads
turned out to have very low levels of proliferating and activated
T cells (117) correlating with relatively low levels of ISGs and
immune activation gene expression in CD8+ T cells (118). A recent
study confirmed the central role of IFNα in HIV-1 infection by
showing that IFNα is the dominant type I IFN detectable in the
plasma of HIV-infected individuals and that its levels correlate
with immune activation and depletion of CD4+ T cells (119). In
addition, it was shown that pDCs derived from women produce
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more IFNα in response to HIV-1 than pDCs from men, resulting
in higher levels of T-cell activation (120, 121). This may at least
in part explain the observation that HIV-infected women with a
given viral load have a 1.6-fold higher risk to develop AIDS than
men, and despite having lower viral loads on average, typically
progress faster to AIDS than men (122).

It has been reported that pDCs from SMs have a species-specific
inability to produce high levels of type I IFN (102, 103) related
to sequence polymorphisms in IRF-7, a signaling protein down-
stream of TLR7 and 9 (see Box 1). Also in humans, polymorphisms
of IRF-7 have been reported that are associated with the level of
HIV-induced IFNα production by pDCs in vitro and with CD8+

T-cell activation in vivo (123). These data stress the importance
of the IRF-7 pathway in HIV pathogenesis, although there is no
definite proof yet that IRF-7 itself is responsible for the induc-
tion of different responses in different individuals. Together, these
observations suggest that the continuous release of type I IFNs
plays a critical role in SIV and HIV pathogenesis. Future stud-
ies should point out what the direct and indirect role of IRF-7
polymorphisms is in determining the set point level of chronic
immune activation in HIV-infected subjects, and should clarify
the potential of IFNα and IRF-7 as drug targets (Figure 1).

PATHOGENIC EFFECTS OF IMMUNE ACTIVATION AND
INFLAMMATION
The key role of chronic immune activation in HIV and SIV patho-
genesis is now commonly accepted, as it is so clearly associated
with CD4+ T-cell decline and progression to AIDS. The clini-
cal outcome of HIV infection, however, does not only depend on
CD4+ T-cell loss, but also on non-immunological side effects of
chronic immune activation.

INFLAMMATION DRIVES CD4+ T-CELL DEPLETION AND LOSS OF
HIV-SPECIFIC IMMUNITY
A large body of work has suggested that chronic immune activa-
tion in HIV infection has deleterious effects on immune function
in general, as well as on HIV-specific immunity by inducing persis-
tent activation and maturation of all sorts of innate and adaptive
immune cells (82). Through continuous activation and differen-
tiation of T cells, chronic HIV infection gradually depletes the
naive CD4+ and naive CD8+ T-cell pools (31, 35, 43, 128, 129).
Intrinsically different responses of the distinct T-cell lineages to
activation may determine clonal expansion and contraction (130),
and thereby the sensitivity of the different T-cell populations to
chronic activation-induced cell loss, although the molecular basis
for these differences remains unclear. Thymic and T-cell prog-
enitor dysfunction, most likely caused by aberrantly high levels
of pro-inflammatory cytokines expressed during untreated HIV
infection, have been reported (43, 131) and the loss of such progen-
itor cells could aggravate the depleting effects of chronic immune
activation on the adaptive immune system. Moreover, continu-
ous inflammation in lymph nodes has been suggested to result
in TGFβ-induced collagen deposition, fibrosis, and pathological
changes in lymph node architecture, possibly adding to impaired
T-cell proliferation and survival (132–134). Continuous activa-
tion has recently been shown to induce upregulation of inhibitory
receptors such as programed death-1 (PD-1), CTLA-4, and Tim-3,

FIGURE 1 | Pathways of chronic immune activation and its
down-stream effects in HIV infection. HIV infection induces chronic
immune activation through activation of the innate and the adaptive
immune system, via single-stranded (ss) RNA and possibly through
intracellular viral DNA which activate pDCs via endosomal TLR7 and 8. This
activation leads to the induction of IFNα via the IRF-7 pathway and the
induction of IL-6, IL-12, TNFα, and TGFβ through the NF-κB pathway.
Continuous activation of the lymphocyte compartment leads to attrition of
the T-cell pool (14, 15) and “immune paralysis” (e.g., impaired CTL
responses). Bacterial translocation may be another source of TLR activation
via TLR2, 4, 5, and 9 (49–51). Over time also non-AIDS related
complications develop. Potential targets for therapeutic interventions with
inflammation to diminish pathology are indicated. It has been shown that
blocking the effect of TLR7 and 9 significantly reduces HIV-induced immune
activation (124). Studies in pathogenic and non-pathogenic SIV infection
suggest that blocking IRF-7 or IFNα should be investigated. In rheumatoid
arthritis patients who were treated with TNFα inhibiting agents (infliximab,
etanercept) it was shown that blocking the effect of TNFα reversed the
increased incidence of cardiovascular complications and insulin resistance.
In analogy, the potential for a therapy interfering with TNFα in HIV infection
should be tested (125–127).

which may interfere with ongoing HIV-specific T-cell responses,
and ultimately lead to T-cell anergy and loss of HIV-specific T
cells (135–137). Similarly, B-cell dysfunction, which is observed
immediately after acute HIV infection (138), is closely related to
chronic activation of the B-cell compartment. Increased B-cell
turnover and differentiation is associated with the phenotypic
and functional B-cell abnormalities characteristic for untreated
HIV infection (139–142). A recent study showed the downregu-
lation of the regulatory receptor B- and T-lymphocyte attenuator
(BTLA) and the upregulation of PD-1 on B cells in HIV infec-
tion (143). Interestingly, a direct down-regulating effect of type I
IFN on BTLA expression on CD4+ and CD8+ T cells has been
reported, which may directly contribute to T-cell hyperactivation
(144). Recently evidence was reported for a link between PD-1L
on follicular Th cells and impairment of B-cells function (145).

Persistent immune activation has also been shown to have dele-
terious effects on HIV-specific CD4+ (7, 146–153) and CD8+

T-cell immunity (154–160), amongst others by preventing the
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establishment of IL-2-producing memory CD4+ and CD8+ T
cells (146, 151–153). HIV-specific cytotoxic T-cell responses are
generally considered to play an important role in anti-HIV immu-
nity. Certain HLA alleles clearly correlate with viral load set point
and disease progression. In line with this, the major genetic factors
related to HIV-1 control coming out of a genome wide association
study (GWAS) were shown to affect HLA–viral peptide interac-
tion (161). There is accumulating evidence that Gag-specific CTL
responses which preferentially target conserved epitopes have a
protective effect (162–171). However, in two large prospective
cohort studies, CD4+ and CD8+ HIV Gag-specific T-cell immu-
nity within the first year after HIV seroconversion were not found
to be predictive for disease progression (172, 173). This observa-
tion was confirmed in a longitudinal study in an African cohort
(174). Also in these studies, immune activation turned out to be
the strongest risk factor for disease progression, stronger than, and
independent of, viral load (172, 173). It is important to consider
the possibility that the typical association between strong CTL
responses and a lack of HIV-disease progression that is observed
in cross-sectional studies, may merely reflect the preservation of
CTL responses in the absence of chronic immune activation rather
than a protective effect of CTL themselves (175).

HIV-INDUCED INFLAMMATION AND HIV-ASSOCIATED NON-AIDS
DISEASE
Increasing insight in the source and the role of inflammation
in HIV pathogenesis has been paralleled by recent progress in
our understanding of the role of inflammation in a much wider
spectrum of clinical conditions than infectious diseases. After the
introduction of anti-retroviral therapy for HIV infection, several
case studies suggested that patients treated with cART had an
increased risk to develop sub-clinical atherosclerosis and acute
myocardial infarction (176–179). Initial studies reported that the
increased risk of cardiovascular disease was associated with specific
classes of anti-viral drugs (180). Later studies revealed that cardio-
vascular risk was in fact larger in untreated compared to treated
HIV infection (181, 182), but also in patients on cART, the risk for
cardiovascular disease is higher than expected based on traditional
cardiovascular risk factors alone. In addition to cardiovascular dis-
ease, HIV infection poses patients at increased risk to develop a
number of other non-AIDS related complications, such as non-
alcoholic steatohepatitis, renal dysfunction, osteoporosis, insulin
resistance, metabolic syndrome, and cognitive impairment (47).
It has been shown that soluble mediators released by activated
immune cells, such as IL-6, IL-1, and TNFα, also act on non-
immune tissue cells with various tissue-dependent pathological
effects. In a broad variety of clinical conditions, including obe-
sity, atherosclerosis, neurodegenerative disease, and autoimmune
diseases, chronic inflammatory processes are now recognized to
play a major role (183), and it has been postulated that most non-
AIDS defining complications of HIV infection are related to the
chronic inflammatory state induced by HIV (Figure 1) (184, 185).
This hypothesis is strengthened by recent observations in patients
with rheumatoid arthritis (RA). Both HIV infection and RA are
characterized by a chronic inflammatory state and increased levels
of pro-inflammatory cytokines like TNFα, IL-1β, and IL-6, and
also in RA patients the incidence of non-primary disease related

complications such as cardiovascular disease, osteoporosis, non-
alcoholic fatty liver disease (NAFLD), and cognitive impairment
are more prevalent than among the general population (125–127).
Thus, clinical symptoms that initially seemed unrelated are now
being recognized as part of the total complex of HIV-associated
disease and appear to have a common underlying pathogenesis
of chronic inflammation and excessive immune activation (186,
187). Preliminary data suggest a central role for TNFα in HIV-
associated non-AIDS disease but it remains to be determined to
what extent other pro-inflammatory cytokines, perhaps acting via
TNFα, are involved.

HIV IN COMPARISON TO OTHER PERSISTENT VIRAL
INFECTIONS
These novel insights into HIV pathogenesis prompt the question
as to how HIV differs from most other viruses. We believe that
HIV pathogenesis is caused by a combination of specific charac-
teristics. Most importantly HIV infects CD4+ T helper cells. In
addition a variety of cells that express CD4 and one of the HIV
coreceptors can be infected albeit at very low levels. Thereby, the
virus is not confined to a single organ and may induce a vari-
ety of systemic immune responses. HIV induces much higher
levels of cytokines during acute infection compared to hepatitis
B or hepatitis C (41). HIV is virtually insensitive to control by
neutralizing antibodies and cellular immunity because of various
mechanisms, including the glycan shield surrounding the HIV
virion (188) and the high mutation rate of the virus, which allows
for rapid immune escape. After acute HIV infection, virus- and
host-specific set points are established that determine the subse-
quent clinical course based on the level, and probably the type,
of immune activation that is induced. Like other viruses, HIV
induces type I IFN release by pDCs. The fact that HIV is targeted to
pDCs by virtue of their expression of CD4, and the recent finding
that HIV does not induce full maturation of pDC, which pre-
vents these cells to become refractory to restimulation, as outlined
above (86), may turn out to be critical factors driving persistent
IFN release and thereby chronic activation of the innate and the
adaptive immune system in HIV patients, resulting in exhaustion
of immunity and broad spectrum end-organ immune pathology.
Even though immune responses in acute hepatitis B and hepatitis
C virus infection may differ from those in acute HIV infection,
in individuals who do not clear hepatitis viral infection and who
convert to chronic hepatitis, persistently increased immune acti-
vation levels have been reported. In analogy to what is observed in
HIV patients, also non-hepatitis related conditions, such as meta-
bolic syndrome and cardiovascular disease, occur more frequently
in chronic hepatitis patients than in the general population, even
when corrected for traditional risk factors for, e.g., cardiovascular
disease (189). Strikingly, peripheral blood naive T-cell numbers
in chronic hepatitis C virus-infected patients were found to be
significantly lower than in healthy individuals, and associated
with increased levels of inflammation (190). Thus, while immune
responses during acute infection may differ between HIV, hepati-
tis B, and hepatitis C virus infection, leading to clearance of the
virus in the majority of hepatitis B infected patients and a subset
of hepatitis C infected individuals, once chronic inflammation has
been established, its effects tend to be similar for the three patient
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groups. Other viral infections, like Epstein–Barr virus (EBV) and
cytomegalovirus (CMV) are incomparable to HIV or chronic
hepatitis infection, because after an acute phase these infections
convert into a truly latent stage, during which no virus is detectable
in the peripheral blood of immunocompetent individuals.

THE IMMUNE ACTIVATION HYPOTHESIS REDUCED TO
PRACTICE
BOOSTING IMMUNITY
Great effort has been put over the years into approaches to ther-
apeutically strengthen anti-viral immune responses. Thus far,
however, there is little proof for beneficial effects, and in fact the
possibility of induction of adverse effects is an important concern.
Therapeutic vaccination, with DNA and live viral vector based
vaccines and combinations thereof, has had only transient and
small effects on viral load (191, 192). In one trial in which ther-
apeutic vaccination was followed by interruption of cART, viral
rebound was larger and time to restart therapy shorter, than in
the non-vaccinated group (193). With respect to prophylactic vac-
cines, CTL-based vaccines may have some potential if they manage
to consistently lower the viral set point. However, upon infec-
tion such vaccines will at best reduce and not completely prevent
chronic immune activation driven pathogenesis and should there-
fore not be considered as curative. In fact, the strongest protective
effect is to be expected from HIV vaccines that stimulate HLA-
B57, B58, or B27 restricted T-cell responses, as they are associated
with significantly lower viral loads. Such vaccines would however
only help the carriers of protective HLA molecules, most of which
already experience much slower disease progression upon HIV
infection. In order to develop CTL vaccines that are applicable to
a wider patient population it is of vital importance to gain better
insight into the mechanisms responsible for the relative protection
conferred by these protective HLA molecules.

For boosting of immunity and enhancement of CD4+ T-cell
production, IL-2 has been administered in large scale multi-center
international trials in patients with and without cART with sub-
stantial increases in CD4+ T-cell counts but no beneficial clinical
effects (194). Administration of IL-7 (195, 196) or human growth
hormone (197) has been tried out in small cohorts, with success-
ful effects on naive and central memory T-cell numbers, but again
without significant clinical effects. As these biological compounds
are known to have strong activating effects on the peripheral T-
cell compartment (198) their administration is not without risk,
and one should be aware of possible adverse effects in the long
run. Immune stimulating therapy should in any case be restricted
to patients on cART, although even on cART (residual) immune
activation is correlated with poor immune reconstitution (199).
To enhance anti-HIV responses, blockade of inhibitory ligand-
receptor interactions, such as PD-1, CTLA-4, and Tim-3, has been
proposed (200). Some positive results have been obtained with
PD-1 blockade in SIV-infected macaques, which has been shown
to lead to improved virus-specific CD8+ T-cell responses, reduc-
tion in plasma viral load and prolonged survival (201), and to
reduced hyperactivation and bacterial translocation (202). How-
ever, experiments with CTLA-4 blockade have demonstrated that
the effects of inhibitory receptor blockade may even be deleterious,
leading to increased T-cell activation and viral replication (203).

Great care therefore needs to be taken with approaches that may
increase the level of CD4+ T-cell proliferation, and in our opinion
should never be applied without cART.

Taken together, therapeutic interventions aiming at enhanc-
ing anti-HIV T-cell immunity may not have the desired beneficial
effect in the majority of people, and may even have adverse long-
term effects through the immune stimulation they induce. It has
been argued that since our understanding of virus-specific cel-
lular immunity – and in particular its repertoire, its functional
and kinetic requirements, and its regulation and tissue distribu-
tion – are still far from complete, the real correlate of immune
protection against AIDS is still to be discovered (204). Indeed,
not all immune activation needs to be equally pathogenic, and
we cannot exclude the possibility that induction of HIV-specific
T-cell responses without excessive and chronic release of type I
IFNs and other cytokines might be favorable to the host for con-
trol of HIV. However, as pDC activation is believed to be required
for the induction of an adequate adaptive T-cell response, induc-
tion of strong HIV-specific immune responses without chronic
release of type I IFNs may be an impossible combination; in fact,
pDC activation may collaterally cause the very same pathology
that the adaptive immune response should prevent. Irrespective
of the hypothesis of what is causing AIDS pathogenesis, of all vac-
cination strategies, prophylactic vaccines that are able to induce a
strong broadly neutralizing antibody response at this time seem to
be most promising to induce protective immunity to HIV infection
in a large number of individuals (205).

THERAPEUTIC DAMAGE CONTROL
Another correlate of the immune activation hypothesis is that
immune suppressive therapy might have beneficial clinical effects
because it reduces the deleterious effects of immune activa-
tion. Immune suppressive drugs like cyclosporin (206, 207) and
mycophenolic acid (208), that are used to prevent T-cell activa-
tion in organ transplant rejection, have been experimentally tried
in HIV infection. In combination with cART, variable effects on
T-cell turnover, activation, and CD4+ T-cell numbers were shown
(206–208).

Given the recent insight that not activation of CD4+ and CD8+

T cells via TCR, but instead TLR activation, release of type I IFNs
and expression of IFNα/β inducible genes may contribute more to
systemic immune activation in HIV infection, the latter proteins
and genes may be more relevant targets for therapeutic interven-
tions (Figure 1). TLR antagonists and inhibitors are currently an
area of intense investigation and it is to be expected that many
will become available for phase I/II or experimental proof of con-
cept clinical trials in the very near future (209, 210). Indeed, in
a preliminary study in which chloroquine, an inhibitor of endo-
somal TLR3, 7, 8, and 9 was administered to HAART-naive HIV-
infected patients, significantly lower immune activation levels were
observed, as reflected by decreased levels of T-cell division and
expression of activation markers (124). Although these findings
need to be reconfirmed and more clinical studies are needed, this
study suggests that interference with HIV-induced TLR7/9 activa-
tion is feasible. Because of the clear association between immune
activation and clinical outcome such interventions may be promis-
ing. Also IRF-7, which selectively induces IFNα but not TNFα or
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IL-12 production, is a potential drug target and treatment with
IFNα neutralizing antibodies or blocking TNFα or the TNFα-R are
feasible options to be explored in order to decrease inflammation
and tissue-related pathology. Indeed, targeting TNFα in patho-
genic SIV infection in RMs by administration of adalimumab
(Humira) has been shown to reduce systemic inflammation and
many of its down-stream effects (211).

Humanized anti-IFNα monoclonal antibodies have been devel-
oped and have been tested in phase I trials in patients suffering
from systemic lupus erythematosus (SLE) and psoriasis, autoim-
mune diseases in which IFNα is believed to play a critical role.
In SLE but not psoriasis one dose of anti-IFNα monoclonal anti-
body resulted in downregulation of IFN-inducible gene expression
with beneficial clinical effects (212, 213). No evidence for adverse
effects, such as an increase in viral infections or viral reactiva-
tion was observed which opens up the possibility to consider
application of anti-IFNα treatment to HIV-infected patients to
neutralize over-expression of IFNα. Induction of anti-IFNα anti-
bodies by immunization with inactivated IFNα to inhibit pro-
gression to AIDS has been investigated in a large multicentre
study, and beneficial effects on CD4+ T-cell decline and markers
of clinical progression were reported in patients that developed
anti-IFNα antibodies (214). Although these studies have never
been repeated, the recently obtained insights into the role of
IFNα in HIV-disease progression warrant future research in this
direction.

Paradoxically, IFNα administration has been investigated in
the pre-cART era as a treatment option for HIV infection with
or without Kaposi sarcoma (215, 216). Although IFNα treat-
ment showed the expected anti-viral effect, leading to lower viral
loads, this type of treatment became of less interest when cART
became available. In addition, IFNα treatment induced flu-like
syndrome, immune activation, and T-cell depletion when given to
HIV patients co-infected with HCV (217–219).

In RA patients who were treated with TNFα inhibiting agents
(such as infliximab or etanercept) it was shown that blocking the
effect of TNFα reversed the increased incidence of cardiovascular
complications and insulin resistance (125–127). Anecdotal reports
have shown the safety of anti-TNFα treatment in RA patients who
were also HIV infected and on HAART (220). A non-specific inter-
vention aimed at lowering immune activation and its side effects,
such as cardiovascular disease, might be the addition of statins

to standard anti-retroviral regimens, as has been suggested for
treatment of RA (221).

In addition to potentially improving HIV-treatment options,
the interventions suggested above will provide us with a wealth
of data allowing dissection of the relative contribution of dif-
ferent cytokines such as IFNα and TNFα to immune activation
and end-organ immune pathology in HIV infection. It should be
noted however that, given the complex interrelationship between
potentially protective immune responses and the damage induced
by chronic immune activation, any of these interventions could
in principle also aggravate HIV-induced pathology. Therefore, a
combination with HAART seems at this time the best approach.

CONCLUSION
We review compelling evidence for CD4+ T-cell loss in HIV
infection caused by various down-stream effects of persistent and
strong innate immune activation. Immune activation is induced
by HIV ssRNA and possibly its DNA intermediates and to some
extent by translocation of bacterial products from the gut. This
CD4+ T-cell death is occurring in addition to CD4+ T-cell loss
due to direct HIV-induced cell killing. We conclude that immune
activation is most likely the main cause of CD4+ T-cell depletion,
loss of HIV-specific immunity and HIV-associated non-AIDS dis-
ease, also in patients on cART. Although much knowledge is still
lacking, we are beginning to understand which receptors and active
molecules are most likely dominant in the cellular and molecular
pathways involved in HIV pathology. This new perspective has
major implications for HIV vaccinology, but also opens up novel
therapeutic options that may be explored in the near future.

Search strategy and selection criteria: references for this article
were identified through searches of PubMed for articles published
from 1985, by use of the terms HIV, SIV, AIDS, immune activation,
immunity, pathogenesis. Articles resulting from these searches and
relevant references cited in those articles were reviewed. Articles
published in English were included.
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