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Age-related regression of the thymus is associated with a decline in naïveT cell output.This
is thought to contribute to the reduction inT cell diversity seen in older individuals and linked
with increased susceptibility to infection, autoimmune disease, and cancer.Thymic involu-
tion is one of the most dramatic and ubiquitous changes seen in the aging immune system,
but the mechanisms which underlying this process are poorly understood. However, a pic-
ture is emerging, implicating the involvement of both extrinsic and intrinsic factors. In this
review we assess the role of the thymic microenvironment as a potential target that reg-
ulates thymic involution, question whether thymocyte development in the aged thymus is
functionally impaired, and explore the kinetics of thymic involution.
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THE IMPACT OF THYMIC INVOLUTION ON PERIPHERAL T
CELL SENESCENCE
Advance aging correlates with a reduced ability of the immune
system to generate antigen specific responses to pathogens and
vaccination. This collectively results in a higher incidence of infec-
tion, neoplastic, and autoimmune diseases which are preferentially
observed in older individuals. These profound changes exhibited
by the aging immune system is termed immunosenescence, which
affects both innate and adaptive immunity (1–3).

The thymus is responsible for the development of self-
restricted, self-tolerant, immunocompetent T cells but has no
self-renewal properties relying on the continuous replenishment
of new T cell progenitors from the bone marrow. Maturation
of these cells occur through a series of proliferation and differ-
entiation stages dependent upon receiving instructions from the
specialized thymic microenvironment (4, 5).

One of the most acknowledged changes of the aging immune
system is regression, or involution of the thymus (6–8), which
seems to occur in almost all vertebrates suggesting that this is an
evolutionary ancient and conserved process (9). Age-associated
thymic involution involves a decrease in tissue mass and cellu-
larity, together with a loss of tissue organization with the net
outcome being a reduction in naïve T cell output [Figure 1;
(6–8)]. This decline in naïve T cell output is believed to have a
major impact on the properties on the peripheral T cell pool such
that with increasing age, these cells exhibit alterations in pheno-
type and function, loss of diversity, and replicative senescence (10,
11). Moreover, it is these age-related changes in peripheral T cells
that are believed to contribute significantly toward the features
of immunosenescence (12, 13), suggesting that the altered thymic
activity is a key trigger toward the decline of immune function in
the aged (14).

While animal models show that the maintenance of naïve
peripheral T cells in the adult do indeed require the release

of cells from the thymus (15, 16). In humans, however the
relationship between thymic activity and naïve T cell home-
ostasis is a matter of debate, with the recent observations
that peripheral proliferation and not thymic output contributes
to the maintenance of naïve T cells in young adults (17).
Nevertheless, using signal-joint T cell receptor (TCR) exci-
sion circles (sjTREC) as a measurement of thymic function,
numerous studies have shown lower sjTREC levels in elderly
individuals are associated with a reduction of naïve T cells
(18–20).

Moreover, a direct correlation between thymic function and
naïve T cell number comes from studies examining the peripheral
immune system of thymectomized individuals (21). In one such
study which looked at patients 20+ years after thymectomy, the
authors observed a decreased proportion of naïve T cells, reduc-
tion in TCR diversity and noted that such changes were more
marked in individuals infected with Cytomegalovirus (22). Fur-
thermore, thymectomized individuals exhibited a delayed primary
response to tick-borne encephalitis vaccination (23). Interestingly,
these and other studies seem to suggest that the thymus may play
a role in maintaining immune efficacy in the adult (21). Indeed,
reports, using mice, have demonstrated the need for the contin-
ual production of naïve T cells to mount an effective immune
response against bacterial (24), viral (25), and fungal infections
(26); with the latter study showing that mice thymectomized at
5 weeks of age exhibited a delayed response to Pneumocystis infec-
tion. Furthermore, amongst HIV-infected patients under highly
active antiretroviral therapy, those individuals that show enhanced
T cell output appear to demonstrate a better prognosis (27, 28).
Furthermore, a recent study proposed that thymic function is a key
marker in determining mortality in elderly humans (29). Thus,
the notion that thymus activity may play an important role in
host defense of the adult is interesting and clearly merits further
investigation.
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Palmer Biology of the aging thymus

FIGURE 1 |The effect of age on thymic function. Schematic diagram
outlining the pathway of T cell development. Aging can impact on variety of
pathways during the development of T cells. With increasing age HSC
appear to have a reduced lymphoid potential and increased myeloid
differential capacity. Age-related involution is associated with reduced
thymic mass and altered architecture resulting in reduced thymic output in
the aged thymus. In the young, T cell development is functional and the
peripheral T cell is pool is diverse; as depicted by the various colors.
Furthermore, normal thymopoiesis provides a positive effect on thymic
structure; thymic cross-talk. In contrast, T cell output is significantly reduced
in the aged thymus resulting in loss of diversity and alteration in the
phenotype and function of peripheral T cells; with the majority of cells being

in the memory pool. Modifications in the thymic microenvironment are likely
to have an impact on thymopoiesis resulting in defective RTE, which in turn
disrupt thymic cross-talk leading to further alteration of TEC structure.
Immunofluorescence image of young (6 weeks) and old (18 months) murine
thymus stained with anti-keratin antibody (55) which detects cortical (C) and
medullary (M) TEC. In the young thymus, antibody staining shows the
cortical epithelium as a network of long thin processes, while the medullary
region reveals a squamous appearance. In contrast, the staining on old
thymic section revealed a reduced network of cortical epithelial cells, the
medullary region is smaller and more diffuse while the cortical-medullary
junction is less distinctive; as also depicted in the schematic. C, cortex; M,
medulla. Picture (100× magnification).

CHANGES IN THYMOCYTE DEVELOPMENT WITH AGE
Although the exact mechanisms involved in age-associated thymic
involution are not fully understood, a picture is emerging suggest-
ing defects are present within both developing thymocytes and
thymic stroma (30). Thymopoiesis involves a series of sequential
developmental steps. Briefly, bone marrow progenitors enter into
the thymus and are identified by a lack of both CD4 and CD8.
Referred to as double negative (DN) thymocytes, these cells dif-
ferentiate to become double positive (DP), expressing both CD4
and CD8, and subsequently mature into either single positive (SP)
CD4 or SP CD8 T cells, through the process of positive and negative
selection, and then exit into the periphery (4, 5).

Given that the thymus requires the continual input of bone
marrow progenitors, any age-related alterations in hematopoietic
stem cells (HSC) function could conceivably contribute toward
thymic involution. Studies have demonstrated that aged HSC
appear to exhibit an increased bias toward myeloid differentiation
together with a reduced capacity toward lymphoid maturation;
which has been observed in mice and human (31, 32). Such alter-
ations in HSC function may manifest within early thymocyte
progenitor (ETP) activity. Indeed, aged mice have fewer numbers

of ETP, which exhibit reduced proliferation and differentiation
potential (33, 34). ETP obtained from young mice are able to dif-
ferentiate into all the stages of T cell development when seeded
into fetal thymic organ culture, in contrast aged ETP showed a
reduction of T cell differentiation activity (33). Furthermore, ETP
from aged mice show an increased frequency of cells undergo-
ing apoptosis together with a reduced number of Ki67+ cells (34).
ETP are contained within the earliest stages of DN thymocytes and
other studies have highlighted further age-related changes within
the later stages of DN thymocyte development; with the obser-
vation of a decrease in proportion of CD44+CD25+ (DN2) and
CD44−CD25+ (DN3) cells (35–38). Additionally, a population of
CD44+CD24−CD3+ DN cells has been shown to accumulate in
the thymus of older mice (35, 39–41). Interestingly, a similar pop-
ulation has been identified in adult murine bone marrow which
appears to be associated with a role in reducing hematopoiesis (42),
giving rise to the possibility that the accumulation of such cells in
the aging thymus might have a negative impact on thymopoiesis
thereby contributing to thymic involution.

Further stages in thymocyte maturation also exhibit phenotyp-
ical alterations with age; in particular, studies have demonstrated
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an age-associated decline of CD3 expression on DP and SP thy-
mocytes (40, 41, 43). Such changes may result in impaired TCR-
dependent stimulation. Indeed, it has been demonstrated that
aged thymocytes, in comparison to young cells, showed reduced
Concanavalin A-induced proliferation (37, 40, 41, 44), with the
observation that aged cells failed to enter into the G2M phase of
the cell cycle (41).

Arguably, these age-related changes in thymopoiesis are likely
be acquired by RTE; leading to the possibility that such cells
will exhibit reduced immunocompetence. Indeed, several studies
have showed that aged RTE undergo phenotypic maturation with
delayed kinetics, exhibit decreased proliferative capacity, defective
calcium signaling following TCR stimulation, and reduced helper
and memory activity (45–47). Furthermore, peripheral T cells
from older mice exhibit increased resistance to apoptosis which
again may be acquired during thymocyte development as it has
been demonstrated that thymocytes from older animals are more
resistant to apoptosis (41, 44, 48). It is unlikely that the impair-
ment of aged RTE is acquired in the periphery, but is imprinted
during their development in the aged thymus and propose that
such flawed cells are also likely to contribute further to periph-
eral immunosenescence. Moreover, these studies also question,
the notion regarding whether T cell development is functionally
active in the aged and in light of these studies, this often held view
may need to be revised (40).

AGE-ASSOCIATED CHANGES IN THE THYMIC STROMAL
ENVIRONMENT
The thymic stroma plays a crucial role in thymopoiesis by pro-
viding the signals necessary to promote proliferation and differ-
entiation due primarily to the influence of cortical and medullary
epithelial cells (4); thus age-related changes in the thymic niches
could potentially promote thymic involution. In fact, we have
argued that the extrinsic defects within the aged microenviron-
ment contribute significantly to age-associated thymic involution
(1, 14, 49). Several studies have demonstrated that with age,
the thymic microenvironment undergoes structural, phenotypi-
cal, and architectural changes (50). This include down regulation
of various thymic epithelial cell (TEC) markers such keratin, MHC
class II together with alterations of cortical and medullary mark-
ers (37, 51–55). Furthermore, the structural integrity of the thymic
niche is disrupted with age, including disorganization of the corti-
cal and medullary junction; together with increase fibrosis, adipose
tissue, and the accumulation of senescent cells in the aged thymus
(40, 55–57).

The age-associated changes in thymopoiesis would principally
imply intrinsic defects, however, closer examination reveal that
perhaps such alterations could be due, in part, to extrinsic defects
within the aged thymic stromal niche resulting in impaired T cell
development. For instance, studies have revealed that the produc-
tion of IL-7, which is necessary for thymopoiesis (58), decreases
with age (59). This may be due to the observed loss of MHC class
II+ TEC in the aged thymus which has been identified as the cell
type responsible for producing IL-7 (54). Moreover, IL-7 admin-
istered in older mice (60) and rhesus macaques (61) was shown to
increased thymic output. Interestingly, bone marrow from young
mice injected into lethally irradiated older mice failed to restore

thymic architecture and was still accompanied by a reduction in
quantitative thymic function (62). In an elegant study address-
ing the repopulation potential of thymic progenitors, Zhu and
colleagues transplanted fetal thymic lobes under the kidney cap-
sule of 1-month-old and 18-months-old mice and observed that
the total number and proportion of developing thymocytes in
the grafts were similar in older and younger host mice (56, 63).
Similar results were obtained when transplanting RAG deficient
thymic lobes in that the ability of wild-type thymic progenitors to
develop stromal patterning was not dependent on the age of recip-
ients (63). In contrast, it was observed that intrathymic injection of
young ETP fail to develop in older animals but did so in the thymus
of young recipients (63). Furthermore, recent studies revealed that
age-associated thymic involution results primarily with changes in
gene expression profile in thymic stromal cells (64).

Above all, these studies suggest that the thymic stroma is a key
factor in regulating thymic involution and perhaps the acquired
intrinsic defects in aged thymocytes could be due to the inability
of the aged thymic microenvironment to support and maintain
thymopoiesis (56). Furthermore, the inter-dependency of both
thymocyte and TEC to maintain a functional thymic structure
(i.e., thymic cross-talk), is also likely to be a contributing factor
toward thymic involution (65). Indeed, disrupting the integrity of
TEC in the adult thymus has been shown to mimic thymic invo-
lution. The transcription factor Foxn1, which is essential for TEC
development (66), has been shown to be important for maintain-
ing TEC activity and reducing Foxn1 expression in the postnatal
thymus mimics features of thymic involution (67, 68). In contrast,
over expression of Foxn1 delays age-associated thymic involution
(69). Moreover, rejuvenation of the aging thymus has been suc-
cessful when targeting TEC, with the administration of exogenous
keratin growth factor being shown to enhance thymic cellularity,
restore thymic architecture, and improve immune function in aged
mice (70). Similar results have also been seen when using growth
hormone (71), sex steroid ablation (72), ghrelin (73), and IL-22
(74). However, although such treatment have been effective in
directly enhancing thymic activity in the aged, in some instances,
this may also be due, in part, by promoting hematopoiesis in the
bone marrow (71, 75).

In addition to the age-related changes observed in TEC, there
is an accumulation of adipose tissue particularly in the human
thymus and there is increasing evidence indicating that thymic
adiposity may inhibit thymic function (57). In mice, Yang and
colleagues demonstrated that inducing obesity in mice acceler-
ated thymic involution (76). In contrast, in another study, the
same group observed that caloric restriction resulted in reduced
thymic adiposity and delayed thymic involution (77). Although it
is unclear how increase thymic adiposity alters thymic function,
it has been proposed that this is due to the cytokines produced
by adipocytes (57) and while involution occurs before fat deposi-
tion, suggesting that it is not initiating thymic involution, it may
however exacerbate the impact of age on thymic function.

Studies have also noted an increase in the proportion of fibrob-
lasts in the aging thymus of several species including mice (1, 54),
human (52), and fish (78); suggesting that this may be a com-
mon feature. Several tissues such as heart (79), kidney (80), and
liver (81) also show increased fibrosis with age which is associated
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with senescence and impairment of tissue function. Reports have
implicated a role for TGFβ (82) and metalloproteinases (80) in the
accumulation of fibroblasts in various tissues, which may be acti-
vated in response to inflammation as a result of wounding (83).
It is currently unknown whether similar events also occur in the
thymus, but may exacerbate the aforementioned alterations seen
with age.

KINETICS OF AGE-ASSOCIATED THYMIC INVOLUTION
An often held view is that thymic involution is triggered during
puberty. This is based on studies showing that sex steroids have
a detrimental effect on thymocytes and that chemical or surgical
castration in older rodents is able to restore thymic size (34, 38, 64).
While sex hormones are likely to contribute to thymic regression,
the role of these steroids being responsible for initiating thymic
involution is now being questioned (84). Indeed, several stud-
ies using a variety of thymic indices (cellularity, epithelial space,
number of recent thymic emigrants) have observed that thymic
involution occurs early in life, prior to puberty and that the rate
of decline is not linear, but appears to be phasic. In mice, thymic
cellularity begins to decrease within the first few weeks after birth
(37, 45, 53, 85) and a similar picture is evident in human (51, 52,
86), equine (87), and zebrafish (88) thymus.

After this rapid early decline, involution appears to proceed at
a steady rate, with studies examining human thymus suggesting a
rate of 3% of thymic tissue is lost per year until middle age, fol-
lowed by a rate of 1% per year (6, 89); which perhaps may cease in
later life with studies showing TREC levels being barely detectable
in individuals over the age of 85 years (18, 19).

Overall, these studies strongly suggest that the kinetics of age-
associated thymic involution is not uniform throughout life, but

characterized by distinct phases and perhaps controlled by differ-
ent mechanisms. Indeed, the onset of thymic involution occurs
much earlier than most acknowledged features of aging and inter-
estingly, microarray analysis of the aged thymic revealed limited
overlap with genes normally associated with aging (7). Thus, we
propose that there are at least two phases in thymic involution: the
first occurring in early life which would be referred to as “growth-
dependent thymic involution,”as it is associated with this period of
physiological growth and development and another termed “age-
dependent thymic involution” linked to the age-related changes
that are occurring in various body systems (85).

CONCLUDING REMARKS
Age-associated thymic involution represents one of the most rec-
ognizable features of the aging immune system and is believed
to contribute significantly toward immunosenescence. Although
the molecular triggers that instigate involution remain to be fully
elucidated, both intrinsic and extrinsic factors are thought to con-
tribute toward this process. Moreover, TEC offers a potential target
for rejuvenation and requires further exploration. Given the alter-
ations in thymic development in the aged, the evidence suggests
that the RTE from the aging thymus are intrinsically defective and
could further exacerbate peripheral immunosenescence. Finally,
additional factors that are known to modulate thymic function
such as pregnancy, infection, inflammatory status, and early life
events; i.e., life history is also likely to have an impact on the rate
of thymic involution (9, 90).
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