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The field that links immunity and metabolism is rapidly expanding. Apparently non-
immunological disorders such as obesity and type 2 diabetes have been linked to immune
dysregulation, suggesting that metabolic alterations can be induced by or be consequence
of an altered self-immune tolerance. In this context, adipose tissue produces and releases
a variety of pro-inflammatory and anti-inflammatory factors, termed “adipokines,” which
can be considered as the bridge between obesity-related exogenous factors, such as
nutrition and lifestyle, and the molecular events leading to metabolic syndrome, inflamma-
tory, and/or autoimmune conditions. In obesity, increased production of most adipokines
impacts on multiple functions such as appetite and energy balance, modulation of immune
responses, insulin sensitivity, angiogenesis, blood pressure, lipid metabolism, and so on.
This report aims to discuss some of the recent topics of adipocytokine research and their
related signaling pathways, that may be of particular importance as could lead to effective
therapeutic strategies for obesity-associated diseases.
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THE LINK BETWEEN ADIPOSE TISSUE AND CHRONIC
INFLAMMATION
It is well established from literature that in more affluent countries,
where increased metabolic overload is more frequent, incidence
of obesity is higher and it has been associated with a series of
consequences, such as increased risk of cardiovascular disorders
including atherosclerosis, diabetes, fatty liver disease, inflamma-
tion, and cancer (1–5). All these pathological conditions are closely
associated with chronic inflammation, as they are characterized
by abnormal cytokine production, increased acute-phase reac-
tants such as C-reactive protein (CRP) and interleukin-6 (IL-6)
and activation of a network of inflammatory signaling pathways.
They seem to be consequent to the long-term“low-degree”chronic
inflammation typical of obesity (6, 7).

A new field of study that investigates the interface and the link
among immune response, nutrition, and metabolism has recently
developed and many of the interactions between the metabolic and
immune systems seem to be orchestrated by a complex network of
soluble mediators derived from immune cells and adipocytes (fat
cells) (8). It has been found that certain genetic alterations (i.e.,
mutation, loss of function, among others) of leptin (Lep), lep-
tin receptor (LepR), pro-opiomelanocortin (POMC), pro-protein
convertase 1 (PCSK1), and melanocortin-4 receptor (MC4-R), can
cause obesity and can also significantly affect immune responses
(9–16). Therefore, the immune function in obesity has become a
factor of particular interest and relevance to better understand and
possibly modulate the inflammatory condition associated with this
disorder.

The current view of adipose tissue is that of an active secretory
organ and not merely an inert tissue devoted to energy storage.
Indeed it is able to send out and respond to signals that modu-
late appetite, energy expenditure, insulin sensitivity, endocrine and
reproductive systems, bone metabolism, and inflammation and
immunity (5). Recent studies have centrally placed adipose tissue
as a crucial site in the generation of inflammatory responses. In this
context, the finding that tumor necrosis factor-α (TNF-α) and IL-6
are overexpressed in the adipose tissue of obese mice and humans
and when administered exogenously leads to insulin resistance,
provided the first clear link between obesity, diabetes, and chronic
inflammation (17–19). Moreover adipocytes share with a diverse
set of immune cells (including T cells, macrophages, and dendritic
cells) several features, such as complement activation, production
of inflammatory mediators to pathogen sensing and phagocytic
properties (20–22). In addition to adipocytes, adipose tissue also
contains pre-adipocytes (which are adipocytes that have not yet
been loaded with lipids), endothelial cells, fibroblasts, leukocytes,
and most importantly, macrophages. Macrophage infiltration of
adipose tissue has recently been associated with obese conditions
and it has been suggested that expanding adipocytes or neigh-
boring pre-adipocytes might be responsible for the production
of chemotactic signals, leading to macrophage recruitment in the
adipose tissue (23, 24). Once macrophages are present and active
in the adipose tissue, they, together with adipocytes and other cell
types present in the adipose tissue, might perpetuate a vicious cycle
of macrophage recruitment and production of pro-inflammatory
cytokines (25, 26).
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Adipose tissue is a mix of adipocytes, stromal pre-adipocytes,
immune cells, and endothelium, and it can respond rapidly and
dynamically to alterations in nutrient excess through adipocyte
hypertrophy and hyperplasia (27). With obesity and progressive
adipocyte enlargement, the blood supply to adipocytes may be
reduced with consequent hypoxia (28). Hypoxia has been pro-
posed to be an inciting etiology of necrosis and macrophage infil-
tration into adipose tissue, leading to an overproduction of pro-
inflammatory factors like inflammatory chemokines. This results
in a localized inflammation in adipose tissue which propagates an
overall systemic inflammation associated with the development of
obesity-related co-morbidities (28).

There is increasing evidence that besides macrophages other
immune cells, such as T cells, might infiltrate adipose tissue (29).
Wu and co-workers recently presented evidence that, at least in
mice, adipose tissue from diet-induced obese insulin-resistant
mice is infiltrated by T cells and that this infiltration was accom-
panied by an increased expression of the T-cell chemoattractant
RANTES (29).

The presence of an abundant immune cell infiltrate in adi-
pose tissue of obese subjects is considered one of the classical
pathologic lesions present in obesity. The real significance of these
infiltrates is still unknown and has been until now, considered
directly or indirectly the result of a massive attraction exerted
by adipocytes toward immune cells, particularly of the natural
immunity compartment (i.e., macrophages, neutrophils, natural
killer cells, dendritic cells) through the secretion of adipocytokines
and chemokines (30–32). Strikingly, a series of recent studies have
shown in mice that T cells in the adipose tissue show specific T cell
receptor (TCR) rearrangements suggesting that there are clonal
T cell populations infiltrating adipose tissue. These data along
with extensive macrophage infiltration and Th1 cytokine secretion
account for the consequent insulin resistance in adipocytes and
chronic inflammation typical of obesity (33). Taken together these
data can lead to the hypothesis to consider obesity as an autoim-
mune disorder. Typically, criteria to consider a pathological con-
dition as “autoimmune” include: (1) infiltration by immune cells
of self-target organ and its consequent tissue damage; (2) the pres-
ence of circulating autoantibodies that react against self-antigens
and subsequent complement system activation; (3) the clonality of
TCRs from infiltrating T cells; (4) secretion of pro-inflammatory
Th1 cytokines; (5) quantitative or qualitative alterations of regula-
tory T (Treg) cells; (6) association with other autoimmune disease.
In the case of obesity, most of the above-mentioned points have
been detected (34, 35). However the self-antigen present in the
adipose tissue is still unknown. Identifying these antigens and the
corresponding antigen-presenting cells in fat is clearly the next
challenge for the field.

The discovery of leptin and other adipocytokines has provided
a further link among adipose tissue and immune cells. These mol-
ecules, indeed, function as hormones to influence energy home-
ostasis and to regulate neuroendocrine function, but acting as
cytokines, adipocytokines are able to module immune functions
and inflammatory processes throughout the body. In this review,
we provide an overview of recent advances on the role of adipocy-
tokines and their signaling pathways in the modulation of immune
cells function, with particular emphasis on T cells subsets.

LEPTIN
Leptin, a cytokine-like hormone product of the obesity (ob) gene,
belongs to the family of long-chain helical cytokines (character-
ized by a four a-helix bundle) and is mainly produced by adipose
tissue, indeed its levels directly correlate with body fat mass and
adipocyte size. However, it is produced,at lower levels, also by other
tissues such as the stomach, skeletal muscle, placenta, and bone
marrow (36–39). In the hypothalamus, leptin regulates appetite,
autonomic nervous system outflow, bone mass, and the secretion
of HPA hormones (36). Although an important role of leptin is
to regulate body weight through the inhibition of food intake
and stimulation of energy expenditure by increased thermogene-
sis, recent evidence has indicated that leptin is much more than a
“fat sensor” (40). Indeed, leptin-deficient (ob/ob) mice and leptin-
receptor-deficient (db/db) mice are not only severely obese, but
also have a series of marked abnormalities that are secondary to
the effects of leptin on reproduction (41), hematopoiesis (42),
angiogenesis (43, 44), metabolism of bone (45), lipids and glucose
(36), and last but not least, innate and adaptive immunity (46–48).

Leptin signaling
Leptin mediates its effects by the binding with the its specific LepR,
a member of the class I cytokine receptor family (which includes
receptors for IL-6, IL-12, OSM, and prolactin) and the pleiotropic
biological effects of leptin can be partly explained by the wide
distribution of LepRs on different types of cells, including those
in extraneural tissues. Alternative splicing of LepR results in six
receptor isoforms with different length of cytoplasmic domains,
known as LepRa, LepRb, LepRc, LepRd, LepRe, and LepRf (49).
Among all the LepR isoforms, only full-length isoform (LepRb)
is able to fully transduce activation signals into the cell, as its
cytoplasmic region contains several motifs required for signal
transduction. The other LepR isoforms lack some or all of these
motifs and their function is still unclear, even though several data
suggest that they could be involved in the transport of leptin across
the blood-brain barrier or in its degradation. Intracellularly, the
LepR does not have an intrinsic tyrosine kinase domain, there-
fore it binds cytoplasmic kinases – mainly Janus tyrosine kinase 2
(Jak2) (50). LepR contains a highly conserved, proline-rich box 1
(51) and two putative, less conserved, box2 motifs (52, 53). Box
1 and box 2 motifs are considered important in recruiting and
binding Jaks (54, 55) for full Jak activation (56). Recent studies
indicate that, under physiological conditions, only Jak2 is acti-
vated during LepR signaling (53). Once activated, Jaks proteins
trans-phosphorylate each other, as well as other tyrosine residues
(Tyr985, Tyr1138, and Tyr 1077) of the LepR (57, 58), providing
docking sites for downstream molecules such as signal trans-
ducer and activation of transcriptions (STATs). These proteins
dissociate from the receptor and form homo- or hetero-dimers,
which translocate into the nucleus and act as transcription fac-
tors by binding specific response elements in the promoter region
of their target genes, such as sis-inducible-element (SIE), acute-
phase-response-element (APRE), and GAS-like elements (59, 60)
(Figure 1).

In response to leptin, STAT3 binds to phospho-Tyr1138, allow-
ing Jak2 to phosphorylate and activate STAT3. Confirming the
importance of this site of phosphorylation, mutation of Tyr1138
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FIGURE 1 | Schematic representation of the leptin-induced pathways.
After leptin binds to the long isoform of the leptin receptor (LepRb), Jak2 is
activated at the box 1 motif, resulting in the autophosphorylation of tyrosine
residues and phosphorylation of tyrosines that provide docking sites for
signaling proteins containing src homology 2 (SH-2) domains. The
autophosphorylated Jak2 at the box 1 motif can lead to activation of
phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Akt can regulate a wide
range of targets including FOXO1 and NF-κB. Both Tyr1077 and Tyr1138 bind
to STAT5, whereas only Tyr1138 recruits STAT1 and STAT3. STAT3 proteins
form dimers and translocate to the nucleus to induce expression of genes
such as c-fos, c-jun, egr-1, activator protein-1 (AP-1), and suppressors of
cytokine signaling 3 (SOCS3). SOCS3 negatively regulates signal
transduction by leptin by binding to phosphorylated tyrosines on the
receptor, to inhibit the binding of STAT proteins and the SH-2
domain-containing phosphatase-2 (SHP-2). SHP-2 activates the
mitogen-activated protein kinase (MAPK) pathways including extracellular
signal-regulated kinase (ERK1/2), p38 MAPK, and p42/44 MAPK through an
interaction with the adaptor protein growth factor receptor-bound protein 2
(GRB2), to induce cytokine and chemokine expression in immune cells.

abolishes the ability of leptin to activate STAT3, resulting in severe
hyperphagia and morbid obesity (61–63). Leptin stimulates also
phosphorylation of LepRb on Tyr1077, which binds to STAT5 and
subsequently mediates STAT5 phosphorylation (64, 65).

The Jak/STAT pathway is under the negative-feedback control
of suppressors of cytokine signaling (SOCS) proteins, which are
induced upon cytokine stimulation and act as negative regula-
tors of signaling by binding to phosphorylated Jak proteins or
by direct interaction with tyrosine-phosphorylated receptors (66,
67). Structurally, SOCS proteins are characterized by a central
SH-2 domain, an N-terminal preSH-2 domain, in some cases
a kinase inhibitory region (KIR) domain, which abolishes the
kinase activity of the Jaks, and a more conserved C-terminal

SOCS-box – which represents a key mediator of proteasomal
degradation (by linking ubiquitin to the substrate) (66). Only
SOCS1 and 3 carry a KIR domain in their N-terminal region and
it is involved in the inhibition of the Jak activity and thus leptin
signaling. Recent data showed that SOCS3 inhibits kinase activity
through its KIR domain after the binding through its SH-2 domain
with phosphotyrosine motifs in the receptor in the proximity of
the Jaks. Interestingly, leptin can induce SOCS3 expression (68–
71) and the Tyr985 of LepRb is a high-affinity binding site for
SOCS3 (57, 70). In this context, the participation of SOCS3 in the
negative-feedback mechanism of leptin signaling has been pro-
posed to underlie the development of leptin resistance in relation
to the hyperleptinemia observed during obesity (69).

Another negative regulator of leptin signaling is represented
by the SH-2 domain-containing phosphatase-2 (SHP-2), which
is a constitutively expressed tyrosine phosphatase involved in the
dephosphorylation of Jak2 (72). SHP-2 carries two tandem SH-
2 domains followed by a tyrosine phosphatase catalytic domain.
When one SH-2 domain interacts with a tyrosine-phosphorylated
ligand, a conformational change occurs and brings this phos-
phatase to activation of LepR at position Y985 (73). This specific
site has an important role in leptin-induced extracellular signal-
regulated kinases (ERK) activation (57). More specifically, as a
result of leptin administration, Tyr985 becomes phosphorylated
by recruited Jaks (mainly Jak2 and Jak1), and provides a dock-
ing site for SHP-2. After binding to that specific tyrosine residue,
SHP-2 is phosphorylated at the C-terminus and together with its
adapter molecule Grb2, it activates downstream signaling, leading
to the activation of the p21Ras/ERK signaling cascade (57), with
the final induction of specific target genes expression, such as c-
fos or egr-1, a zinc-finger transcription factor that influences the
initiation of growth and differentiation (74) (Figure 1).

Leptin can activate also another member of the MAP kinase
family, p38 MAPK (75) and stress-activated protein kinase c-
Jun N-terminal kinase (JNK). Among the possible downstream
targets of leptin-induced activation of p38 and JNK MAPK path-
ways, the regulation of the transcription factor nuclear factor-κB
(NF-κB) appears to be crucial for the transcriptional regulation of
pro-inflammatory cytokines such as TNFα and IL-1β.

In addition, leptin is able to regulate phosphoinositide 3-kinase
(PI3K) activity, indeed the binding of PI3K regulatory subunit
to tyrosine-phosphorylated proteins induces a conformational
change allowing the activation of its catalytic subunit and conse-
quent full activation of PI3K, whose products typically stimulate
protein kinases such as Akt, also called protein kinase B (PKB),
protein kinase C (PKC) (76), and Forkhead box O1 (FOXO1),
a transcriptional factor that is phosphorylated and inactivated
by Akt (77–80). Leptin inhibits both the activity and expression
of hypothalamic FOXO1 through the PI 3-kinase pathway (77).
Indeed, overexpression of a constitutively active FOXO1 mutant
decreases leptin sensitivity in mice with consequent increase in
food intake and body weight, whereas small interfering RNA-
mediated knockdown of FOXO1 increases leptin sensitivity and
decreases food intake and body weight (77, 78).

Finally, leptin stimulates phosphorylation of ribosomal S6
kinase (S6K), a major physiological substrate of the mammalian
target of rapamycin (mTOR) kinase in the hypothalamus. Indeed,

www.frontiersin.org October 2013 | Volume 4 | Article 332 | 3

http://www.frontiersin.org
http://www.frontiersin.org/T_Cell_Biology/archive


Procaccini et al. Adipokines and T cells

rapamycin, a specific inhibitor of mTOR attenuates leptin’s
anorexigenic effects (81), conversely, activation of S6K enhances
leptin sensitivity (82) (Figure 1). mTOR binds to raptor and GβL
to form the mTOR complex 1 (mTORC1), which directly phos-
phorylates and activates S6K (83). mTORC1 is inhibited by the
TSC1/TSC2 complex (84–86). Akt phosphorylates TSC2 and inac-
tivates the TSC1/TSC2 complex (85). Therefore, the mTOR/S6K
pathway is likely to be a downstream target of the PI 3-kinase/Akt
pathway in leptin-stimulated neurons.

Leptin and T cells
Leptin stimulates and promotes the proliferation of human
peripheral blood mononuclear cells (PBMC) (40, 48), as the pres-
ence of LepR on monocytes and lymphocytes has been shown
in mice (46, 87) and confirmed in human peripheral blood
T-lymphocytes (both CD4 and CD8) (88).

In PBMCs, leptin stimulation induces tyrosine phosphoryla-
tion and translocation of STAT3 molecules to the nucleus (89–91)
and the phosphorylation of the STAT3-associated RNA binding
protein Sam68 (a tyrosine-phosphorylated adaptor protein in TCR
activation, which is associated with the SH2 and SH3 domains of
Src and other signaling molecules, such as Grb2, PLC-γ-1, and
PI3K) (92–95).

Recent evidence has shown that leptin induces tyrosine phos-
phorylation of Sam68 and Insulin receptor substrate 1 (IRS-1),
which associate with p85 (96, 97), the regulatory subunit of PI3K
via the SH-2 domain, recruiting and leading to stimulation of
PI3K activity (98). In this context, leptin has been shown to inhibit
apoptosis of thymocytes through an IRS-1/PI3K-dependent path-
way since this effect was inhibited by the PI3K inhibitor LY294002
(99). Moreover, Martín-Romero et al. have shown that both ERK-
1 and ERK-2 were found phosphorylated in a dose-dependent
fashion in PBMC after incubation with human leptin (98).

It was also found that leptin could induce sustained phosphory-
lation of p38 MAPK in human PBMCs and the phosphorylation of
the ribosomal protein S6 – the only protein in the large 40S subunit
that has been shown to be phosphorylated in response to growth
factors and mitogens (100). One route of leptin-induced S6 phos-
phorylation in human PBMCs is via MEK and p42/p44 MAPK
(101–103), which activate MAPK-dependent S6 Kinase p90 RSK
and S6. The other way seems to be mediated via activation of
p70 S6 kinase, since it has been shown that leptin phosphorylates
p70 S6 kinase at Thr389 (104). Accordingly, pre-treatment of cells
with rapamycin abolished this phosphorylation (104). Strikingly,
the MEK inhibitor PD98059 has been shown to inhibit not only
p90 RSK phosphorylation, as expected, but also p70 S6 Kinase
and S6 phosphorylation, thus suggesting an essential role of MEK
activation in a full induction of p70 S6 kinase activity in human
PBMC (105, 106).

In CD4+CD25− effector T cells (Teff), De Rosa et al. have
shown that leptin-induced strong STAT3 phosphorylation, while
stimulation of CD4+CD25+ Treg cells was not associated with
a marked increase of phosphorylated STAT3 (107). SOCS3, a
negative regulator of cytokine signaling, was activated by leptin
blockade in Treg cells, in which the stimulation with anti-CD3/28
induced phosphorylation of ERK1/2 and subsequent cell prolifera-
tion (107). In the same subset of cells, the cyclin-dependent kinase

inhibitor p27 (p27kip1, a molecule involved in the control of cell
cycle and T cell anergy) was elevated before and after anti-CD3/28
stimulation, and leptin neutralization induced degradation of this
molecule, partly explaining the reversal of the anergic state and
proliferation of these cells.

Recently, the contribution of leptin to mTOR activation in
human Teffs has been well defined. Indeed, it has been shown that
leptin treatment had little effect on mTOR phosphorylation, but it
induced a significant increase in p70S6K and S6 phosphorylation,
concomitant with a consistent increase in AKT phosphorylation.
The induction of mTOR, as well as AKT phosphorylation induced
by TCR engagement, was significantly reduced by leptin blockade
and this inhibition was partially reversed by the addition of recom-
binant leptin to cultures, thus suggesting suggest a link between
autocrine secretion of leptin and mTOR activation in Teffs through
an AKT-dependent mechanism (108). A recent study by Galgani
et al. shows that nutritional status, through leptin, directly affects
survival and proliferation of autoreactive T cells, modulating the
activity of the survival protein Bcl-2, the Th1/Th17 cytokines, and
the nutrient/energy-sensing AKT-mTOR pathway (109). More-
over, a paper by the same group has shown that leptin activates
the mTOR pathway to control also Treg cells responsiveness (110,
111). More specifically leptin inhibited rapamycin-induced pro-
liferation of Tregs, by increasing activation of the mTOR pathway.
In addition, under normal conditions, Tregs secreted leptin, which
activated mTOR in an autocrine manner to maintain their state
of hyporesponsiveness. Finally, Tregs from db/db mice exhibited
a decreased mTOR activity and increased proliferation compared
with that of wild-type cells (110, 111). Together, these data suggest
that the leptin-mTOR axis sets the threshold for the responsive-
ness of Tregs and that this pathway might integrate cellular energy
status with metabolic-related signaling in Treg cells that use this
information to control immune tolerance.

ADIPONECTIN
Human adiponectin is encoded by ADIPOQ gene localized on the
chromosome locus 3q27. It has a sequence homology with a fam-
ily of proteins characterized by an amino-terminal collagen-like
sequence and a carboxy-terminal complement 1q-like globular
region and shares homologies with collagens, complement fac-
tors, TNF-α, and brain specific factor cerebellin (112, 113). Two
different forms of this molecule exist: a full-length protein, which
is present in the plasma, and a globular adiponectin which con-
sists of the globular C-terminal domain resulting from a photolytic
cleavage mediated by a leukocyte elastase secreted by monocytes
and/or neutrophils. After cleavage the globular form can trimer-
ize, while the full length can exist as a trimer low molecular weight
(LMW) adiponectin, as an hexamer, that consists of two trimers
bound through a disulfide bond middle molecular weight (MMW)
adiponectin and as a 12- to 18-mer high molecular weight (HMW)
adiponectin. Adiponectin is mainly produced in white adipose tis-
sue (WAT) by mature adipocytes, with increasing expression and
secretion during adipocyte differentiation, but it can be also found
in skeletal muscle cells, cardiac myocytes, and endothelial cells. Its
levels inversely correlate with visceral obesity and insulin resis-
tance and in this context weight loss is considered a potent inducer
of adiponectin synthesis, thus suggesting a key role exerted by
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adiponectin in protection against obesity and obesity-related dis-
orders. Indeed TNF as well as other pro-inflammatory cytokines
such as IL-6 suppress adiponectin secretion in adipocyte (114,
115). Adiponectin acts thought the interaction with two different
receptors: ADIPOR1 and ADIPOR2, which differ both in local-
ization and binding affinity since ADIPOR1 is expressed mainly
in skeletal muscle and binds globular adiponectin while ADI-
POR2 is expressed mainly in the liver and engages the full-length
adiponectin (116). Expression of ADIPORs has been reported on
human monocytes, B-cells, and NK cells, but only a small per-
centage of T cells express these molecules (117). The binding of
adiponectin to ADIPOR1 and/or ADIPOR2 results in the acti-
vation of peroxisome-proliferator-activated receptor-α (PPAR-
α), AMP-activated protein kinase (AMPK), and p38 mitogen-
activated protein kinase (MAPK). More specifically, AMPK acts as
a major downstream component of adiponectin signaling, since it
represents the cellular energy sensor in the body and it is normally
activated when there is an increase in the intracellular AMP/ATP
ratio (118, 119).

Over the past 5 years, several interacting and adapter proteins
for ADIPORs have been discovered. The adaptor protein contain-
ing a pleckstrin homology domain, a phosphotyrosine domain
and a leucine zipper motif (APPL1) has been shown to bind to
ADIPORs (120, 121) and is required for adiponectin-induced acti-
vation of AMPK, p38 MAPK, and ERK1/2–MAPK pathways. In
addition, the regulatory subunit of the protein kinase casein kinase
(CK) 2 or the receptors for activated C-kinase-I (RACK-I) and the
endoplasmic reticulum protein 46 (ERp46) have been reported as
other potential binding partners for ADIPOR1.

Initial studies suggested that adiponectin could act as an anti-
inflammatory adipocytokine, as it exerted its anti-inflammatory
effects on endothelial cells through the inhibition of TNF-
α-induced adhesion molecule expression (122). Adiponectin-
deficient mice had higher levels of TNF-α expression in adipose tis-
sue and higher plasma levels compared with wild-type mice (114).
Adiponectin inhibited NF-κB activation in endothelial cells and
interfered with the function of macrophages (122, 123), as testified
by the finding showing that treatment of cultured macrophages
with adiponectin markedly inhibited their phagocytic activity
and their production of TNF-α in response to lipopolysaccha-
ride (LPS) stimulation (123). Adiponectin increases the secretion
of anti-inflammatory cytokines such as IL-10 and IL-1 receptor
antagonist (IL-1Ra) by human monocytes, macrophages, and DCs
and suppresses the production of IFN-γ by LPS-stimulated human
macrophages (124) and Toll-like receptor (TLR)-induced NF-κB
activation (125).

In addition adiponectin has been shown to be a negative regu-
lator of NK cell function (77), since it suppressed IL-2-enhanced
cytotoxic activity of NK cells through the AMPK-mediated inhi-
bition of NF-κB activation and down-regulated IFN-γ-inducible
TNF-related apoptosis-inducing ligand (TRAIL) and Fas lig-
and expression on these cells. Contrasting results have recently
shown that adiponectin can also act as a pro-inflammatory
cytokine. Indeed it has been shown that its levels are high in
arthritis, preeclampsia, and end-stage renal diseases (126–130).
Also, adiponectin was shown to induce production of the pro-
inflammatory mediator IL-6 and activation of NF-κB in human

synovial fibroblasts and adhesion molecule expression in endothe-
lial cells (131–133). One possible explanation for the pleiotropic
effects exerted by adiponectin could be the presence of various
circulating oligomers of adiponectin. Although HMW multimers
appear to be the most bioactive form of adiponectin in the circu-
lation, other isomeric forms of adiponectin like hexamers could
differently modulate intracellular signaling pathways in several
anatomical districts, thus exerting quite different effects (134, 135).
Thus, the question of whether adiponectin might be considered an
anti- or pro-inflammatory adipocytokine still needs to be clarified.

Adiponectin and T cells
Little is know about the effect of adiponectin on T cell function.
Several data suggest that adiponectin is a negative regulator of
T cell activity. In particular, although a small percentage of T
cells express ADIPOR on their surface, a great amount of T cells
store ADIPORs within clathrin-coated vesicles and these receptors
colocalized with Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4)
molecules. After stimulation of T cells, the expression of both
ADIPORs and CTLA-4 has been shown to be upregulated. Inter-
estingly, it has observed that the addition of adiponectin results in
a significant decrease of antigen-specific T cell proliferation and
cytokines production, through the enhancement of T cells apopto-
sis. Confirming these findings in vivo, adiponectin-deficient mice
had higher frequencies of CD137+ T cells upon Coxsackie B virus
infection, thus suggesting that adiponectin is a novel negative
T-cell regulator (136).

Adiponectin has been shown to inhibit allograft rejection
in murine cardiac transplantation, indeed Okamoto et al. have
shown that allografts transplanted to APN−/−mice showed severe
acute rejection to transplants in APN+/+ hosts accompanied
by increased accumulation of CD4+ and CD8+ T cells and
macrophages (137). A recent paper by Tsang et al. suggests that the
immunomodulatory effect of adiponectin on immune response
could be at least in part mediated by its ability to alter dendritic cell
functions (138). Indeed, adiponectin-treated dendritic cells show
a lower production of IL-12p40 and a lower expression of CD80,
CD86, and histocompatibility complex class II (MHCII). More-
over, in co-culture experiments of T cells and adiponectin-treated
dendritic cells, a reduction in T cells proliferation and IL-2 produc-
tion and an higher percentage of CD4+CD25+Foxp3+ Treg cells
was observed (138) suggesting that adiponectin could also control
regulatory T cell homeostasis. Moreover adiponectin inhibits the
production of CXC receptor 3 chemokine ligands in macrophages
and consequently reduces T-lymphocyte recruitment and accu-
mulation during atherogenesis (139).

On the contrary, Cheng et al. have recently shown that addition
of adiponectin to polyclonally activated CD4+ T cells induced
secretion of IFN-γ and IL-6, increased phosphorylation of p38
MAPK and STAT4 and augmented T-bet expression, indicating
that adiponectin enhances Th1 differentiation (140). In the same
direction, the paper by Jung et al. has shown that adiponectin-
induced maturation and activation of DCs, as demonstrated by the
increased expression of MHC class II, co-stimulatory molecules in
both mouse and human DCs, and it significantly enhanced pro-
duction of pro-inflammatory cytokines. moreover, adiponectin-
treated DCs significantly induced both Th1 and Th17 responses
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in allogeneic T cells, leading to enhanced pro-inflammatory
responses (141).

RESISTIN
Resistin is a 114-amino-acid polypeptide, originally shown to
induce insulin resistance in mice (142). It belongs to the fam-
ily of resistin-like molecules (RELMs), also known as “found
in inflammatory zone (FIZZ),” a family of molecules that has
been implicated in the regulation of inflammatory process (143).
Resistin was shown to circulate in two distinct forms: a more preva-
lent HMW hexamer and a substantially more bioactive, but less
prevalent, LMW complex (144). Initially, resistin has been shown
to be predominantly expressed by adipocytes but recent evidence
has suggested that macrophages, rather than adipocytes, appear to
be the most important source of resistin in human subjects (145)
and mRNA encoding resistin can be found in mice and humans in
various tissues, including the hypothalamus, adrenal gland, spleen,
skeletal muscle, pancreas, and gastrointestinal tract (146).

Contradictory findings have shown that resistin levels can be
either increased, unchanged, or decreased in murine and human
obesity and type II diabetes, however, recent data indicate that
in human PBMCs, expression of resistin mRNA is markedly
increased by the pro-inflammatory cytokines IL-1, IL-6, and TNF,
and by LPS (147). Also, resistin levels are mutually correlated
with those of cell-adhesion molecules such as intercellular adhe-
sion molecule 1 (ICAM-1) in patients with obstructive sleep
apnea, and in atherosclerotic patients are positively associated
with other markers of inflammation, such as soluble TNF-R type
II and lipoprotein-associated phospholipase A2 (148, 149). Simi-
larly, stimulation of human macrophages with LPS led to increased
resistin mRNA expression, via a cascade involving the secretion of
pro-inflammatory cytokines and administration of LPS to human
volunteers is associated with dramatically increased circulating
resistin levels (150), thus suggesting that this molecule can act as
a critical mediator of the insulin resistance associated with sepsis
and possibly other inflammatory conditions. In further support of
its pro-inflammatory profile, resistin also up-regulates the expres-
sion of vascular cell-adhesion molecule 1 (VCAM1), ICAM-1, and
CCL2 by human endothelial cells and induces these cells to release
endothelin-1 (151).

Resistin and T cells
A small number of studies have been performed to address the
role of resistin in T cell functions, but recent evidence has showed
that resistin strongly up-regulates the expression of TNF and IL-6
by human PBMCs and induces arthritis after injection into the
joints of healthy mice (152). These pro-inflammatory properties
of resistin were abrogated by an NF-κB inhibitor, thus showing the
key role of NF-κB in resistin-induced modulation of inflammatory
reactions. Moreover Son et al. have recently shown that resistin
induces expansion of functional Tregs, as testified by increased
protein and mRNA expression of FoxP3, only when CD4+ T cells
are co-cultured with DCs (153).

VISFATIN
Another protein clearly representing an additional link between
adipose tissue and inflammation is Visfatin [also known as pre-
B-cell colony-enhancing factor (PBEF)] which has recently been

identified as an adipocytokine secreted primarily by adipocytes
in visceral fat and able to decrease insulin resistance (154). This
molecule is an insulin-mimetic adipokine, being able to bind
and activate the insulin receptor without competing with insulin.
Visfatin mRNA levels increase in the course of adipocyte differ-
entiation, and visfatin synthesis is regulated by several factors,
including glucocorticoids, TNF, IL-6, and growth hormone. Orig-
inally it has been identified as a growth factor for B lymphocyte
precursors PBEF (155) and since its discovery it has been associ-
ated with several inflammatory disease states such as acute lung
injury (156, 157). Indeed the presence of specific single nucleotide
polymorphisms in the visfatin/PBEF gene, which decrease gene
transcription rate, highly increases the risk of development of
acute lung injury in septic patients (157).

Furthermore, expression of visfatin has been shown to be
upregulated in activated neutrophils from septic patients (155,
157) and to inhibit the apoptosis of neutrophils, through a caspase
3- and caspase 8-mediated mechanism (155). On monocytes, vis-
fatin is able to induce their chemotaxis and their ability to induce
allo-proliferative responses in lymphocytes, through a p38 and
MEK-dependent mechanism. More specifically, it ha been shown
that visfatin up-regulates the production of the pro-inflammatory
cytokines IL-1b, IL-6, and TNF-α (158), the expression of the co-
stimulatory molecules CD80 (B7-1), CD40, and also of ICAM-1
and other co-stimulatory ligand that binds to LFA-1 (lymphocyte
function-associated antigen-1), thereby promoting the activation
of T cells (159). In this context, Moschen et al. have also shown
that PBEF/visfatin is a potent chemotactic factor particularly for
CD14+ monocytes and CD19+ B-cells (158).

ADIPSIN
Adipsin (which in human subjects corresponds to complement
factor D46) is the rate-limiting enzyme in the alternative pathway
of complement activation (160). Adipsin, together with several
other components of both the classical and alternative comple-
ment cascade, is primarily expressed by adipocytes in mice and by
both adipocytes and monocytes-macrophages in human subjects
(161). Adipsin levels are reduced in murine models of obesity but
either increased or unchanged in obese human subjects (162).

INTRACELLULAR METABOLIC PATHWAYS IN THE CONTROL
OF IMMUNE FUNCTIONS
Recent evidence shows that the intracellular metabolic pathways,
that sense environmental signals, such as nutrient availability, are
able to control T cell function and differentiation, including Treg
cell activity and immune tolerance pathways. This might represent
a mechanism that allows immune cells to finely tune their response
according to their metabolic competence.

In particular, mTOR, a serine-threonine kinase that can inte-
grate signals from environmental nutrients and growth factors to
control T cell proliferation and differentiation (163, 164), together
with AMPK, its activator LKB1, the NAD+-dependent deacetylase
Sirtuin 1 (SIRT1),and the Forkhead-box-o-family (Foxo) proteins,
have been described as the dominant intracellular elements linking
metabolism and self-tolerance. mTOR kinase, which can operate
in two distinct signaling complexes (mTORC1 and 2) (165, 166),
regulates different aspects of helper T (Th) cell differentiation and
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fate. Differentiation of naive CD4 T cells into Th1 and Th17 subsets
is controlled in part by mTORC1 signaling an event dependent on
the small GTPase Ras homolog enriched-in-brain (Rheb) (167). In
contrast, conditional deletion of mTORC2 adaptor rictor protein
impairs Th1 and Th2 cell differentiation, without altering Th17
differentiation or frequency of Treg cells, by promoting phospho-
rylation of PKB or Akt, PKC, and NF-κB (168). In Treg cells, mTOR
is a negative regulator of TCR-dependent FoxP3 expression (169),
of de novo Treg cell differentiation (170), and of Treg cell lineage
commitment (171).

In this context, several biological molecules have been asso-
ciated to the control of intracellular metabolic pathways; among
these the adipocyte-derived hormone leptin has been shown to
bring the gap between metabolism and immune cell tolerance.
We have previously demonstrated that leptin can be produced by,
and inhibits, the proliferation of Treg cells (107). Indeed, genetic
deficiency of leptin (ob/ob mice) is associated with an increased
percentage of peripheral Treg cells as compared to WT mice. These
data are in agreement with recent reports showing that adipose tis-
sue in normal individuals is a preferential site of accumulation of
Treg (34). Their precise role in this tissue is still object of extensive
investigation but what is clear is that in mice, diet-induced obe-
sity (DIO) is associated with a body mass-dependent, progressive
decline in the proportions of Treg cells in the visceral adipose
tissue (VAT). In contrast, therapy with CD3-specific antibody
(which promotes T cell self-tolerance through global, transient
T cell depletion) normalized insulin resistance and glucose home-
ostasis, and selectively restored CD4+Foxp3+ T cell pools in VAT
(74), by increasing IL-10 and Th2/regulatory-type cytokines (34,
35). Moreover Cipolletta et al. identified peroxisome proliferator-
activated receptor (PPAR)-γ, the “master regulator” of adipocyte
differentiation, as a crucial molecular orchestrator of VAT Treg cell
accumulation, phenotype, and function (172). All these data indi-
cate that leptin could represent the molecular link between obesity
and reduced number/function of Treg observed in this condition
and on the basis of these data, one could predict that leptin might

interact with the mTOR pathway. Supporting this hypothesis, lep-
tin increases mTOR activation and blocks proliferation of cultured
TCR-activated rapamycin-treated Treg cells and Teffs (108, 110),
thus modulating immune tolerance.

CONCLUDING REMARKS
During the last decade, there has been a growing understanding of
how host nutritional status and metabolism can affect the immune
response. In this context, several adipocytokines, are able to par-
ticipate in a wide range of biological functions that include glu-
cose metabolism and CD4+ T-lymphocyte proliferation, cytokine
secretion, and apoptosis, underlining the link among immune
function/homeostasis, metabolism, and nutritional state.

The notion that adipose tissue was considered as “passive”
source of energy in time of famine and starvation has been
completely revisited and its major role in the control of “domi-
nant” functions, such as immunity and metabolism, is providing
novel insights into the pathogenesis of metabolic and autoimmune
disorders.

Although many effects of these adipocytokines have been eluci-
dated in recent times, the details of their signaling pathways need
further investigation to understand how they are ultimately inte-
grated. It will be also worthwhile to focus, in the future, on how
adipocytokines signaling integrates with the intracellular cascades
activated by other factors in the immune cells, since understand-
ing the mechanism of action of these adipocytokines will soon
be pivotal to the development of novel therapeutic approaches to
obesity-induced inflammatory diseases.
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