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In the immune system, Neuropilin-1 (Nrp1) is a molecule that plays an important role in
establishing the immunological synapse between dendritic cells (DCs) andT cells. Recently,
Nrp1 has been identified as a marker that seems to distinguish naturalT regulatory (nTreg)
cells, generated in the thymus, from inducibleT regulatory (iTreg) cells raised in the periph-
ery. Given the crucial role of both nTreg and iTreg cells in the generation and maintenance
of immune tolerance, the ability to phenotypically identify each of these cell populations
in vivo is needed to elucidate their biological properties. In turn, these properties have
the potential to be developed for therapeutic use to promote immune tolerance. Here we
describe the nature and functions of Nrp1, including its potential use as a therapeutic target
in transplantation tolerance.
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INTRODUCTION
Neuropilin-1 (Nrp1) is a 120–130 kDa type-I transmembrane
glycoprotein with a multi-domain extracellular region, a single
transmembrane helix, and a cytoplasmic domain. The extracel-
lular region consists of two CUB domains (denoted a1/a2), two
coagulation factor V/VIII homology domains (denoted b1/b2),
and a MAM domain (denoted c) (1). Previous reports suggest that
the a1/a2 and b1/b2 domains are involved in the binding of Nrp1
to its ligands (2, 3), whereas the c- and transmembrane domains
participate in receptor dimerization (4). The intracellular domain
interacts with PDZ domain proteins (5), yet its function is not
defined (Figure 1).

Neuropilin-1 was first described to be involved in the devel-
opment of neurons (6–11), where it plays an important role as
co-receptor of various molecules, as described below (12–19).
More recent, immunologists have been interested in Nrp1 due
to its role in the formation of the immune synapse between den-
dritic cells (DCs) and T cells, leading to the activation of T cells
(20–23).

In addition to its expression in different cell types, an important
feature of Nrp1 is its ability to bind many different ligands; these
ligands control a variety of biological processes through binding
to Nrp1 (13–19). In this review, we discuss the identification of
Nrp1 and its biology, and then focus on the relevance of Nrp1
in the immune system and its potential clinical use in transplant
tolerance.

NEUROPILIN-1 BIOLOGY
Initially known as A5, Nrp1 was identified in the late 80s as
an antigen preferentially expressed on superficial layers of the

optic tectum of Xenopus laevis through screening candidate mole-
cules implicated in retinotectal projection development (6–8). The
composition of these layers predominantly consist of synapses,
glial processes, dendrites and axonal ends of retinal neurons, or
“neuropiles,” and therefore termed Neuropilin-1 (8).

During the 90s, research on Nrp1 was limited to the field
of developmental biology. In mice, Nrp1 is expressed in olfac-
tory, hippocampal, retinal, and sensory peripheral neurons; its
expression varies according to the development stage and estab-
lishment of neuronal circuits (9, 10). Signaling through Nrp1
expressed on neurons promotes neurite outgrowth in vitro, which
can be inhibited using anti-Nrp1 antibodies (24). In addition,
systemic overexpression of Nrp1 under control of the β-actin
promoter leads to embryonic death due to several morpho-
logical abnormalities, such as anomalous sprouting, defascicu-
lation of nervous fibers, and cardiovascular abnormalities like
excessive formation of capillaries, blood vessels, and heart mal-
formation (11). Together, these observations suggest an impor-
tant role for Nrp1 in embryonic vessel formation and neuronal
interactions.

Several investigators subsequently reported that Nrp1 is a class
III semaphorin (Sema3) receptor (discussed later), confirming an
important role for Nrp1 in axonal guidance (25–27). These find-
ings are consistent with Nrp1 being identified as a novel vascular
and endothelial growth factor (VEGF) receptor (12), and a Nrp1
deficiency in mice resulting in embryonic lethality at 10–12.5 days
due to severe anomalies in the vascular system, including impaired
neural vascularization, absence and/or transposition of important
vessels and disorganization of the extra embryonic vasculature
(28). Taken together, these results demonstrated that Nrp1 is

www.frontiersin.org November 2013 | Volume 4 | Article 405 | 1

http://www.frontiersin.org/Immunology
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/about
http://www.frontiersin.org/Journal/10.3389/fimmu.2013.00405/abstract
http://www.frontiersin.org/people/u/108714
http://www.frontiersin.org/people/u/111100
http://www.frontiersin.org/people/u/108705
http://www.frontiersin.org/people/u/111681
http://www.frontiersin.org/people/u/105250
mailto:kpino@med.uchile.cl
http://www.frontiersin.org
http://www.frontiersin.org/Immunological_Tolerance/archive
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FIGURE 1 | Neuropilin-1 structure, ligands, and function. Left: Nrp1 is
comprised of five extracellular domains (a1/a2, b1/b2, and c), one
transmembrane domain, and a short cytoplasmic domain. The a1/a2 and
b1/b2 domains are involved in binding to several ligands, while the c- and
transmembrane domains are involved in receptor oligomerization. The

intracellular domain of Nrp1 interacts with PDZ domain proteins (such as
synectin) via its C-terminal recognition sequence S-E-A. In addition, a
natural-occurring soluble form of Nrp1 (sNrp1), lacking the c- and
transmembrane domains, is shown. Right: the function and ligand binding
properties of each Nrp1 domain is depicted.

essential for normal embryological development of the nervous
and cardiovascular systems.

Neuropilin-1 has a homologous protein called Neuropilin-2
(Nrp2), which shares 44% peptide sequence homology (26, 29).
Both proteins have similar molecular weight, general domain
structure, and share certain ligand specificities (30, 31). Further-
more, they can form Nrp1/Nrp2 heterodimers (32, 33). Nrp1 and
Nrp2 are present only in vertebrates, despite the evidence indicat-
ing the existence of Nrp ligands in some invertebrates (30, 34).
In addition to membrane-bound Nrp1 and Nrp2, several secreted
forms of these proteins, which lack the transmembrane and cyto-
plasmic domains, have been identified and sought to act as natural
inhibitors (35–39).

A notable feature of Nrp1 and Nrp2 is their ability to bind
with relatively high affinity to several families of molecules, which
involves them in a variety of physiological processes in a manner
that is not yet fully understood. These molecules include Sema3
and heparin-binding members of the VEGF family that bind to
Nrp1. VEGF family members are potent angiogenic molecules
with chemotactic, survival, and proliferating effects in endothe-
lial cells (40). Nrp1 is a functional receptor for specific members
of the family of these angiogenic factors acting as a co-receptor
together with VEGF-receptors (12). In addition, Nrp1 binds to
hepatocyte growth factor (HGF and its receptor c-Met) (13, 14),
some members of the fibroblast growing factor (FGF) family (13),
platelet derived growth factor (PDGF and its receptors) (15, 16),
and Galectin-1 (Gal-1) (17). Finally, Nrp1 interacts with inte-
grins (18, 19) and even binds with itself (13), implicating a role in
immune cells (discussed later).

Neuropilin-1 is expressed in epithelial cells from different
tissues (e.g., gastrointestinal tract, pancreas, thymus), neurons,
melanocytes, and keratinocytes (31, 41). In many cases, Nrp1
participates in the generation of various types of organs, which
can be attributed largely to its role as a VEGF receptor. For
example, Nrp1 is involved in pancreatic islet neogenesis and its
expression is restricted to islet cells (42). Moreover, Nrp1 expres-
sion levels increase during lung organogenesis and its expression

remains in normal alveolar epithelium (43). Nrp1 also partici-
pates in glomerulogenesis and wound repair in renal glomerular
and keratinocytes, respectively (44, 45).

Neuropilin-1 is expressed by a variety of human tumor cell
types (46), such as breast cancer cells, melanoma, astrocytoma, and
prostate carcinoma, among others (12, 47–49). Although in certain
clinical studies it was found a correlation between Nrp1 expression
and increased hypervascularity, malignancy, and/or aggressiveness
(46), sNRP1 (a soluble form of Nrp1) had a antitumoral effect (35).

SEMAPHORINS AND THEIR RELATIONSHIP WITH Nrp1 IN IMMUNE
CELLS
Semaphorins are a family of either membrane-associated or sol-
uble proteins that share a common structural domain known as
a Sema domain (50). This family is composed of ∼30 different
proteins that are involved in axonal guidance, as chemorepel-
lents of neurite growth during central nervous system (CNS)
development, proliferation, and cytoskeleton organization (51),
organogenesis, vascularization, angiogenesis, and cancer (50). Fur-
thermore, some semaphorins are present in different immune
cells (Figure 2), including lymphocytes, Natural Killer (NK) cells,
monocytes, DCs (51). These semaphorins belong to class III, IV,VI,
and VII, and their roles in immune regulation are discussed below.

Class VII semaphorins
Sema7A is a membrane-attached glycoprotein (also known as
CD108), which is expressed on activated lymphocytes and thymo-
cytes. Its receptor is VESPR/CD232/plexin-C1, present in mono-
cytes and macrophages (52). Sema7A signaling induces the pro-
duction of pro-inflammatory cytokines such as TNF-α, IL-6, and
IL-8, and the chemotaxis of monocytes (53). Studies using geneti-
cally manipulated mice suggested an important role for Sema7A in
some immune diseases. For example, Sema7a-knockout mice are
resistant to inflammation and it has been described that Sema7A is
an important molecule in the pathogenesis of lung fibrosis, exac-
erbating fibrosis via binding to β1-integrin (54). Furthermore,
signals through Sema7A on monocytes promotes the production
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FIGURE 2 | Neuropilin and semaphorin expression in immune
cells. Multiple immune cells express neuropilins and semaphorins and
signaling through these molecules control distinct cellular properties
including cell migration, activation, or modulation of immune cell

response and CD4+T-cell polarization. Some neuropilins and
semaphorins are uniquely expressed in specific CD4+T-cell subsets
such as activated cells (red lined cells) or FoxP3+ regulatory T cells
(gray cell).

of granulocyte-macrophage colony stimulating factor (GM-CSF),
inducing morphological changes transforming them to a DCs-like
morphology (55).

Class VI semaphorins
Sema6D is expressed on T cells, B cells, and NK cells. Its recep-
tor is plexin-A1, known for being expressed specifically on DCs.
Studies have demonstrated that recombinant Sema6D recognizes
and binds to plexin-A1 on activated DCs, increasing IL-12 pro-
duction. Additionally, Plexin-A1-knockout mice exhibit impaired
T-cell responses, being resistant to experimental autoimmune
encephalomyelitis (EAE). Specifically, it has been shown that
Sema6D expression increases belatedly during CD4+T-cell activa-
tion, and its blockade causes an impaired late-phase T-cell prolifer-
ation and the inhibition of CD127 expression (56). Also, it has been
found that Sema6D is present in gastric carcinoma tissue where it
would be playing an important role inducing angiogenesis (57).

Class IV semaphorins
Sema4D, also known as CD100, was the first semaphorin to
be associated with an immune function (58). This molecule is
expressed constitutively in T cells and at low levels in resting B cells
and DCs, but is upregulated in these cells upon activation (59, 60).
During this event Sema4D is proteolytically cleaved and is released
as a soluble protein (55), which has been implicated in physiolog-
ical and pathological immune responses (54). Soluble Sema4D
has been detected in immunized mice (50). Sema4d-knockout
mice have impaired humoral responses against T-cell-dependent
antigens (59), and fail to develop EAE caused by an impaired
priming of T cells by DCs, which is essential in the induction
of antigen-specific T-cell responses (60).

Two receptors have been described for Sema4D: CD72 for lym-
phoid cells and Plexin-B1 for non-lymphoid cells (55). The cyto-
plasmic domain of CD72 has an immunoreceptor tyrosine-based
inhibition motif (ITIM) that binds to SH2-containing tyrosine
phosphatase 1 (SHP1) and acts as a negative regulator of B cell
responses (61, 62). When Sema4D interacts with CD72, induces
tyrosine dephosphorylation of the ITIM motif, turning off the neg-
ative signal by disrupting CD72-SHP1 interaction, and promoting
positive stimulation of B cells (59, 63). It has been suggested that
Sema4D could be the ligand for plexin-B1, reversing its roles and
implying different functions for this semaphorin (50).

Sema4A is expressed in DCs, B cells, and activated T cells (64),
especially in Th1-polarized cells (65), suggesting that Sema4A
helps drive Th1 polarization. Sema4A is also expressed in Th17
cells (66). In the EAE model, mice treated with an anti-Sema4A
blocking antibody were protected against the disease, as demon-
strated by decreased numbers of infiltrating mononuclear cells
into the CNS and diminished reactivity of myelin oligodendrocyte
glycoprotein (MOG)-specific T cells (64). Analysis of Sema4a-
deficient mice demonstrated that these animals have an impaired
Th1-type response, and DCs from these mice were poor stim-
ulators of allogeneic T cells, indicating a non-redundant role
of Sem4A in DCs and T cells (65). The receptor of Sema4A
in immune cells is Tim-2 (64), which is expressed by Th2-
polarized cells, and its been suggested that the expression of
Sema4A by Th1-polarized cells negatively regulates Th2 cell
response via interaction with Tim-2 (54). Recently, it has been
shown that Sema4A expressed in plasmacytoid dendritic cells
(pDCs) can modulate anti-tumor responses by potentiating reg-
ulatory T-cell function and stability in the tumor microenviron-
ment (67).
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Sema4B is expressed in T cells and B cells, and promotes Th2
cell skewing (68). Supporting this observation, Sema4b−/− mice
have increased levels of serum IgE and an enhanced basophil-
mediated IgE production. Although the receptor for Sema4B
remains unidentified, it has been suggested that the regulatory
properties of Sema4B in basophils would be mediated through
ITIM-containing molecules (54).

Class III semaphorins
Sema3E is involved in thymocyte development (69). It is expressed
on medullar thymic epithelial cells (mTECs), and CD4+CD8+
double positive (DP) thymocytes express high levels of Plexin-D1,
the receptor for Sema3E. Plxnd1- and Sema3e-knockout mice have
abnormal thymic development, with no clear cortical-medullary
demarcation (69). In these mutant mice, CD69+ DP thymocytes
localize in the cortical area in contrast to wild type mice where
CD69+ DP thymocytes localize in the medullary zone of the
thymus (69).

Semaphorin 3A
Sema3A acts as a negative regulator of the immune system (54),
and is expressed in activated DCs and T cells, attenuating T-
cell proliferation directly (70). Sema3A is also expressed in sev-
eral tumor cells, inhibiting T-cell proliferation by activation of
Ras/MAPK signaling pathway (71). The receptor of Sema3A is a
complex formed by Nrp1 and plexin-A (72), and mutants for the
receptors of Sema3A exhibit an enhanced T-cell response, both
in vitro and in vivo (73). Furthermore, the in vivo administra-
tion of plasmid DNA encoding Sema3A reduces the severity of
mice suffering from collagen-induced arthritis (CIA) (74). Given
these findings, Sema3A is a potential target for the treatment of
autoimmune diseases (75, 76).

Sema3A is also involved in thymocyte development and con-
trolling the migration of immune cells (77). Acting as a chemore-
pellent, signaling through Sema3A impairs the migration of T cells
and monocytes in vitro (78, 79). In vivo, Plexin-A1 deficient and
Nrp1 defective mice have impaired T-cell responses due to the
incapacity of DCs, that normally express both molecules, to trans-
migrate across lymphatic endothelial cells and to reach draining
lymph nodes, where DCs encounter T cells to present the antigen
(80). In the same work it is showed that DCs suffer morphologi-
cal changes (cytoskeleton reorganization) during transmigration,
which are Sema3A-dependent. These interactions would regulate
DCs contractility and adhesion capabilities when passing through
vessel walls (54).

In contrast to the immunosuppressive role of Sema3A, Wen
et al. reported that macrophages and DCs from plexin-A4 knock
out mice have defective cytokine production upon stimulation
with TLR agonists. In the same work, administration of exoge-
nous Sema3A exacerbates cytokine production in wild type cells,
indicating that Sema3A is an enhancer of the innate immune
response (81). Additional studies are needed to clarify the function
of Sema3A in immune responses.

Nrp1 IN T-CELL-MEDIATED IMMUNITY
DCs and CD4+ T cells
In 2002, Tordjman et al. described for the first time that Nrp1
is expressed on human DCs. Analysis of Nrp1 expression during

in vitro differentiation from monocyte to DCs demonstrated that
Nrp1 is not expressed in monocytes but only after differentia-
tion into DCs (20). Nrp1 expression correlated with DC-SIGN.
Consistent with these findings, Nrp1 is expressed in human DCs
of lymph nodes from dermatopathic lymphadenopathy patients.
Interestingly, Nrp1-expressing DCs were concentrated in the T-
cell-rich areas, suggesting that Nrp1 pathway can influence DC-T-
cell interaction and supporting previous findings in which Nrp1
is involved in the formation of the immunologic synapse. Nrp1
is also expressed on peripheral blood T cells. Together, these
observations suggest that Nrp1 plays a role in promoting cog-
nate interactions between DC and T cells perhaps through the
formation of the immunological synapse necessary to initiate the
immune response. Evidence to support this hypothesis is pro-
vided from in vitro studies using allogeneic DC-T-cell co-cultures
that demonstrated Nrp1 expression to be co-localized with CD3
expression on T cells and required for T-cell proliferation; Nrp1
blocking antibodies diminished the ∼50–60% T-cell proliferation
when antibodies were directed to Nrp1 on DC or T-cell (20).

Corbel et al. characterized Nrp1 expression on murine thymo-
cytes and other cell populations (21). First, they analyzed Nrp1
expression on both immature and mature bone marrow-derived
DCs (BM-DCs) and found that ∼5% of immature BM-DCs
express Nrp1 in the cell surface. This frequency increases to ∼45%
of LPS-matured BM-DCs. In the thymus,∼40–50% of leukocytes
express Nrp1 (mainly by DN, DP, and CD4+CD25+ T cells) (21).
In a very interesting report, it is proposed that Nrp1 expressed
on human DCs can be transferred onto T cells via trogocytosis
since Nrp1 expression on CD4+ T cells occurs as early as 15 min
post co-culture with DCs. This was confirmed using an inhibitor
for protein synthesis (in which case Nrp1 detection on T cells
still occurred) and performing co-cultures with B cells (as antigen
presenting cells) transduced with a vector containing a reporter
(GFP) Nrp1. In these experiments, CD4+ T cells cultured with
Nrp1GFP-B cells express Nrp1GFP in the membrane, and the level
of expression is directly correlated with the amount of expression
on B cells. Cell-contact and membrane transfer were confirmed
using transwell experiments and membrane dye assays, respec-
tively. Their results propose an interesting mechanism by which
CD4+ T cells may be acquiring Nrp1 from DCs to modulate the
immune response (by binding to Nrp1 ligands or interacting with
other cells), but since there was not activation of CD4+ T-cell sig-
naling pathways upon Nrp1 binding, the mechanism and relevant
in vivo impact of this phenomenon are still unknown (21).

Regulatory T cells
Two years after Tordjman’s findings, Bruder et al. studied the
expression of Nrp1 on murine CD4+ T cells (22). In this
work, they isolated CD4+CD25+ regulatory T cells (Tregs) and
CD4+CD25− T cells (activated or not in vitro) and performed
gene array analysis. In these experiments, Tregs could be distin-
guished from the CD4+CD25− T-cell counterparts by a defined
group of differentially expressed genes, which contained Foxp3,
KLRG1, and Nrp1. Nrp1 expression on Tregs at the plasma mem-
brane was confirmed using antibody surface staining. Polyclonal
and antigen-specific activation of Tregs in vitro demonstrated
that the level of Nrp1 remains unchanged on Tregs, while Nrp1
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expression on activated CD4+ T cells is almost lost (22). Bruder
et al. also demonstrated that Nrp1 expression is directly related
with both, Foxp3 expression and suppressive properties on Tregs.

Sarris et al. analyzed the contribution of Nrp1 expression on
Tregs and its role in the formation of immune synapse with
DCs, antigen recognition, and proliferation (23). In this report,
the authors used time-lapsed video microscopy to quantify the
duration of Tregs and DCs interaction. Results from these studies
indicated that naïve CD4+ T cells and Tregs establish long-lasting
interactions (>400 s) with DCs in a MHC-II-dependent manner,
but the frequency of cells interacting with DCs was twofold higher
with Tregs (∼44%) compared to naïve CD4+ T cells (∼23%).
Most importantly, the long-lasting interactions between DCs and
Tregs were dependent on Nrp1 since the incubation of either DCs
or Tregs with a Nrp1 blocking antibody reduced their interactions.
This finding suggests that homotypic expression of Nrp1 by DCs
and Tregs may contribute to this process. Further analyses demon-
strated that Nrp1 plays a role in immune synapse formation (being
present in pSMAC and cSMAC) as well as in antigen recognition
and T-cell proliferation, since Nrp1 expression would make T cells
more sensitive to antigen (23). Although the data described above
suggests that Nrp1 is preferentially expressed by Tregs, Milpied
et al. reported that human PBMC CD4+CD25+Foxp3+ T cells
express extremely low levels of Nrp1, concluding that Nrp1 cannot
be used to distinguish human Tregs from conventional CD4+ T
cells (82).

Besides the chemoattractant property between DC-T cells and
its role in the formation of the immunological synapse, Glinka
and Prud’homme proposed a role for Nrp1 as a transforming
growth factor-β (TGF-β) receptor (83). They designed an Nrp1-
Fc molecule, which when added to T cells in culture could bind
to LAP-TGFβ or active TGFβ. Importantly, CD4+Nrp1− T cells
bind to LAP-TGFβ via Nrp1-Fc gaining suppressive capacity.

The in vivo importance of Nrp1 expression on CD4+ T cells
was determined by Solomon et al. through analysis of Nrp-
1flox/floxCD4Cre conditional knockout mice where both CD4+
and CD8+ T cells lack Nrp1 (84). These mice have normal T-
cell development, including normal levels of Foxp3 expression in
CD4+CD25+ T cells compared with control littermates. Nrp-
1flox/floxCD4Cre mice developed a more severe EAE characterized
by CD4+T cells skewed toward a Th17 phenotype, given by an up-
regulation in the expression of RORγτ and enhanced IL-17 secre-
tion. CD4+CD25+ T cells from the Nrp-1flox/floxCD4Cre mice
display a lack of their suppressive function despite normal Foxp3
expression levels. The suppression displayed by CD4+Nrp1+ T
cells seems to be dependent on TGF-β since the inclusion of a
TGF-β blocking antibody into DC-CD4+ T-cell co-cultures, in
the presence of CD4+Nrp1+ T cells, abrogates suppression (84).
This result was not obtained when an IL-10 blocking antibody was
evaluated.

In 2012, two independent research groups reported that Nrp1
could be a useful surface marker to differentiate between natural-
Tregs (nTregs) and induced-Tregs (iTregs) (85, 86). Using several
transgenic mouse strains, Yadav et al. demonstrated that iTregs
express very low levels of Nrp1. Yadav’s group has developed an
in vivo model (based on EAE) in which the offspring of myelin-
binding protein (MBP)-TCR-Tg mice crossed with RAG-KO mice

lack nTregs, but iTregs can be detected in the periphery. In addi-
tion to this, they also tested the low dose-antigen immunization
model to induce iTregs. In their experiments, they could iden-
tify and isolate iTregs to compare differentially expressed genes
by gene arrays analysis, with the nTregs counterpart as control.
Results from these experiments demonstrated that Nrp1 is pref-
erentially expressed by nTregs. Nrp1− T cells express Foxp3 and
have suppressive function in vitro and in vivo (85).

Exploiting in vivo models of iTreg generation in mucosa (lung
and intestine),Weiss et al. observed the same phenomena but addi-
tionally, they tested for possible factors controlling Nrp1 expres-
sion. In this attempt, the group identified TGF-β and IL-6 to induce
and inhibit Nrp1 expression, respectively (86).

Conversely, Hansen et al. utilized an in vivo tumor model to
show that the lack of Nrp1 on CD4+ T cells does not allow
tumor growth, mainly by eliciting the effector function of intra-
tumoral CD8+ T cells (87). The depletion of Foxp3+ T cells and
disruption of VEGF production on tumor cells mimic the phe-
notype seen in CD4+ T-cell specific Nrp1-deficient mice. Taken
together, these data indicate that tumor-derived VEGF is required
to attract CD4+Foxp3+Nrp1+ T cells that can support tumor
growth. In the same line, Delgoffe et al. utilized mice with a Foxp3-
specific Nrp1 deletion, and found that Nrp1 potentiates Treg cell
function and stability both in vitro and in vivo via interaction
with Sema4A expressed in pDCs (67). The Nrp1-Sema4A binding
would allow the interaction between Nrp1 and the cytoplasmic
domain of PTEN, inhibiting Akt-mTOR signaling, and favoring
Foxo3a nuclear localization, which promotes Foxp3-dependent
Treg survival, stability, and function.

IMPLICATIONS IN CLINICAL TRANSPLANTATION TOLERANCE
Currently in the clinical transplantation field, a molecular marker
to identify and track Tregs is lacking because Foxp3 (the hallmark
for Tregs) is an intracellular protein, thus it is not a useful tool
to identify and isolate viable Tregs. Furthermore, Foxp3 expres-
sion in human Tregs is not characteristic of these suppressor cells
compared to murine Tregs (82). Yadav and Weiss’s recent reports
propose Nrp1 as an attractive new surface marker to distinguish
murine Tregs from effector CD4+ T cells, even more, to discrim-
inate between those generated in the periphery (iTregs) from the
ones differentiated in the thymus or nTregs (85, 86).

In murine studies, the contribution of Nrp1 biology in trans-
plantation tolerance indicates that CD4+Nrp1+ T cells may play
a suppressive role in allograft rejection. One important report
shows that CD4+Nrp1+ T cells transferred into heart allograft-
recipient mice extend the survival of the transplant, mainly by
inhibiting the production of inflammatory cytokines, such as IFN-
γ and IL-17, enriching for Tregs and inducing anergy on effector
T cells (88). The suppressive capabilities of the CD4+Nrp1+ T
cells were heightened by the co-administration of the immuno-
suppressant, rapamycin. Taken together, these results demonstrate
the potential use of Nrp1+ T cells to abolish or diminish allo-
graft effector responses, which can be complemented with current
drugs to maximize the tolerogenic effect. In line with this report,
Schliesser et al. generated CD4+CD25+Foxp3+ Treg cells from
total mouse CD4+ T-cell in vitro through treatments with anti-
CD4, TGF-β, and Retinoic acid (RA) or anti-CD4 plus rapamycin,
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and showed that the majority of Foxp3-expressing Tregs generated
under anti-CD4, TGF-β, and RA condition express Nrp1, mainly
due to the expansion of nTregs instead of de novo iTregs (89). They
also showed that anti-CD4, TGF-β, and RA expanded Tregs exhib-
ited the highest stability and suppressive capacities both in vitro
and in a skin transplantation setting, highlighting the role of Nrp1
in Treg cells.

In humans, Nrp1 may be a useful indicator of the immuno-
logical status of patients. For example, Battaglia et al. analyzed the
frequencies of CD4+Nrp1+T cells in peripheral blood and lymph
nodes of patients with benign diseases undergoing lymphadenec-
tomy. Their results show that Foxp3 expression is detected in the
CD25high fraction of CD4+Nrp1+ T cells from lymph nodes
and not from blood, suggesting an anatomical influence in the
presence of Nrp1-expressing CD4+ T cells (90). Importantly,
CD4+Nrp1+CD25high T cells from lymph nodes co-expressed
other Treg-like markers such as CD45RO and GITR, and dis-
played suppressive capability in vitro. Interestingly, the frequencies
of CD4+Nrp1+CD25high T cells were reduced in the tumor-
draining lymph nodes of cervical cancer patients after chemoradi-
ation therapy, which was associated with a decrease in the tumor
mass. Based on this data, one possibility is that the presence
of human CD4+Nrp1+CD25high T in lymph nodes cooper-
ates with the tolerogenic microenvironment of tumor burden
areas (90).

Finally, a small study proposed the expression of Nrp1 on T cells
as a putative predictor of allograft rejection, since the presence

of Nrp1 on lymphocytes residing in kidney transplant biopsies
decreased during acute rejection, as compared with biopsies from
non-rejecting individuals (91), suggesting that the reduction of
Tregs (Nrp1+ cells) in the graft may be linked with the develop-
ment of the rejection process (see Figure 3 for an overview of Nrp1
expression on suppressive and effectors CD4+ T cells). This sup-
ports the possible use of Nrp1 as a Tregs marker in transplanted
patients.

CONCLUSION
Important advances have been made in the study of Nrp1 on
immune cells. While most of the available information indicates
a role for Nrp1 in the formation of the immunological synapse,
Nrp1 may also play a key role as a Treg marker, permitting the dis-
crimination between nTregs and periphery-induced-Tregs. More
investigation is required to clearly demonstrate that Nrp1 will be
a feasible predictor of tolerance in the transplantation field since
murine and human data are not compatible. Hence, the question
of whether Nrp1 is a new marker for transplantation tolerance
remains to be answered.
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FIGURE 3 | Neuropilin-1 expression in DCs and CD4+T cells. DC
precursors express very low levels of Nrp1. In contrast, mature DCs express
high levels of Nrp1. Naïve CD4+CD25−T cells constitutively express Nrp1,
which is downregulated upon T-cell activation. Interestingly, nTregs also

constitutively express high levels of Nrp1 in contrast to iTregs, distinguishing
these two cell populations when combined with Foxp3 expression. The
presence of Nrp1+T cells is associated with acceptance of tissue grafts
while Nrp1−T cells are linked to tissue graft rejection.
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