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A large number of auto-immune diseases are treated with rituximab, an antibody against
CD20 that depletes most of the B-cells in the organism. The response to this treatment
depends largely on the disease and the type of lymphoid cells involved in the auto-immune
process. We recently reported that B-cell depletion in immune thrombocytopenia induced
the appearance of pathogenic long-lived plasma cells in the spleen, which were not present
before treatment or in non-auto-immune conditions. The spleen of treated patients pro-
duced an excess of the cytokine B-cell activating factor, which in in vitro-cultured splenic
cells, could increase the longevity of plasma cells. Our results suggested that, paradoxi-
cally, the B-cell depletion itself, by altering the splenic milieu, promoted the differentiation
of short-lived auto-immune plasma cells into long-lived ones. We describe the cellular and
cytokinic components of the splenic plasma cell niche, notably CD4+ T cells and discuss
possible survival factors that could be targeted simultaneously with rituximab-mediated
B-cell depletion to interfere with plasma cell persistence.
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B-CELL DEPLETION, FROM MICE TO HUMANS
For the last decade, anti-CD20-induced B-cell depletion has been
increasingly used to treat several auto-immune conditions such
as rheumatoid arthritis, vasculitis, and immune thrombocytope-
nia (ITP), but the clinical results have been disappointing (1–4).
Moreover, mouse models of B-cell depletion have added to the
confusion by showing incomplete B-cell depletion in lymphoid
organs, which suggests specific resistance of some tissue-resident
B-cell subsets. The first model was a transgenic mouse expressing
human CD20 and treated with an anti-hCD20 (2H7) mono-
clonal antibody (mAb). Despite complete depletion of circulating
lymph nodes and peritoneal-cavity B-cells, a large fraction of
B-cells remained in the spleen, mainly represented by marginal-
zone B-cells whose resistance was not related to the dose of
hCD20-depleting antibody (5, 6).

Two groups have developed anti-mouse CD20-depleting mAbs
(6, 7). Using one of them (MB20-11 antibody, Ig2a), Hamaguchi
et al. suggested that despite extensive depletion of all B-cell subsets
in blood, spleen, or lymph nodes, the peritoneal-cavity provided
a niche for B1 and conventional B lymphocytes, which were resis-
tant to the anti-CD20 treatment. Of note, inflammation resulting
in the migration of effector cells, mainly monocytes, facilitated
the depletion of these peritoneal B-cells (8). Using another mouse
antibody (18B12), one group reported the persistence of germinal-
center B-cells in spleen on injection of the depleting antibody at
the peak of the immune response (9). In both models (anti-human
or mouse CD20 mAbs), lupus-prone mice showed incomplete B-
cell depletion in secondary lymphoid tissues, which was explained
by a defect in monocyte/neutrophil IgG-mediated phagocytosis

(6, 7, 10, 11). These results suggested that specific resistance to
B-cell depletion could occur under auto-immune conditions, the
failure of such therapies being related to incomplete elimination
of auto-reactive B-cell clones in secondary lymphoid organs.

In humans, as in the mouse, CD20 is expressed from pro-B
to memory B-cells. Rituximab achieves almost complete periph-
eral B-cell depletion, with minimal numbers of CD19+ cells being
detectable in blood within 6 months after treatment. Residual cir-
culating CD19+ cells are mainly IgA plasmablasts, as documented
by high-sensitivity flow cytometry (12). These cells were suggested
to originate from mucosal tissues where they would have been
spared from the B-cell depletion, but their presence was not asso-
ciated with poorer response to treatment in the disease studied,
rheumatoid arthritis.

We recently reported marked B-cell depletion in spleens up
to 6 months after treatment with rituximab in ITP patients (see
below), with only about 0.5% of residual CD45+CD19+ B-
cells, mainly plasma cells (13) (Figure 1A). Thus, in humans,
the spleen is not the site of germinal-center or marginal-zone
rituximab-resistant B-cells, even in auto-immune conditions.

B-CELL DEPLETION IN ITP INDUCES DIFFERENTIATION INTO
LONG-LIVED PLASMA CELLS
Immune thrombocytopenia is an acquired bleeding disorder
mediated by pathogenic autoantibodies that enhance platelet
destruction and limit their production. The major target of these
autoantibodies is the platelet membrane glycoprotein IIb–IIIa
(GpIIbIIIa, integrins alpha2b, and beta3), but other glycoproteins
can be involved (e.g., GPIb-IX) (14). The spleen is the major
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FIGURE 1 | Long-lived plasma cells in the spleens of ITP patients
receiving rituximab. (A) Residual B-cells resisting rituximab treatment in
spleens from ITP patients (CD19+, % of CD45+ spleen cells, upper part) are,
for the most part, plasma cells, identified as CD19+CD20−CD24−CD27+

CD38high (lower part) (10 patient’s samples analyzed) (13). (B) Transcriptomic
analysis of splenic plasma cells from four ITP patients receiving rituximab
(RTX-PC) reveals a long-lived expression profile as compared with
plasmablasts from three ITP patients not treated with rituximab (ITP-PB), and

plasma cells from three healthy controls (HD-PC). Heatmap clustering of
selected genes classified as anti-apoptosis factors, negative regulators of cell
cycle, transcription factors of the AP1 family, stress response genes, and cell
proliferation control and marker genes. Genes were selected from the
supervised comparison of RTX-PC vs. ITP-PB (609 probes with a fold change
>4 or <0.25, and P < 0.05). Columns represent individual samples, rows
specific gene probes, with upregulated genes in red and downregulated
genes in green (twofold scale) (13).

site of platelet destruction and is also considered the main site
of auto-antibody production, thus seemingly containing all the
players required to perpetuate the auto-immune reaction (15).
Accordingly, for decades, splenectomy has been the “gold stan-
dard” of second-line therapy, resulting in a durable disease cure in
two-thirds of patients.

We observed, as did others, that the spleen of ITP patients
was the site of an intense B-cell response, with a considerable
expansion of short-lived plasmablasts and active germinal-center
reactions (13, 16). As described by many authors, plasmablasts
generated during a T-dependent response in non-auto-immune
conditions will migrate to the bone marrow and differentiate into
short-lived plasma cells. Some of these short-lived plasma cells dif-
ferentiate into long-lived plasma cells (LLPCs) and reside in this
niche for a variable length of time. These cells, which represent
only 0.5% of mononucleated cells in bone marrow, constitutively
secrete antibodies and sometimes persist for decades in humans
(17). Differentiation toward LLPCs was described in secondary
lymphoid tissues at the site of an immune reaction. Also, from an
auto-immune genetic mouse model (NZB/W, lupus-prone), the
inflamed environment generated by an auto-immune disease was
suggested to be a niche for LLPCs, the cells further perpetuating
the local inflammation (17, 18). This observation raised the ques-
tion as to whether the spleen could similarly represent a site for
plasma cell persistence in ITP.

Splenectomy performed in ITP, as standard-of-care treatment
or with primary failure of rituximab, provides a unique opportu-
nity to study splenic plasma cells in different settings. We compared

the transcriptomic profile of splenic plasma cells in healthy sub-
jects and ITP patients receiving or not rituximab. Most splenic
plasma cells in rituximab-receiving patients expressed a program
similar to that of bone marrow LLPCs (13). They overexpressed
anti-apoptotic factors (BCL2, CFLAR, TNFAIP3), negative regu-
lators of the cell cycle, among which are multiple members of
the Krüppel-like factor family (KLF2, KLF6, KLF9, KLF15). Tran-
scription factors of the AP1 family (FOS, JUN, and JUNB) were
also upregulated, as were genes involved in the unfolded protein
response (ATF3, MAFF) (Figure 1B). By contrast, plasmablasts,
found in ITP patients not receiving rituximab, showed a cell
proliferation profile characterized by the expression of positive
regulators or markers of the cell cycle (BIRC5, CENPF, BUB1,
BUB1B, ZWINT, CDC6, MKI67 ). Surprisingly, analysis of normal
plasma cells and plasma cells from ITP patients revealed an inter-
mediate gene expression profile between short-lived plasmablasts
and LLPCs. To determine whether this observation was due to a
mixture of two populations, we analyzed plasma cells from healthy
donors and ITP patients at the single-cell level. Unexpectedly, most
cells expressed an intermediate profile between the two popula-
tions, with <15% of splenic plasma cells displaying a long-lived
signature (13).

These results raised several questions. First, they suggested that
an auto-immune inflammatory milieu per se does not systemati-
cally create a niche for LLPCs (17); second, that LLPCs may only be
a minor component of the plasma cell pool in the normal spleen;
third, that the B-cell depletion could induce a new microenviron-
ment allowing for short-lived splenic plasma cells to differentiate
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into long-lived ones. Remarkably, the presence of LLPC in the
spleen has mainly been documented after B-cell depletion in mice
(through irradiation and anti-CD20 treatment), a situation that,
like with rituximab treatment, may have artificially induced their
differentiation in situ (19, 20). Moreover, some of these post-
rituximab splenic LLPCs secreted anti-platelet antibodies, thus
explaining the treatment failure.

PLASMA CELL LIFESPAN: THE ESSENTIAL ROLE OF THE
MICROENVIRONMENT
The persistence of LLPCs depends on signals from the microenvi-
ronment, including direct cell–cell contact and production of sur-
vival factors. Many different factors and cells have been described,
both in mice and humans, as being essential for the survival
of LLPCs in bone marrow; such factors include the cytokines
a proliferation-inducing ligand (APRIL) and interleukin 6 (IL-
6) and the chemokine CXCL12 secreted by stromal cells, which
attracts CXCR4-positive plasma cells (21). In mice, megakary-
ocytes and eosinophils are involved in the survival of LLPCs in
their bone marrow niche (22). LLPCs express very late antigen 4
(VLA-4) and lymphocyte function-associated antigen 1 (LFA-1),
as well as CD44 and P-selectin glycoprotein ligand 1 (PSGL-1), all
involved in their survival. However, we still do not know what trig-
gers the differentiation of a small number of short-lived plasma
cells into LLPCs as they settle into the bone marrow.

APRIL and B-cell activating factor (BAFF) are two key
cytokines that belong to the tumor necrosis factor family: they

share receptors such as transmembrane activator and calcium-
modulator and cyclophilin ligand interactor (TACI) and B-cell
maturation antigen (BCMA); BAFF can also signal through BAFF
receptor (BAFF-R), and APRIL can bind to heparan sulfate proteo-
glycans. BAFF-R is mainly expressed on immature and naive cells,
whereas plasmablasts and plasma cells express TACI and BCMA,
the latter markedly upregulated on bone marrow LLPCs (23).
APRIL is probably the key survival factor for plasma cells, but
various gene inactivation experiments have suggested, at least in
the mouse, that BAFF and APRIL may substitute for each other
in plasma cell maintenance (24). In addition to a survival func-
tion, these two molecules may play a role in differentiation from
plasmablasts to plasma cells and possibly LLPCs.

With in vitro culture of splenic cells, we observed increased
BAFF level in the medium from rituximab-treated spleen samples
with B-cell depletion as compared to ITP spleens not exposed to
rituximab, with no difference in APRIL secretion. Moreover, pre-
liminary experiments showed that normal plasma cells survived
better in in vitro cultures in the presence of BAFF (13). Indeed,
increased BAFF concentration has been reported to likely be a
direct consequence of B-cell depletion, its accumulation resulting
from a lack of consumption by naive B-cells (25). Interestingly,
CD138, a heparan sulfate, has been proposed to bind APRIL and
concentrate it in the plasma cell niche (26). CD138 is a specific
marker of LLPCs in bone marrow, but human splenic plasma cells
are negative for surface expression of CD138 (27), while expressing
it at the mRNA level (13). Therefore, BAFF may have a preferred

FIGURE 2 | A CD4+ T-cell niche for long-lived plasma cells in
rituximab-treated spleens. (A) Confocal microscopy of sections of
rituximab-treated spleen stained with anti-CD3 (blue), anti-kappa/
lambda light chains (green), and Hoechst (cyan). Plasma cells are
located adjacent to the T-cell zone and in red pulp. Red squares mark
plasma cells. (B,C) Confocal microscopy of sections of

rituximab-treated spleen stained with anti-kappa/lambda light chains
(green), anti-CD3 (red), and anti-CD8 (blue) (B), or anti-CD3 (red) and
anti-CD4 (blue) (C). (D) Sections of rituximab-treated spleen stained
with anti-kappa/lambda light chains (green) and anti-CD4 (red). Data are
representative of three spleen samples. Scale bars: gray 100 µm,
blue 5 µm.
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survival role in the context of the splenic plasma cell microenvi-
ronment and a specific role in plasma cell differentiation (26, 28).

The cellular components of the splenic plasma cell niche are
not well established. In mice, basophils have been proposed to
play a role in plasma cell survival by secreting BAFF and APRIL
(29). Stromal cells in the human spleen secrete IL-6 (27). The
B-cell depletion induced by rituximab provided us with a unique
opportunity to investigate the splenic microenvironment of LLPCs
by confocal microscopy. Plasma cells were unambiguously iden-
tified as cells strongly expressing kappa/lambda light chains and
not CD20. We observed plasma cells in the periphery of the T-cell
zone and in the red pulp (unpublished data, Figure 2A). Unex-
pectedly, in the three spleen samples studied, approximately 20%
of plasma cells co-localized with CD3+ T cells. In most cases,
we observed interaction of one plasma cell with two or three T
cells, either CD4+ (Figures 2B–D) or possibly double-negative T
cells (data not shown). In a co-culture system, CD3+CD4+ T cells
isolated from rituximab-treated spleens did not increase the sur-
vival of autologous plasma cells [data not shown and Ref. (30)],
which may suggest distinct roles for cells involved in direct contact,
providing retention in a defined environment, and cells in close
proximity, producing survival signals. A more thorough analysis
of the splenic plasma cell niche after rituximab-induced B-cell
depletion is in progress.

INTERFERING WITH AUTO-REACTIVE PLASMA CELL
PERSISTENCE, A FUTURE GOAL IN AUTO-IMMUNE DISEASES
We demonstrated that B-cell depletion in ITP induced the differ-
entiation of short-lived auto-immune plasma cells into long-lived
ones in the spleen. This observation might be of general relevance.
In fact, many immunosuppressive and/or biological agents largely
used in auto-immune diseases (cyclophosphamide, mycopheno-
late mofetil, steroids) confer various degrees of B-cell depletion.
Of note, rituximab failure in specific diseases such as lupus was
often documented in conditions treated with various depleting
treatments, which suggests that differentiation into LLPCs was
already achieved. In contrast, interfering with the plasma cell sur-
vival niche at the time of B-cell depletion might greatly improve
the success of these treatments. One first target could be BAFF,
because increased level of BAFF accompanies B-cell depletion.
Belimumab (monoclonal anti-BAFF antibody) has been approved
for the treatment of lupus, with conflicting results (31). Thus,
combined anti-CD20 and anti-BAFF therapy might be a first way
to interfere with plasma cell persistence. Identification of key
cytokines and accessory cells that promote plasma cell differen-
tiation and/or constitute the plasma cell niche in B-cell depleted
environments, both in mouse models and in human tissues, may
allow for the development of new strategies in antibody-mediated
auto-immune diseases.
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