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Acute and chronic myeloid leukemia (AML, CML) are hematologic malignancies arising from
oncogene-transformed hematopoietic stem/progenitor cells known as leukemia stem cells
(LSCs). LSCs are selectively resistant to various forms of therapy including irradiation or
cytotoxic drugs. The introduction of tyrosine kinase inhibitors has dramatically improved
disease outcome in patients with CML. For AML, however, prognosis is still quite dis-
mal. Standard treatments have been established more than 20 years ago with only limited
advances ever since. Durable remission is achieved in less than 30% of patients. Min-
imal residual disease (MRD), reflected by the persistence of LSCs below the detection
limit by conventional methods, causes a high rate of disease relapses. Therefore, the ulti-
mate goal in the treatment of myeloid leukemia must be the eradication of LSCs. Active
immunotherapy, aiming at the generation of leukemia-specific cytotoxicT cells (CTLs), may
represent a powerful approach to target LSCs in the MRD situation. To fully activate CTLs,
leukemia antigens have to be successfully captured, processed, and presented by mature
dendritic cells (DCs). Myeloid progenitors are a prominent source of DCs under homeosta-
tic conditions, and it is now well established that LSCs and leukemic blasts can give rise
to “malignant” DCs.These leukemia-derived DCs can express leukemia antigens and may
either induce anti-leukemic T cell responses or favor tolerance to the leukemia, depending
on co-stimulatory or -inhibitory molecules and cytokines. This review will concentrate on
the role of DCs in myeloid leukemia immunotherapy with a special focus on their gen-
eration, application, and function and how they could be improved in order to generate
highly effective and specific anti-leukemic CTL responses. In addition, we discuss how DC-
based immunotherapy may be successfully integrated into current treatment strategies to
promote remission and potentially cure myeloid leukemias.
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INTRODUCTION
During the last century our molecular and mechanistic under-
standing of the immune system and the immunosurveillance of
solid and hematological tumors has advanced extensively. For
hematological tumors especially, the demonstration of the graft-
vs.-leukemia (GvL) effect of allogeneic hematopoietic stem cell
transplantation (aHSCT) and donor lymphocyte infusions (DLIs),
as well as the discovery of leukemia-associated antigens (LAAs)
was of fundamental importance in order to translate, implement,
and optimize immunotherapies against myeloid leukemias. Con-
sequently, active and passive immunotherapy approaches, such
as peptide- and dendritic cell (DC)-based vaccines using LAAs,
monoclonal antibodies (mAbs), and the in vitro-generation of
leukemia-specific cytotoxic T cells (CTLs) for adoptive transfer
have recently yielded promising results in pre-clinical models and
clinical trials (1–4). To maximize their efficacy, these immunother-
apies have to be implemented into the treatment strategy in
conjunction with standard treatments of care for each patient indi-
vidually. Here, we summarize recent advances in DC-based active
vaccination using LAAs and discuss this method as an attractive

supplementary immunotherapeutic strategy in the context of
current standard treatments for myeloid leukemias.

CLASSIFICATION, EPIDEMIOLOGY, AND CLINICAL MANIFESTATIONS OF
CML AND AML
Hematologic malignancies are neoplasms of the blood-forming
system. Conceptually, these neoplasms can be divided into four
different subsets (myeloid, lymphoid, mixed myelo-lymphoid, and
histiocytic/dendritic neoplasms, see Figure 1) (5, 6). Myeloid
neoplasms can be further grouped into acute myeloid leukemia
(AML) and chronic myeloid disorders depending on the percent-
age of bone marrow (BM) infiltration by immature blasts. 20%
and more infiltrating immature blasts define the cut-off crite-
rion for AML. Chronic myeloid disorders such as chronic myeloid
leukemia (CML) bear the risk of evolving into AML. Experimen-
tal studies revealed that myeloid leukemias in general are of clonal
origin, suggesting genesis from a single leukemia stem cell [LSC,
reviewed in Ref. (7)].

Chronic myeloid leukemia is caused by translocation of chro-
mosomes 9 and 22 in a hematopoietic stem cell (HSC) resulting
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FIGURE 1 | Conceptual classification of hematologic neoplasms [based on data from Ref. (5, 6)].

in the formation of the constitutively active tyrosine kinase
BCR/ABL1 and the subsequent generation of an LSC (8). CML is
characterized by the overproduction and accumulation of mature,
functionally impaired myeloid cells, predominantly granulocytes.
CML represents about 15–20% of all leukemias in adulthood,
affecting slightly more men than women (ratio ~1.8–1) (9). Its
annual incidence is 1–2 cases per 100,000 for all age groups (10).
This incidence is rising with age to 10–12 cases per 100,000 for peo-
ple older than 80 years of age (Figure 2) (11). Without treatment,
chronic phase CML inevitably evolves via an accelerated phase (12)
into blast crisis, which is characterized by the presence of ≥20%
blasts in the blood or BM or the presence of extramedullary infil-
trating blasts. In two thirds of cases, the blasts are of myeloid origin
and the disease phenotype is similar to AML. The other third is of
lymphoid origin. Blast crisis CML is highly resistant to treatment,
and median survival of patients is approximately 4–8 months. The
most common causes of death in blast crisis CML are bleedings
and infections due to lack of a functional hematopoietic sys-
tem (13). Because BCR/ABL1 is necessary and sufficient for the
malignant phenotype, attempts to inhibit this kinase using small
molecules have led to the discovery of the specific tyrosine kinase
inhibitor (TKI) Imatinib (14). Since its introduction into clinics in
2001, Imatinib became the gold standard in CML therapy and has
replaced cytarabin/interferon (IFN)-α combination therapy (15).
Imatinib is the first-line therapy of choice for nearly all newly
diagnosed CML patients (16). Second- and third-generation TKIs

FIGURE 2 | Annual incidence of AML and CML in the USA among
different age groups (both sexes, all race groups, years 1992–2010),
based on data from the NCI/SEER (11).

with superior efficacy, also against mutated forms of BCR/ABL1,
are currently tested in clinical trials (17–20). Even though TKI
treatment stabilizes the disease during the chronic phase, a small
percentage of patients will progress to accelerated phase and blast
crisis (21). Besides TKIs, which have demonstrated long-term dis-
ease control and very good tolerability, the only other treatment
option that may be considered for CML is aHSCT. Today, aHSCT
is the only treatment with proven ability to cure CML (22).
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In contrast to CML, AML is an aggressive and fatal disease
caused by an increased proliferation and a block in differentiation
capacity of myeloid blasts. With an annual incidence of three to
five cases per 100,000 (m:f ratio, 3:2), AML is the most frequent
myeloid leukemia in adults (10). Compared to CML, the age-
dependent rise in AML incidence is even more drastic to peak
at 20–23 cases per 100,000 in the geriatric population (Figure 2)
(11). Besides age and sex, known risk factors for myeloid leukemias
include exposure to ionizing radiation, benzene (e.g., cigarette
smoking) and previous cytotoxic chemotherapy (23, 24). Despite
the tremendous efforts that have been made to classify AML based
on cytogenetic and molecular markers (25), AML treatment basi-
cally remained unimproved in the last 20 years and consists of
induction cytotoxic chemotherapy (“3+ 7” scheme with cytara-
bin and an anthracycline), with minor modifications for elderly
patients, therapy-related AML, and relapsed or therapy-resistant
disease. The only exception is t (15;17)-associated acute promye-
locytic leukemia (APL), which is treated with a differentiating
agent, all-trans retinoic acid (ATRA) in combination with standard
chemotherapy (23, 26). In face of these highly toxic chemothera-
pies, on average less than 30% of AML patients survive long-term.
The prognosis for “elderly” patients (defined by the age of 65 or
more in most studies) is even more dismal. Treatment failure may
occur due to therapy-related complications, such as infections,
toxicity, and tumor lysis syndrome. More importantly, the high
disease relapse rate after a first remission is the major problem
clinicians are confronted with in AML therapy (23). Relapse is
thought to be caused by a therapy-resistant neoplastic cell reservoir
slumbering in the BM, a situation referred to as minimal residual
disease (MRD). It is likely that MRD represents the persistence
of quiescent, therapy-resistant LSCs in the BM. Therefore, after a
first remission is achieved, post-remission chemotherapy and/or
aHSCT is needed to control LSCs (27).

LEUKEMIA STEM CELLS AND THE PROBLEM OF MINIMAL RESIDUAL
DISEASE
The goal of therapy in myeloid leukemia is to induce a durable
complete remission (CR). For chronic phase CML, this is most
often relatively easily achieved by TKI treatment; however, this
therapy only eliminates the bulk of leukemia cells, whereas LSCs
are spared. It is thought that CML LSCs are not completely
addicted to BCR/ABL1, and several studies have shown survival
of CML LSCs in the presence of Imatinib in vitro and in vivo [(28)
and reviewed in Ref. (20)].

For AML, induction poly-chemotherapy may result in a labile
CR that has to be consolidated by aHSCT or post-remission
chemotherapy. If this treatment is omitted, relapse will often occur
rapidly due to persistence of MRD below the cytological detection
limit of ~109 cells (23).

Whereas CML LSCs are relatively well characterized as
lineage-negative (lin−) CD34+CD38− cells, the definition of the
immunophenotype of AML LSCs is currently controversially dis-
cussed. Generally, LSCs are defined as a rare cell population with
the capability of self-renewal, extensive proliferation, induction
of leukemia, and serial transplantation capacity in xenografts as
well as resistance to various treatments. Seminal studies by John
Dick et al. using severe combined immunodeficiency (SCID) or

non-obese diabetic (NOD)/SCID mice in the 1990s revealed that
AML stem cells reside within the lin− CD34+ CD38− fraction,
as the initiation of AML of all subtypes (except APL) was only
possible with purified lin− CD34+ CD38− cells, but not with
purified lin− CD34+ CD38+ cells. The leukemias produced in
these mouse models closely resembled the original human dis-
eases, providing evidence that AML stem cells have long-term self-
renewal capability and determine the leukemia’s phenotype (29,
30). Based on these experiments, the authors hypothesized that
leukemias are hierarchically organized in a similar way as the nor-
mal blood-forming system and that the normal HSC would most
likely be the cell-of-origin that is malignantly transformed dur-
ing leukemogenesis. Subsequently, many groups tried to refine the
immunophenotype of AML LSCs, and several additional mark-
ers were characterized (31–36). However, findings from a recent
study by Sarry et al. have questioned this strict definition of
LSCs by immunophenotype. These authors showed that CD34
expression in AML is highly variable, classifying their patients
into 3 groups based on the extent of CD34 expression. Impor-
tantly, LSCs were found in all samples, even in CD34 negative
ones, and in some patients also in a cell population expressing
low amounts of lineage markers. Therefore, these authors suggest
that the absolute distribution of LSCs does not necessarily corre-
late with their phenotypic distribution so that even though LSCs
are enriched in certain fractions of cells, such as linnegCD38neg

cells, the relative rarity of these populations implies that the
absolute number of LSCs may be higher in other cell fractions
(37). In addition, the incubation of leukemia cells with anti-
bodies targeting surface markers, such as anti-CD38, may reduce
the engraftment capacity of leukemia-initiating cells expressing
these markers, even further complicating the analysis of human
LSCs (37, 38).

In addition to the challenging task of characterizing an LSC
phenotype in AML, there is no standard definition for MRD. MRD
may well serve as an indicator for the quality of the response
to the treatment and may be a prognostic parameter for dis-
ease relapse and the choice and effectiveness of post-remission
treatment strategy (39). Whereas CR is conventionally defined
by pathologists as the absence (≤5%) of blasts in the BM, the
establishment of a definition for MRD is much more difficult.
First, a significant proportion of AML patients lack molecular
markers, such as FLT3-ITD, NPMmut, or chromosomal translo-
cations that would allow monitoring MRD by molecular methods
after induction chemotherapy. Second, the time point at which
patients should first be tested for MRD and the time interval of
serial monitoring is controversially discussed (40). Feller et al. sug-
gested an interval of 3 months for MRD testing by flow cytometry
(41). Third, the best method to quantify MRD is still a matter
of debate. At the moment, real-time RT-PCR for molecular mark-
ers and immunophenotype using multi-parameter flow cytometry
are comparable in terms of sensitivity and specificity; however,
therapy-related changes in these parameters may limit the clini-
cal applicability (42). Fourth, the level of transcript as measured
by RT-PCR or number of cells as measured by flow cytometry
defining the threshold for MRD+ vs. MRD− has to be validated
in prospective studies. And last, the question remains whether
peripheral blood can replace BM as the source of cells, which is
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a relative prerequisite for the feasibility of such studies (39, 40).
In summary, all these questions should be addressed during the
design of future studies on MRD therapy.

MYELOID LEUKEMIAS AND THE IMMUNE SYSTEM
Clinical and experimental observations suggested that myeloid
leukemias are partly controlled by the immune system (43).
Leukemia cells express major histocompatibility class (MHC)-I
and -II molecules and co-stimulatory ligands, such as CD80 and
CD86, and therefore may be recognized by T cells and induce
potent T cell responses (44–48). In addition, myeloid leukemias
respond to unspecific immune-mediated therapies such as IFN-α
and interleukin (IL)-2 (49, 50). Furthermore, aHSCT, a treat-
ment with proven ability to cure myeloid leukemias, is in fact an
immunotherapy exploiting the allogeneic T and NK cell-mediated
GvL effect, which is absent in syngeneic HSCT (22, 51, 52). In addi-
tion, it was shown that patients receiving T cell depleted aHSCT
grafts had a greater risk of disease relapse, and DLIs from original
donors led to CR in most of the patients suffering from disease
relapse (53–56).

An interesting example of endogenous immunosurveillance
was observed in non-transplanted pediatric AML patients. Mon-
tagna et al. demonstrated that stable remission after cytotoxic
chemotherapy was associated with the emergence of leukemia-
specific CTL precursors in the BM. All patients that had high
numbers of CTL precursors remained in remission, whereas the
majority of patients with no CTL precursors relapsed (57).

Leukemic cells can be controlled either via specific major his-
tocompatibility complex (MHC-restricted) mechanisms or via
less specific incompatibilities in minor histocompatibility genes
(58). Indeed, CTLs directed against leukemia antigens have been
detected in the peripheral blood of chronic phase CML patients
(59, 60) and have been shown to kill CML target cells in vitro via
Fas-receptor triggering (61). Similar anti-leukemic CTL responses
have also been documented in AML (62). In contrast, blast crisis
CML cells are refractory to Fas-ligand induced apoptosis, regard-
less of the expression levels of Fas-receptor, suggesting that an
immune-mediated selection by CTLs could result in the acquisi-
tion of Fas resistance (63). A further line of evidence that CML is
controlled by CTLs comes from our own studies in a murine CML
model using the glycoprotein of lymphocytic choriomeningitis
virus (LCMV) as a model tumor-antigen. CML-specific CTLs were
present in CML-bearing mice and displayed an exhausted pheno-
type as analyzed by low cytotoxicity, absence of IFN-γ and TNF-α
production and expression of programed death-1 (PD-1). Nev-
ertheless, these CTLs contributed to disease control, as depletion
of CD8+ T cells led to rapid disease progression and death (64).
We documented that leukemia-specific CTLs are able to interact
with and kill CML LSCs in vitro and in vivo in a setting with
minimal leukemia load. In contrast, in a clinically relevant set-
ting of high leukemia load, CTLs did not kill LSCs but promoted
their proliferation by secreting high amounts of IFN-γ (65). In
addition, we demonstrated that CD70-expressing T cells stimu-
late CD27-expressing LSCs in a cell-contact-dependent manner:
ligation of CD27 on LSCs by CD70 on T cells reinforced the
Wnt-pathway in LSCs, leading to LSC proliferation and disease
progression (66). Thus, as it has been shown for other tumors, the

immune system interacts with leukemia (stem) cells and may as
well play a paradoxical role in promoting disease progression (67).

The role of CD4+ T cells in the control of CML has been studied
less intensively (68). CD4+ T cells isolated from the BM of CML
patients were able to suppress autologous hematopoietic prog-
enitor cells in a contact-dependent manner (69). DLIs, depleted
of CD8+ T cells to reduce the side effects of GvHD, were able
to induce remissions in aHSCT-treated CML patients after dis-
ease relapse. This led to the hypothesis that CD4+ T cells are the
main effectors of the GVL effect, whereas CD8+ T cells are mainly
responsible for GVHD (70). Endogenous CD4+ T cells, however,
might be dysfunctional in vivo, as they have a normal intrinsic
cytokine-producing ability only in vitro, but not in the leukemia
environment (71). However, CD4+ T cells may be important in
the setting of aHSCT. CD8+ T cell-depleted DLI, administered
to patients after aHSCT, induced a low rate of remissions and of
GvHD (70). Therefore, CD4+ T cells are also potentially involved
in the GvL effect in CML patients. On the other hand, CD8+ T cells
may serve as important effectors of GvHD without being essential
for GvL.

The roles of B cells and NK cells in the control of CML remain
controversial. BCR/ABL1 junctional peptides could induce pro-
duction of specific antibodies to BCR/ABL1 (72). In addition, it
was noted that CD4+ DLIs increased the numbers of circulating
B cells in patients at the time of clinical response (73). Although
antibodies recognizing many distinct leukemia antigens were dis-
covered (74), the impact of antibodies on malignant CML cells
remains elusive. NK cells were shown to selectively lyse CML prog-
enitor cells in vitro (75). In accelerated CML and blast crisis, NK
cell frequency, proliferation, and lytic function seems to decline,
but it is currently unclear whether this decline is a cause rather
than an effect of disease progression (76, 77). Moreover, donor-
vs.-recipient NK cell alloreactivity could eliminate leukemia in
human transplants (78).

Chronic myeloid leukemia patients have significantly reduced
numbers of circulating myeloid and plasmacytoid DCs (pDCs)
compared to healthy volunteers (79, 80). However, BCR/ABL1-
expressing DCs have been detected in the peripheral blood of
CML patients suggesting that CML derived DCs may possibly con-
tribute to anti-leukemic immunity (81, 82). BCR/ABL1-expressing
DCs could be generated from peripheral blood mononuclear cells
(PBMCs) or CD34+ progenitor cells of CML patients and were
shown to have an impaired capacity to capture and process anti-
gens and an impaired migratory capacity compared to DCs derived
from healthy controls (83–85). In addition, leukemic DCs were
shown to produce TNF-α and IL-8 (86). However, contradictory
results about the maturation status of BCR/ABL1 DCs have been
published (81, 82).

In summary, it seems plausible that innate as well as adap-
tive immunity play an important role in the control of myeloid
leukemias.

IMMUNE EVASION MECHANISMS
Myeloid leukemias employ several strategies to compromise anti-
leukemic immune responses. DCs originating from myeloid
leukemia progenitor cells have been found in vivo in leukemia
patients and were shown to be abnormal in numbers and function
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(80–82, 87). Leukemia-derived DCs (L-DCs) displayed reduced
antigen-capture and processing capacity, a low maturation sta-
tus and an aberrant homing pattern when compared to normal
DCs (86, 88). Furthermore, L-DCs promoted T cell anergy and
the generation of regulatory T (Treg) cells instead of inducing
CTLs (89–91). Tregs are increased in myeloid leukemias (92, 93),
are associated with an unfavorable outcome (94), correlate with
disease relapse after aHSCT (95) and impede the function of adop-
tively transferred CTLs (96). Leukemic blasts express high levels
of co-inhibitory molecules and interact poorly with T cells due
to an impaired formation of immune synapse (97, 98). AML and
CML cells for example express the ligands for programed death-1
(PD-L1, PD-L2), which interact with PD-1 expressed on T cells
(64, 65, 99, 100). Accordingly, we recently demonstrated that CML
LSCs express PD-L1 and PD-L2 as well (65). A further mecha-
nism leukemic cells use to interfere with the immune system is the
presentation of MHC class II-associated invariant chain-derived
peptide (CLIP). CLIP expression on AML blasts predicts poor
clinical outcome (101) and disturbs the activation of leukemia-
specific CD4+ T cells (102), most probably by interfering with
the loading and presentation of LAAs (103). Interestingly, CLIP
could also promiscuously bind to various MHC class I types in
leukemia cells deficient of MHC class II, a feature that could
hamper CTL-mediated leukemia immunosurveillance (104).

The role of tumor necrosis factor (TNF) and TNF-receptor
superfamily members in the pathophysiology of leukemia has
recently been documented. Glucocorticoid-induced TNFR-related
protein ligand (GITRL) was shown to be expressed in a majority
of AML cell lines and blasts from patient samples. Reverse signal-
ing of GITRL in AML cells induced the release of TNF and IL-10,
and triggering of GITR expressed on NK cells impaired NK cell
cytotoxic function and IFN-γ production (105). AML cells exploit
further signaling axes of the TNF/TNFR superfamily, such as the
4-1BB-ligand/4-1BB (CD137L-CD137) pathway and the receptor
activator of nuclear factor kappa B (RANK)-ligand RANK path-
way (106, 107) to inhibit the immune system in a similar way as
described for GITR. Furthermore, we could recently document a
role for the TNFR CD27 on proliferation of CML LSCs and CML
progression (66). Blocking inhibitory pathways holds promise for
clinical development. Among them are FAS-ligand that induces
apoptosis of FAS-expressing T cells, CD200 that directly inhibits T
and NK cells, reactive oxygen species (ROS) that induce lympho-
cyte apoptosis, killer-cell immunoglobulin-like receptors (KIR)
that suppress NK cells and indoleamine 2,3-dioxygenase (IDO)
that depletes tryptophan required for T cell expansion or IL-10
that potently suppresses T cell activation [reviewed in Ref. (27)].
Besides inhibiting the adaptive immune system, it was recently
demonstrated that leukemic cells are able to block programed cell
removal by innate immune cells, thereby overcoming a further
regulatory mechanism that normally limits cancer growth. The
up-regulation of so-called “don’t eat me” signals on blasts and
leukemia stem cells (LSC), such as CD47 and CD200, precludes
apoptosis-independent phagocytosis by macrophages. In addition
to enable the propagation of the malignant cells, this mechanism
likely allows metastatic circulating cancer cells to survive in niches
rich in phagocytes, such as the spleen and lymph nodes (108, 109).

These and further immunosuppressive mechanisms remain
major hurdles to be overcome in order to successfully implement

DC-based immunotherapy in the treatment of leukemia. Inter-
fering with negative immune regulators may effectively improve
DC-based immunotherapy, as has been shown by silencing the
suppressor of cytokine signaling 1 (SOCS1) or the immunosup-
pressive cytokine IL-10, which enhanced antigen-presentation and
secretion of IL-12 by DCs and triggered an effective anti-tumoral
immune response (110–112).

CROSS-PRIMING OF CTLs BY DCs
Cross-presentation is fundamental for the maintenance of periph-
eral tolerance and the induction of cross-priming. The concept of
cross-presentation defines the processes of antigen uptake and
processing and presentation on MHC class I by professional
APCs to CTLs (113, 114), whereas cross-priming describes the
stimulation and activation of naïve CTLs by this process (115).
According to our current understanding that is primarily derived
from viral infection models, CTL cross-priming takes place in
secondary lymphoid organs (116). Antigen-experienced, matured
DCs migrate and transport the viral antigen from the infection site
for cross-presentation to secondary lymphoid structures (117).

The crucial factor for DCs to tune CTL activation is their
maturation status (118). Several studies demonstrated that the
presence of appropriate inflammatory and co-stimulatory mat-
uration signals, such as pathogen-associated molecular patterns
(PAMPs), TLR ligands, type I IFNs, CD80/CD86, and CD70 (119,
120) as well as CD40 ligand (CD154) provided by CD4+ T cells
(“DC licensing”) is essential for DCs to properly activate CTLs
in viral infections (118). It is well documented that solid and
hematological tumor microenvironments contain DCs in mice
and men [reviewed in Ref. (121)]. These microenvironments,
however, lack DC-activating and DC migration-inducing factors
(122) and harbors a multitude of immunosuppressive molecules
such as TGFβ and IL-10 that impair DC maturation, migration
and antigen (cross-) presentation [reviewed in Ref. (123)]. AML
blasts can generate an immunosuppressive microenvironment that
hinders effective adaptive as well as innate immune responses
(124–127), such as by the secretion of arginase II resulting in T
cell inhibition (124). Cross-presentation of the LAAs proteinase-3
and PR1 has also been shown in AML patients, but these anti-
gens were presented by immature DCs resulting in tolerization of
CTLs (128).

Therefore, even though there is compelling evidence that LAAs
are cross-presented in vitro and in vivo, the question as to what
extent the process of cross-priming contributes to anti-leukemic
immunity is still highly controversial (114).

Nevertheless, fully functional CTLs are fundamental for the
surveillance, control, and elimination of tumors (129, 130). There-
fore, a better understanding of specific DC subsets in the anti-
leukemic immune response and how cross-presentation of LAAs
in vivo can be improved and consequently CTL dysfunction cir-
cumvented, may lead to improved vaccine-based immunotherapy
against leukemia.

LEUKEMIA ANTIGENS
In order to achieve an optimal and effective immune response
with a low rate of toxicity, leukemia antigens that are specifically
expressed and presented by leukemia cells and not by healthy tissue
have to be identified. In addition, these should be immunogenic

www.frontiersin.org December 2013 | Volume 4 | Article 496 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Tumor_Immunity/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Schürch et al. DC-based immunotherapy for myeloid leukemias

and should critically account for the leukemic phenotype. Most
importantly, however, these antigens should be expressed in LSCs,
even though currently the phenotypic characterization of LSCs is
controversial and elusive. The restricted numbers of clearly iden-
tified LAAs in leukemia remain a major obstacle for the use of
these peptides in DC-based immunotherapy. In addition, the low
affinity of these LAAs to bind MHC I, the short time of antigen-
presentation on DCs as well as the lack of help by CD4+ T cells
may limit the capacity of these LAAs to induce an anti-tumoral
immune response (131, 132).

The most specific leukemia antigens are peptides from aber-
rant proteins created by mutations or translocations only present
in leukemia cells, such as the BCR/ABL1 tyrosine kinase in CML.
These peptides are known as leukemia-specific antigens (LSAs).
However, most of the leukemia-specific mutations and translo-
cations do not give rise to proteins (133). Among the numerous
chromosomal translocation that were characterized in AML, only
a minor fraction such as AML1-ETO (133), DEK-CAN (134), and
PML-RARα (135) gives rise to proteins that generate LSAs. In
addition, only two mutations involving the fms-related tyrosine
kinase (FLT) and nucleophosmin 1 (NPM1) have been shown
to give rise to LSAs (136, 137). Therefore, most immunotherapy
approaches in myeloid leukemia target LAAs, that is, peptides from
proteins that are expressed in leukemic cells and also healthy tis-
sues, but are often overexpressed in leukemia and important for
the malignant phenotype. Consequently, the induction of autoim-
munity is a potential risk if such LAAs are chosen as targets for
an immunotherapy. As an additional limitation, T cell receptors
recognizing antigens that are broadly expressed on healthy tissues
in the body are usually of low affinity. Therefore, it is crucial to
characterize the degree of LAA expression on normal tissues in
order to envisage the multitude and characteristics of potential
autoimmune reactions.

For AML, a multitude of LAAs has been described during the
last two decades and has been validated as target for immunother-
apy [Table 1 and reviewed in Ref. (133)]. These LAAs comprise
proteinase-3, Wilms tumor protein (WT1) (62, 138–141), the
receptor for hyaluronic acid-mediated motility [RHAMM/CD168
(142)] human telomerase reverse transcriptase [hTert (143)], pref-
erentially expressed antigen in melanoma [PRAME (144, 145)],
and Aurora-A kinase (146) (Table 1).

The most attractive and promising LAA is the tumor-
suppressor gene and zinc finger transcription factor WT1. WT1
is a regulator of cell proliferation, differentiation, and apopto-
sis. In leukemia, WT1 has been shown to have a fundamental
oncogenic role for leukemogenesis resulting in differentiation
arrest and aberrant cell growth (147). WT1 was demonstrated
to be immunogenic as it elicits a naturally occurring anti-tumoral
immune response in cancer patients (148, 149). In addition, in a
WT1 directed immunotherapeutic study, off-target toxicity effects
have not been observed, indicating that WT1-expressing normal
tissues are omitted from the response (150). However, in some
AML patients no WT1-specific CTL response has been triggered
even though objective responses and remissions have been elicited
(141). Importantly, WT1 is expressed to a much lesser extent
on normal HSCs than on leukemic blasts and LSCs in a major-
ity of AML patients which characterizes WT1 as attractive target

Table 1 | Leukemia-associated antigens (LAAs) in myeloid leukemias.

Myeloid

leukemia

LAA Reference

AML Aurora-A kinase (146, 153, 154)

BRAP (160)

Cyclin A1 (161)

hTert (143)

HSJ2 (160)

MPP11 (160)

Neutrophil elastase (NE) (166)

PRAME (144, 145, 162)

PR1 (128, 139, 163, 164)

Proteinase-3 (62, 164, 165)

RBPJκ (160)

RHAMM/CD168 (142)

WT1 (62, 139, 141, 148, 149, 151, 152)

CML BRAP (160)

CML-28 (167–169)

CML-66 (167–169)

HAGE (168)

HSJ2 (160)

MPP11 (160)

PRAME (144)

PR1 (59, 139, 164, 169)

Proteinase-3 (164, 165, 169)

RBPJκ (160)

Survivin (167–169)

WT1 (139, 148, 149, 169–171)

AML, acute myeloid leukemia; BRAP, BRCA1-associated protein; CML, chronic

myeloid leukemia; HAGE, helicase antigen; HSJ2, heat-shock 40 kDa protein

4; hTert, human telomerase reverse transcriptase; MPP11, M-phase phospho-

protein 11; PRAME, preferentially expressed antigen in melanoma; RBPJκ,

recombination signal binding protein for immunoglobulin kappa J region;

RHAMM, receptor for hyaluronic acid-mediated motility; WT1, Wilms tumor

protein.

for immunotherapy in AML (151, 152). Consequently, WT1 is
currently targeted in clinical T cell therapy and vaccination studies.

Importantly, in a curative approach LAAs have to be expressed
on LSCs (146, 153, 154). One LAA in AML that is expressed
on CD34+CD38− AML “stem” cells compared to CD34+CD38+

AML progenitor cells and normal CD34+ stem/progenitor cells
from healthy individuals is the serine/threonine kinase Aurora-
A. Importantly, CD34+ leukemia progenitor cells but not nor-
mal CD34+ stem/progenitor cells were lysed by Aurora-A
kinase-specific CTLs. Furthermore, blockade of Aurora-A kinase
by a small-molecule inhibitors or shRNA impaired engraft-
ment and improved survival of mice in an AML xenograft
model (146, 153, 154).

In CML patients numerous LAAs such as WT1, proteinase-3,
cancer-testis antigens like HAGE, minor histocompatibility anti-
gens, hTert, CML-66, CML-28, and survivin were shown to be
aberrantly expressed in the transformed CML cell (Table 1).
Some LAAs such as hTert and survivin have a quite restricted
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expression pattern and are not or only marginally expressed on
normal non-dividing or terminally differentiated cells (143, 155).
This makes hTert and survivin promising targets for DC-based
immunotherapy.

The most prominent LSA in CML is the chimeric BCR/ABL1
fusion protein, an ideal target for immunotherapy (8). An ele-
gant paper by Yotnda et al. identified a BCR/ABL1 junctional
nonapeptide (SSKALQRPV) that binds to human leukocyte anti-
gen (HLA)-A2.1 and elicits specific CTL responses in vitro in
blood from healthy donors and CML patients. In 5 out of 21
CML patients, the investigators found high frequencies of junc-
tional peptide-specific CTLs in the peripheral blood, suggest-
ing an in vivo-immunogenicity of this peptide (156). Additional
studies confirmed and extended the finding of immunogenic
BCR/ABL1 junction peptides (157, 158). However, BCR/ABL1
is gives rise to a limited number of immunogenic epitopes due
to only two chromosomal breakpoints (159). Furthermore the
expression of the epitopes is restricted to HLA A2, A3, and B7
(158).

Since all the LAAs listed in Table 1 are expressed to a greater
extent on malignant cells than on their healthy counterparts, they
represent suitable antigens for immunotherapeutic approaches.

IMMUNOTHERAPY FOR MYELOID LEUKEMIAS
Nowadays, immunotherapy covers a huge spectrum of distinct
experimental procedures in order to specifically eliminate cancer
cells while minimizing harm to normal tissue to limit side effects
(172). However, up to now only few approaches have entered clin-
ical routine such as unspecific immune stimulation by Bacillus
Calmette–Guérin (BCG) instillations to treat non-muscle invasive
bladder cancer after surgical ablation (173) or the immunomod-
ulating anti-CTLA4 mAb Ipilimumab for metastatic melanoma
or prostate cancer (174), as well as aHSCT for the treatment of
myeloid leukemias (175) and the prostate antigen-specific DC-
based vaccine Sipuleucel-T (Provenge®) for hormone-refractory
prostate cancer (176).

The intention of active cancer immunotherapy is to mount
an endogenous adaptive immune response against a tumor by
directly injecting tumor-antigens together with adjuvants (“pep-
tide vaccines”) or by ex vivo-generation of cancer-specific DCs
(“DC vaccines”) and to form CTL memory in order to sustain
remission (177). For AML and CML, numerous studies extensively
investigated the clinical potential of this approach. Administration
of autologous DCs loaded via electroporation with mRNA of the
LAA WT1 resulted in CR in 50% of AML patients in a phase I/II
study (141). Importantly, CR was achieved in two patients that
only had partial remission after chemotherapy, indicating the fea-
sibility and clinical potential of this approach. In contrast, in a
clinical phase I study, autologous monocyte-derived DCs (mDCs)
previously cultured in the presence of AML failed to induce a
clinical response in relapsed AML patients (178).

Recently, a better understanding of immunosurveillance
paved the way for the development of new immunotherapeutic
approaches and their implementation in the clinics. Among these,
immune checkpoint inhibition is most advanced in melanoma
patients and anti-CTLA4 blockade was actually the first ther-
apy that improved survival of patients suffering from metastatic
melanoma (174). A recent hallmark immunotherapeutic study

using a dual mAb treatment approach to block the immune check-
point regulators CTLA-4 and programed death-1 (PD-1) using
Ipilimumab and Nivolumab, respectively, resulted in persistent
tumor regression in advanced melanoma patients (179). AML and
CML cells also express the ligands for PD-1 (PD-L1, PD-L2), which
interact with PD-1 expressed on T cells (64, 65, 99, 100). Accord-
ingly, we recently demonstrated that CML LSCs express PD-L1
and PD-L2 as well (65). In addition, we recently demonstrated
that blocking PD-1 signaling results in improved CML control in
pre-clinical mouse models (64).

Furthermore, chimeric antigen receptor (CAR) T cells for adop-
tive T cell therapy (ACT) proved their clinical potential in leukemia
patients. In addition, ACT with CAR T cells overcame the obsta-
cle to generate sufficient numbers of high avidity LAA-specific T
cells in vitro and long-term persistence, memory formation, and
migration in vivo. Chronic lymphocytic leukemia (CLL) patients
treated with a low number of CAR T cells targeting CD19 and con-
taining the co-stimulatory signaling domain of CD137 exhibited a
CR. Importantly, CAR T cells extensively expanded and showed a
CD19-specific immune response as well as long-term persistence
with an effector memory phenotype in peripheral blood and BM
without the need to trigger an anti-leukemic immune response by
professional APCs. This phenotype consequently allows potential
expansion upon secondary encounter with CLL cells and preven-
tion of relapse (180). Furthermore, two children with relapsed and
refractory pre-B cell ALL treated with CD19-specific CAR T cells
were reported to have achieved CR (181). For myeloid leukemias
a clinical application of CAR T cells has not yet been documented.
However, CAR T cells targeting isoform 6 of CD44 (CD44v6) that
is expressed by AML cells (182) but not by HSCs and at low levels
on normal cells (183) mediated potent anti-tumor effects against
primary AML in a pre-clinical AML model (184). In addition, clin-
ical phase I/II studies (NCT01640301, NCT01621724) using ACT
of T cells carrying a TCR specific for the LAA WT1 in AML patients
are ongoing. These trials are essential to further determine if safety
and efficacy of this promising immunotherapeutic approach also
holds true for the treatment of AML patients.

DC-BASED IMMUNOTHERAPY IN LEUKEMIA
Because of their excellent ability to activate T cells, DCs are consid-
ered as one of the most promising tools for tumor-antigen delivery
in active cancer immunotherapy and they are ideal candidates to
supply foreign tumor-antigen in the form of a DC-based vac-
cine or for the generation of tumor-antigen-specific CTLs in vitro
(185). Clinical studies have used various precursor cells in order
to manufacture sufficient ex vivo tumor-antigen loaded DCs for
immunotherapeutic purposes (186). However, the different meth-
ods in manufacturing those DCs and the notion that the generated
DCs differed in function and phenotype resulted in need for the
standardization of DC vaccines.

To vaccinate AML patients with DCs in order to induce an opti-
mal, long-lasting anti-leukemic CTL response, several issues have
to be considered:

First, the type and origin of DCs used to treat the patient has
to be defined. DCs can either be generated from patient-derived
CD34+ cells or CD14+ monocytes in vitro. They can be directly
positively selected from the patient’s PBMCs (ex vivo) and are dif-
ferentiated in the presence of various cytokines which improves
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the LAA loading onto these DCs (177). Additionally, naturally
circulating DCs can be loaded and activated in vivo using mAbs
targeting SIGLEC H conjugated to an LAA in combination with
CpG nucleotides (187, 188). In leukemia patients, especially in
AML patients, the presence of blast-derived leukemic DCs was
extensively documented (80–82, 87). Consequently, a promis-
ing method of generating L-DCs is to differentiate blasts from
AML patients into DCs ex vivo. This method allows circumvent-
ing the loading of the DCs with LAAs. The application of these
AML-derived DCs in a clinical setting is still poorly developed.
Especially, the generation of sufficient numbers of AML-derived
DCs is challenging. Only 25% of the initial AML cells cultured can
be converted into AML-derived DCs. In addition, AML-derived
DCs can only be generated in around 40% of AML patients due
to AML-specific mutations (e.g., Flt-ITD) or the lack of CD14
expression that prevent the conversion of blasts into AML-derived
DCs (189, 190). Nonetheless, the tolerability of this therapeutic
approach and the induction of an anti-leukemic immune response
in patients have been already reported. Despite these positive
reports, the clinical benefit of the DC vaccine is only marginal
(191). Therefore, the current DC-based cancer immunotherapy
protocols using AML-derived DCs are optimized and standard-
ized in order to allow generating sufficient AML-derived DCs (192,
193) with an improved potential to prime and activate CTLs and
increase their cytolytic capacity (194, 195).

The other critical factors determining the success of DCs in
AML immunotherapy besides the generation of sufficient num-
bers of DCs are (1) the selection of the proper LAA (discussed
later), (2) the method applied for loading the respective leukemia
antigen onto the DCs, and (3) the strong activation of DCs neces-
sary to provide sufficient co-stimulatory signal for efficient T cell
activation and to prevent T cell tolerization.

Originally, mDCs have been cultured together with AML
cell lysates or immunogenic apoptotic/necrotic AML cells to
ensure LAA loading [Figure 3 (185)]. As an additional approach,
AML blast-mDC cell-fusion hybrids have been generated in vitro
[Figure 3 (196)]. Importantly, all these multi-epitope approaches
might deliver a variety of known and unknown LAAs to the DCs.
In addition, these approaches circumvent the need for previous
identification of the LAAs. On the other hand, co-culturing or
fusion approaches might negatively impact the antigen uptake and
processing and/or the maturation of DCs because of immuno-
suppressive factors stored in or produced by AML cells, such as
TGF-β (185). Nevertheless, Herr et al. have shown that tumor cell
lysate-loaded DCs were superior to DCs loaded with eluted pep-
tides in inducing an anti-tumoral immune response against an
EBV+ B lymphoblastic cell line (197). Nowadays, pre-clinical and
clinical approaches favor the loading of DCs with peptides from
LAAs or LSAs such as WT1, Survivin, PML-RARα, etc. via peptide
pulsing or electroporation and mRNA loading [Figure 3 (191)].
Most of the studies using one of these loading methods reported
activation and expansion of HLA-compatible CTLs in vitro result-
ing in killing and eliminating of the leukemia cells, indicating a
reasonable rationale to apply mDC immunotherapy in a clinical
setting irrespective of the antigen loading method. However, the
use of single antigens poses the risk of immunoediting and the
escape of antigen-loss variants (198). Especially, the technique of

FIGURE 3 | Different strategies for the generation and administration
of DC-based vaccines in AML. (1) (A) Leukemia-derived DCs can be
directly generated by isolation and differentiation from AML blasts in vitro.
(B) CD14+ monocytes from patients or healthy donors are differentiated
into monocyte-derived DCs (mDCs). These mDCs are cultured together
with (C) AML cell lysates or immunogenic apoptotic/necrotic AML cells
(185) or (D) are electroporated with mRNA from AML cells (191) to ensure
leukemia antigen loading. (E) As an additional in vitro approach, AML
blast-mDC cell-fusion hybrids are artificially generated (196). (F) The DCs
are then injected s.c. or i.v. into AML patients. (2) DCs can also be loaded
and activated in vivo (188). DCs express the endocytosis receptor SIGLEC.
Intravenous administration of an αSIGLEC H mAb conjugated to a leukemia
antigen in the presence of CpG results in DC activation, antigen uptake and
presentation. (3) Plasmacytoid DCs isolated from AML patients are
activated and loaded with leukemia antigens ex vivo and are re-injected
intralymphatically into lymph nodes (201). Ab, antibody; Ag, antigen; i.v.
intravenously; pDCs, plasmacytoid DCs. s.c., subcutaneously.

mRNA electroporation offers several advantages to overcome this
issue: (1) simultaneous loading and presentation of multiple LAA
epitopes without any risk for insertional mutagenesis due to the
only transient mRNA expression (199); (2) expression of multiple
patient-specific LAAs at once, when electroporation is performed
with whole AML cell lysate mRNA (200); and (3) the possibility
of combination with other loading methods (200).

For optimal DC activation and antigen processing of in vitro
generated DCs, different cocktails of cytokines and TLR ligands
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have been tested. Usually, patient-derived monocytes are cultured
in the presence of IL-4 and granulocyte-monocyte colony stim-
ulating factor (GM-CSF) for several days, followed by a short
course of DC maturation using TLRs, pro-inflammatory cytokines
such as TNF-α, IL-1β, IL-6, prostaglandin E2, and/or CD40 ligand
(202). Similar procedures have been applied for AML blast-derived
DCs (185, 203–210). However, the effects of these in vitro cul-
ture and maturation conditions on the ability of DCs to capture,
process and present antigen, on their T cell activating potential
and on their in vivo migratory function are not fully understood
(177). For example, the replacement of IL-4 by IL-15 during the
differentiation phase was shown to enhance the immunostimu-
latory properties of DCs with a phenotype and characteristics
of Langerhans cells (LCs), which are per se far more efficient in
antigen-presentation and T cell priming in vitro. (211, 212). In
addition, it was demonstrated that DCs matured conventionally
in the presence of pro-inflammatory cytokines are unable to pro-
duce IL-12 in vivo, a cytokine that is essential for CD4+ TH1 cells
differentiation. Maturation in the presence of the TLR7/8 ago-
nist R848 restored IL-12 secretion, improved cell migration and
led to more robust induction of anti-leukemic immune responses
in vitro (202, 213, 214).

Tracking of labeled and intradermally administered DCs in
patients revealed that less than 1% of the DCs are migrating into
the adjacent lymph nodes (215). In order to circumvent the draw-
backs of in vitro DC generation and their poor migration into
lymph nodes, in a clinical study of DC-based immunotherapy
in melanoma, Tel and colleagues directly isolated human pDCs
and injected them intralymphatically into the inguinal lymph
nodes after ex vivo activation and loading (201). pDCs, special-
ized DCs that are characterized by rapid and massive secretion
of type I IFNs in response to foreign nucleic acids, have been
shown to successfully mediate an interplay of innate and adap-
tive immune responses by activating other DCs and inducing
cross-priming (216–218). Compared to subcutaneous injections,
intralymphatic immunotherapy substantially reduces the amount
of vaccine necessary and the duration of immunization. This
approach has already proven effective for the treatment of allergies
[Figure 3 (219)]. Therefore, pDCs and/or intralymphatic injection
protocols may become crucial players in eliciting anti-leukemic
immunity.

By now, it is unfortunately not fully elaborated which DC subset
is most suitable for DC-based immunotherapy. The identification
of this subset, the optimal route of administration, the optimal
dose, the optimal antigen, and conditioning in order to maxi-
mize the efficacy of the treatment is pivotal for the success of
treatment. Therefore, future studies have to fully aim at the func-
tional characterization of different DC subsets in terms of T cell
(cross-) priming, migration capacity, cytokine production, half-
life etc. in order to maximize the clinical benefit of the therapy.
The fundamental challenge in the treatment of AML remains the
prevention of clinical relapse of the patients. The generation of
clinical grade AML-derived DCs from AML patients in remis-
sion has been reported (220) and may consequently serve as a
potential strategy in order to avoid a potential relapse (Figure 4).
In addition, results from recent clinical phase I/II studies treat-
ing AML patients in remission with clinical grade DCs generated

with different protocols highlight the importance of the selec-
tion of the antigen, the loading approach as well as the time
of administration as fundamental success criteria for DC-based
immunotherapy in AML.

CLINICAL TRIALS
Currently, several peptides derived from LAAs are under clinical
investigation for myeloid leukemia patients in current vaccina-
tion trials. Ongoing or recruiting DC vaccination trials in phase I
and II use either different WT1 derived peptides (NCT01686334,
NCT00834002, NCT00672152, NCT01266083), the proteinase-3-
derived peptide PR1 (NCT00454168), the peptides MAGE-A1,
MAGE-A3, and NY-ESO-1 (NCT01483274) or a combination
of WT1 and PR1 (NCT00433745, NCT00488592). These trials
primarily include patients that just underwent aHSCT, elderly
patients or patients in first remission. Interestingly, one study that
has been completed recently applied a vaccination protocol with
lethally irradiated autologous AML cells that were genetically mod-
ified to secrete human GM-CSF in order to enhance LAA presen-
tation (NCT00136422). Another trial that aimed at up-regulating
LAA presentation additionally administered the hypomethylat-
ing drug decitabine (NCT01483274). More and more studies use
DC vaccination in combination with other drugs or cytokines. For
example, in a clinical phase II study, CML patients in remission are
treated with PR1 peptide vaccine in combination with pegylated
IFN-α2b (PegIntron®, NCT00415857). Another approach com-
bines a DC cell/AML fusion vaccine with the blockade of PD-1
(NCT01096602).

All these clinical trials have proven that DC-based immunother-
apies in leukemia are safe and have hardly any side effects. Unfor-
tunately, this good tolerability is accompanied by a rather minor
clinical benefit in terms of response rate or other important clinical
outcome parameters (191). From immunotherapy trials in solid
tumors we have learned that the established response criteria for
chemotherapy, such as the “RECIST criteria,” may not be appro-
priate for immunotherapy approaches. This may also hold true
for leukemia. Reduction of leukemia load or remission in the BM
shortly after the treatment may not be the appropriate readout to
judge the efficacy of an active immunotherapy that needs time to
be established and may contribute to a long-term control of the
disease. In addition, suitable biomarkers that are predictive for a
response to an immunotherapy are still lacking (177). Therefore,
future studies also have to focus on the generation of adequate
readouts and the identification of defined biomarkers for the mon-
itoring of DC-based immunotherapy in leukemia. Furthermore,
most clinical studies carried out so far enrolled leukemia patients
with a high leukemia burden. In these studies, at least some of
the patients showed a minor clinical benefit. Importantly, apply-
ing DC-based immunotherapy to patients with a lower leukemia
burden or MRD might result in better responses.

CONCLUDING REMARKS
During the last decade, the combined efforts of researchers to treat
myeloid leukemia unraveled a multitude of LAAs suitable for DC-
based immunotherapy. Consequently, DC-based immunotherapy
slowly progresses into the clinical treatment of leukemia.
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FIGURE 4 | Strategy to implement DC-based immunotherapy in the
treatment of AML. Induction cytotoxic chemotherapy (“3+7” scheme with
cytarabin and an anthracycline) results in a labile complete remission (CR) that
has to be consolidated by post-remission chemotherapy. Nonetheless, many
patients harbor persistent LSCs after a CR (referred to as MRD), which may
cause disease relapse. Therefore, strategies such as aHSCT (only for a minor
fraction of patients) or immunotherapy have to be implemented to

sustain CR. Importantly, DC-based immunotherapy targeting AML-specific
LAAs alone or in combination with immune checkpoint inhibitors such as
anti-CTLA-4 or anti-PD-1 mAbs might be a promising approach to treat
patients and to target and eliminate LSCs. aHSCT, allogeneic hematopoietic
stem cell transplantation; AML, acute myeloid leukemia; CTL, cytotoxic
lymphocyte; CR, complete response; DC, dendritic cell; LAA,
leukemia-associated antigen; MRD, minimal residual disease.

The rapid development in the field allowed the design of phase
I and II studies with different DC vaccination protocols. DC-based
vaccination often resulted in the induction of potent anti-leukemic
CTL responses. The benefit for the patient in these studies in terms
of response to treatment was rather limited. Nevertheless, DC
vaccination protocols remain a promising supplementary strat-
egy in the treatment of leukemia, and future improvements will
reveal their full potential. In order to improve DC-based vacci-
nation for clinical routine, several issues still have to be solved.
Most importantly, an optimal timing for the vaccination dur-
ing the course of disease has to be defined. Current literature
and our own experiments indicate that immunotherapy may be
most effective in the state of MRD after successful induction

and post-remission chemotherapy. In parallel, MRD has to be
better defined, characterized, and especially quantified by the
introduction of more sophisticated molecular and flow cytometry
techniques. Simultaneously, it is of extreme importance to quan-
titatively and functionally assess the degree of the anti-leukemic
CTL response. Furthermore, the vaccination procedure, including
the choice of LAA (or multiple LAAs); the source of DCs (mDCs,
LCs, pDCs, or AML-derived DCs); the DC maturation protocol
and the way of application (i.v. vs. s.c. vs. intralymphatical) have
to be defined and standardized. Finally, the timing and application
of potential co-treatments, including chemotherapy, aHSCT and
immunomodulating agents has to be considered. Especially, com-
bining DC-based immunotherapy with the blockade of immune
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checkpoint regulators such as PD-1 and/or CTLA-4 may represent
a powerful tool for the treatment of leukemia.
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