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In apparent contrast to its invasive potential Staphylococcus aureus colonizes the ante-
rior nares of 20–80% of the human population.The relationship between host and microbe
appears particularly individualized and colonization status seems somehow predetermined.
After decolonization, persistent carriers often become re-colonized with their prior S. aureus
strain, whereas non-carriers resist experimental colonization. Efforts to identify factors
facilitating colonization have thus far largely focused on the microorganism rather than on
the human host. The host responds to S. aureus nasal colonization via local expression
of anti-microbial peptides, lipids, and cytokines. Interplay with the co-existing microbiota
also influences colonization and immune regulation. Transient or persistent S. aureus col-
onization induces specific systemic immune responses. Humoral responses are the most
studied of these and little is known of cellular responses induced by colonization. Intrigu-
ingly, colonized patients who develop bacteremia may have a lower S. aureus-attributable
mortality than their non-colonized counterparts. This could imply a staphylococcal-specific
immune “priming” or immunomodulation occurring as a consequence of colonization and
impacting on the outcome of infection. This has yet to be fully explored. An effective vac-
cine remains elusive. Anti-S. aureus vaccine strategies may need to drive both humoral and
cellular immune responses to confer efficient protection. Understanding the influence of
colonization on adaptive response is essential to intelligent vaccine design, and may deter-
mine the efficacy of vaccine-mediated immunity. Clinical trials should consider colonization
status and the resulting impact of this on individual patient responses. We urgently need
an increased appreciation of colonization and its modulation of host immunity.
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INTRODUCTION
Staphylococcus aureus can be a human commensal or a poten-
tially lethal opportunistic pathogen. It is one of the leading causes
of a variety of community-acquired and hospital-acquired bac-
terial infections. S. aureus is one of the most common causes of
bacteremia, and carries a higher mortality than any other – 65–
70% in the pre-antibiotic era, and currently 20–40% mortality at
30 days despite appropriate treatment (1, 2). It is also an impor-
tant cause of other deep-seated infections including osteomyelitis,
septic arthritis, endocarditis, device-related infections, and pneu-
monia. S. aureus is unusual for its propensity to cause primary
bacteremia and serious infections among young, otherwise healthy
people, as well as in those with risk factors (3). While invasive dis-
ease is by far the most acute and severe, the greatest burden of
morbidity is due to skin and soft tissue infections (SSTIs), which
are extremely common, often chronic, and frequently recurrent.

Invasive disease continues to occur despite improved adher-
ence to infection prevention practices, and the organism has
steadily evolved resistance to every licensed anti-staphylococcal
agent to date. In this context, clinical need has driven research
efforts toward strategies to develop an anti-S. aureus vaccine. Our
lack of knowledge of what elements of the immune system are
important in recovery from or prevention of human infection is

staggering. This ignorance of what may constitute a protective
immune response in humans makes designing vaccines even more
challenging. Less than 10 candidates for passive or active immu-
nization have progressed to clinical studies to date, and none have
shown efficacy in preventing disease.

Intriguingly, despite its impressive armory and invasive oppor-
tunism, S. aureus replicates and evolves in a large proportion of the
human population as a harmless colonizing organism and never
causes disease. This review will explore interactions between colo-
nizing S. aureus and the human immune system and describe the
compelling impact colonization has on the risk and outcome of
invasive S. aureus infection. Finally, we will consider the particular
challenges of designing a vaccine against a colonizing organism
and the importance of examining the potential priming effect of
colonization in future clinical trials.

UNDERSTANDING HUMAN STAPHYLOCOCCUS AUREUS
COLONIZATION
SITES AND PATTERNS OF S. AUREUS COLONIZATION
Humans are frequently exposed to S. aureus and it colonizes most
of us, either for long or short periods at various stages through-
out our lives. The primary S. aureus reservoir in humans is the
anterior nares. Extra-nasal colonization sites include skin, throat,
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perineum, vagina, and gastrointestinal tract (4–6). Exclusively
sampling nasal sites to determine whether a person is colonized at
a single point in time will miss 50% of those colonized elsewhere
(7). Nonetheless it appears that the nasal site is often the source of
inoculation of other sites via hand transfer, and the greater the bac-
terial load in the nares, the higher the likelihood that other body
sites are colonized and that the colonization is persistent (8–10).
We will largely focus on the role of nasal carriage in this review as
that is what has been most extensively investigated.

Nasal carriers may fall into two categories – persistent carriers
and non-persistent carriers (11). Approximately 20% of individu-
als are persistently colonized with a relatively high bacterial load,
and the remainder are either never colonized or only intermittently
with low numbers of bacteria (12). Much of the existing literature
examining the role of colonization is weakened by sampling par-
ticipants at a single time point only, precluding differentiation
between persistent and intermittent carriers. There is no standard
definition of how many cultures should be taken and what frac-
tion should be positive before determining carrier status, despite
various proposals (9). This is unfortunate as it seems that the dif-
ferences between persistent and non-persistent carriage patterns
are critical in determining the risk of subsequent infection and
may thus influence the nature of response to potential candidate
vaccines (11).

TRANSMISSION, DYNAMICS, AND NATURAL HISTORY OF
COLONIZATION
A small minority (<5%) of neonates are colonized by S. aureus at
birth, mainly if born by normal delivery in a vaginally colonized
mother (6). In the first 2 weeks of life, colonization with mainly
maternal strains rapidly occurs in half of infants, but this falls
to adult rates by 6 months of age, coincident with the develop-
ment of acquired immunity (13). One quarter of neonates are not
colonized by S. aureus at all in the first 2 years of life, and what
determines this resistance to acquisition is unknown.

Transmission of S. aureus occurs almost exclusively as a result
of direct skin-to-skin contact, or contact with recently contami-
nated fomites (14, 15). Nonetheless, even proven contact with the
organism does not necessarily result in subsequent colonization,
and certain hosts remain non-carriers. In one study, only a minor-
ity of patients with prior culture-proven S. aureus skin infection
remained colonized with the organism in the convalescent phase,
and only 25% of their household contacts were colonized with the
index infecting strain (7). Colonization rates among pre- and post-
clinical medical students are not altered by increased exposure of
the post-clinical group to S. aureus in healthcare settings (16).
This suggests important host differences may confer resistance to
colonization.

The relationship between each host and their colonizing strain
is extremely personalized. The duration of colonization among
nasal carriers has been measured from 70 days to 8 years. It seems
longer among persistent carriers, although methods used to prove
the isolate remains the same were suboptimal in comparison
to contemporary techniques (11, 17–20). More recently, whole-
genome sequencing has allowed deeper exploration of carried
strains. It seems that nasal colonization results from a single
founding organism that multiplies over time with the evolution

of limited minor genetic variations (21). Persistent carriers may
sequentially acquire a new strain that replaces their original
colonizing organism (22). Experimental inoculation of estab-
lished persistent and non-carriers with multiple strains resulted
in most volunteers returning to their original “natural” carrier
state, and sometimes even reverting to their original colonizing
strain (11, 23).

RISK FACTORS FOR COLONIZATION
The prevalence of S. aureus in the anterior nares of a sample of
healthy Europeans at a single time point was 21.6%, with slightly
higher rates in men and younger adults (24). Accurate assessments
of persistent carriage are more difficult to determine, but among
relatively healthy adults chronic skin disease, recent skin infection,
male sex, and being a non-smoker are associated with increased
nasal colonization rates (25, 26).

Certain patient populations tend to have higher rates of col-
onization than healthy adults. Almost all (>90%) adult patients
with atopic dermatitis (AD) are S. aureus nares and/or skin car-
riers (27). Granulomatosis with polyangiitis (GPA – formerly
Wegener’s granulomatosis) patients also have higher rates of nasal
S. aureus carriage (28). Other cohorts with recurrent skin breaches
have higher carriage rates, including insulin-dependent diabetics,
renal replacement therapy patients, and intravenous drug users,
although the exact mechanisms are unclear (12). The rates among
non-AD patients receiving injected allergen immunotherapy are
not significantly higher than healthy controls, so perhaps repeated
skin breaks alone are not sufficient to influence carriage (29).
HIV-positive patients also appear to have more frequent nasal col-
onization, although there are many potential confounders which
may explain this, including increased contact with healthcare,
repeated anti-microbial exposures, tendency to develop skin dis-
ease, use of medical intravascular devices, and higher frequency of
intravenous drug use. Nonetheless, even when corrected for degree
of immunosuppression, viral load, and drug use, HIV remains
an independent risk factor for S. aureus colonization for as yet
undefined reasons (30, 31).

THE RELATIONSHIP BETWEEN COLONIZATION AND INVASIVE DISEASE
Nasal carriage of S. aureus is strongly associated with infection.
Clinical studies consistently describe a significantly greater risk
of bacteremia among carriers, quoting relative risks from 1.2 to
21.7 in cohorts with regular healthcare contact, especially in the
presence of indwelling devices (12, 32–35). The majority (>80%)
of S. aureus nosocomial bacteremias are caused by invasion of the
endogenous colonizing strain (36, 37). Nasal carriage has also been
shown to increase non-bacteremic S. aureus healthcare-associated
infections, again largely with endogenous strains (38–41). While
it seems logical that persistent carriers would have a greater risk of
infection than those with transient carriage, this has rarely been
formally tested. A single study of 52 peritoneal dialysis patients
attempted to answer this question by measuring exit site infec-
tions and peritonitis (42). For both outcomes, the relative risk of
clinically evident S. aureus infection was ninefold higher among
persistent carriers as compared with non-persistent carriers. In the
community, where the burden of disease is SSTIs, the colonizing
strain is also the causative agent (43).
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Colonization with methicillin-resistant S. aureus (MRSA)
strains seems to confer a higher risk of subsequent invasion in
hospitalized patients than methicillin-sensitive (MSSA) strains,
although these patients may be inherently more complex with
longer hospital stays and broader anti-microbial exposure (32,
44, 45). A study which matched patients for MRSA nasal car-
riage found that those with multiple hospitalizations or a central
venous catheter in situ were more likely to develop S. aureus bac-
teremia, which may explain the aforementioned findings (35). In
MSSA bacteremia the presence of a central venous catheter does
not seem to make a significant difference, and colonization seems
to be the much greater risk factor (37). Carriage of the North
American community-acquired methicillin-resistant (CA-MRSA)
strains may be associated with higher risk of SSTIs than MSSA car-
riage (46, 47). This is perhaps not surprising as these strains are
often armed with several toxins ideal for tissue destruction (48). It
does not appear to translate into a worse outcome in bacteremia,
however (49). While the rise in nasal colonization with USA300
in North America is remarkable, the expansion of epidemic clones
is not a new feature in the history of S. aureus, and mechanisms
by which particular strains may be better colonizers have not been
ascertained (50, 51). Clonal distributions in other parts of the
world remain diverse (52, 53).

Despite their increased risk of infection relative to non-carriers,
only a tiny minority of nasally colonized individuals actually suf-
fer any adverse effects from their co-existence with S. aureus. Even
with conservative estimates, the incidence of carriage is 1000 times
greater than that of serious invasive infection (54). Despite its
armory of virulence factors, the energy and time of S. aureus
is overwhelmingly directed, not at causing invasive disease, but
rather in spreading from host to host to establish colonization.

HOST FACTORS DETERMINING S. AUREUS COLONIZATION
Given the link between colonization and disease, strategies to
prevent nasal colonization could be an appealing method of
combatting S. aureus infection. In contrast to the multiple bacterial

factors known to be involved in colonization (see Figure 1), there is
far less known about host elements and their relative contribution.

ANATOMY AND ADHERENCE
Staphylococcus aureus preferentially colonizes the vestibulum nasi.
Autopsy studies have shown it residing within the squamous
epithelial layer, associated keratin and mucous debris, and even
within hair follicle shafts (55). Adherence of a laboratory S. aureus
strain to the squamous cells of volunteers known to be nat-
urally colonized is significantly greater than adherence to cells
of non-carriers (56). Nasal secretions from human carriers also
improve in vitro adherence, perhaps in part due to the presence of
hemoglobin, which seems to inhibit agr expression (57).

During successful human colonization S. aureus preferentially
expresses tissue-adherence and immune-evasion molecules and
down-regulates virulence factors and toxins (58, 59). A number of
microbial surface components recognizing adhesive matrix mol-
ecules (MSCRAMMs) have been shown to interact directly with
the nasal epithelium. In particular clumping factor B (ClfB) and
iron-regulated surface determinant A (IsdA) are factors thought
to promote adhesion. Their host target ligands, however, are not
as well-studied. ClfB adheres to cytokeratin K10 in vitro, and pro-
duces more successful experimental nasal colonization in humans
(60). The key ClfB ligand in vivo is most likely loricrin. Loricrin is
the most abundant protein in the keratinized epithelial layer of the
nares. Binding of S. aureus to these human cells has recently been
shown to be ClfB-dependent, and the absence of either loricrin or
ClfB significantly impairs colonization in a murine model (61).
This introduces the intriguing idea of blocking loricrin to inhibit
colonization. Although born with skin abnormalities, due to mul-
tiple compensation mechanisms, loricrin deficiency in adult mice
does not lead to significant phenotypic abnormality (62). Muta-
tions in humans, however, are associated with significant diffuse
skin disease (63). In the case of IsdA the human ligands involved
are less clear and its effect on human colonization has not been
convincingly demonstrated in vivo (64–66).

FIGURE 1 | Staphylococcus aureus factors facilitating colonization.
Bacterial strategies and attributes known to facilitate colonization by
mediating adhesion to the nasal epithelium or by actively evading host
mechanisms of bacterial clearance. Those established in colonization settings

and in vivo have been included, although several other immune-evasion
mechanisms have been described in infection models or in vitro. ClfB,
clumping factor B; IsdA, iron-regulated surface determinant A; MrpF, multiple
resistance and pH regulation protein F.
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LOCAL HOST IMMUNE ENVIRONMENT MAY DETERMINE
COLONIZATION
The anti-microbial defense mechanisms of epithelial sites com-
prise a collection of host-defense lipids, peptides, and proteins
produced by epithelial cells and immune cells recruited to the
site (67). These have broad-spectrum anti-microbial activity and
the ability to rapidly and directly kill organisms, and modulate
the innate immune response (68). Some of these anti-microbial
peptides (AMPs) have been shown to interact with S. aureus,
but knowledge of their exact mechanisms of action and of their
influence on nasal colonization is limited.

Nasal secretions from carriers contain higher concentrations
of α-defensins (human neutrophil peptides 1–3) and human β-
defensin 2, possibly as a consequence of the organism’s presence
(69). These secretions seem to be less damaging to S. aureus
in vitro, and create a permissive environment for successful col-
onization (70). Human β-defensin-3 (hBD-3) is the peptide that
seems to have the most potent anti-S. aureus effect in vitro and
in skin infections (71–73). Its production from skin and nasal
secretions is normally driven by the presence of S. aureus or by
disruption of the skin barrier, implying it may have a role in
clearance of S. aureus in both colonization and infection (74,
75). Its constitutive and induced levels in skin are significantly
lower in persistent carriers as compared to non-carriers, and this
pattern has recently been associated with DEFB1 gene promoter
polymorphisms (76, 77).

The multifunctional cutaneous cathelicidin LL-37 is impres-
sively effective at in vitro killing of both extra- and intra-cellular S.
aureus (78, 79). Despite this, in a single small study which included
GPA patients, the nasal secretions of those colonized with S. aureus
contained higher concentrations of LL-37 than non-colonized par-
ticipants, and its production was induced by stimulation with S.
aureus (75). The significance of this for the healthy population is
unclear. The cathelicidin gene carries a vitamin D response ele-
ment, and vitamin D increases expression and function of many
AMPs (80, 81). An inverse association between vitamin D levels
and S. aureus nasal carriage has been found in epidemiological
studies (82, 83). However, vitamin D supplementation does not
reduce persistent carriage in healthy adults (84). Host-derived
lipids from sinuses and skin also exhibit anti-microbial prop-
erties (85–88). Several other peptides have been found to have
anti-S. aureus activity but their role in colonization has not been
assessed (89).

Some defects in local anti-microbial activity have been
described in the skin of highly colonized populations. The skin sur-
face of AD patients with particular filaggrin mutations is less acidic
than healthy skin and exhibits inhibited AMP activity. In vitro
experiments show increased S. aureus growth and expression of
adherence and immune-evasion molecules under these conditions
(90). Hexadecenoic acid and free sphingosine lipids are present at
lower levels in skin of AD patients than healthy controls (91, 92).
It is not clear if these skin defects are mirrored in the nasal epithe-
lium or contribute to their higher nasal carriage rates. In GPA
patients, aberrancies in baseline nasal mucosal cytokine expres-
sion and altered nasal epithelial AMP responses to S. aureus have
been described but it is not known if this explains their increased
colonization (75, 93).

The organism must overcome these local immune challenges if
it is to persistently colonize. Unfortunately, S. aureus has adapted
to this system by producing proteases to degrade AMPs, proteins
to bind, and inactivate them, and by altering the charge of its cell
wall to reduce their affinity to attach (94).

THE INFLUENCE OF HOST GENETICS ON NASAL COLONIZATION
In addition to the defensin gene polymorphisms mentioned above,
several other mutations have been associated with nasal carriage.
Interleukin-4 (IL-4), mannose-binding lectin, toll-like receptor 2
(TLR2), glucocorticoid receptor gene, and C-reactive protein poly-
morphisms have all been linked to carriage, as has HLA-DR3 (69,
95–97). The identified IL-4 polymorphism causes lower levels of
IL-4, resulting in reduced mucin production and dampening of the
Th2 response (98, 99). In a sample of elderly Dutch patients, the
glucocorticoid receptor polymorphism found in persistent car-
riage was associated with a phenotype of putative high cortisol
levels causing immunosuppression, and the non-carriage haplo-
type was thought to reflect reduced immunosuppression (100).
Mechanistic explanations are not apparent for the other genetic
traits to date.

Instead of interrogating for single genes, some studies have
looked for individuals likely to share multiple genetic similarities
to ascertain the role of host genome in colonization. Persistent
carriage patterns were not concordant among same-sex siblings or
even among twin pairs, regardless of gender or zygosity (101, 102).
The fact that no strongly convincing genetic trait has accounted
for successful or unsuccessful colonization indicates that it must be
determined by multiple factors that may even differ from carrier
to carrier.

EXPANDING THE “HOST” CONCEPT – IMPACT OF THE
MICROBIOTA ON HOST IMMUNITY
Colonization with microorganisms begins during birth and con-
tinues throughout early life, such that each human is rapidly
outnumbered by the diverse microbial community they carry.
Where S. aureus is part of the nasal flora in particular individuals,
it does not exist in isolation. The normal microbial population of
humans is rapidly being characterized, and we share our upper
airways with bacteria, fungi, and viruses – many of which are
potentially pathogenic – during periods of both good and ill health
(103–106). Some colonizing organisms at other sites may confer
metabolic and/or immune benefits to their host, and dysbiosis may
be associated with disease. Resident microbes have complex inter-
play, and can signal between species and across kingdoms, as well
as directly modify host immune responses.

“INTERFERENCE” BETWEEN S. AUREUS AND NEIGHBORING RESIDENT
MICROBES
The bacterial community of the nares in adults is variable, but
dominated by Corynebacterium, Priopionibacterium, and Staphy-
lococcus species (107, 108). The interaction between the host and
each microbial species in the nares is also influenced by the other
competing microorganisms present.

Traditionally, a resident S. aureus strain is thought to “hold
fast” in its niche, whether by specific adherence factors or simply
by physical occupation of space. It then resists later acquisition of
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different strains or even of the same strain (109, 110). This view
has been somewhat challenged by more recent molecular meth-
ods showing that a minority of S. aureus-colonized individuals
can carry more than one strain at a time or acquire new displacing
S. aureus strains (22, 111, 112).

This “first-come-first-served” approach is also observed in its
interplay with other staphylococcal species. Staphylococcus epi-
dermidis colonizes almost 100% of humans, often with multiple
strains concurrently (113). S. aureus carriage is negatively associ-
ated with S. epidermidis and P. acnes in adults (107). Resident S.
epidermidis reduces but does not prevent S. aureus colonization
in animal models following elimination of their original nasopha-
ryngeal flora. This interplay may be due to genus-specific blocking
of virulence gene expression, whereby agr auto-inducing peptides
can act as inhibitors of quorum-sensing in a different staphylo-
coccal strain or species (114, 115). Application of strains of S.
epidermidis secreting the serine protease Esp inhibit S. aureus col-
onization in vivo and eliminate human nasal S. aureus carriage
in pilot studies in vitro (116). This concept of inter- and intra-
species bacterial interference is long-known, and appears most
powerful between species of the same genus, as they often com-
pete for the same ecological niche. In the 1960s, when a number
of serious S. aureus epidemics occurred in hospital nurseries, it
was noted that pre-existing colonization of the nasal mucosa or
umbilical stump of infants prevented subsequent colonization by
the epidemic strain. This observation led to the deliberate inoc-
ulation of neonates with a “low-virulence” S. aureus 502A strain
that obviated colonization with the emerging penicillin-resistant
strains and resulted in significant decreases in invasive S. aureus
disease (117).

Other resident species in the nose behave quite differently.
Streptococcus pneumoniae and Haemophilus influenzae strains
acquired at different times can co-exist with the original species,
and tend to have more transient periods of carriage (110, 118).
Some studies show an inverse relationship between S. aureus and
S. pneumoniae, but only in children and the association is not con-
sistent (119–121). A mechanism has been proposed to explain this
interspecies competition. Pneumococci produce sufficient hydro-
gen peroxide to induce a stress response and activate resident S.
aureus lysogenic prophages. This results in staphylococcal cell lysis
and death in vitro (122).

The nares have a temporally stable microbiota. Bacterial ecol-
ogy is altered during the course of systemic antibiotic treatment,
and intercurrent upper respiratory tract infections, but these alter-
ations are short-lived (106, 123). Similarly, attempts to decolonize
patients by using intranasal mupirocin and/or topical chlorhexi-
dine is not a reliable strategy for long-term elimination, although
it may decrease immediate risk of surgical site infections (124,
125). Repeated application of Corynebacterium species to the nares
of persistent S. aureus carriers results in clearance for a variable
period of time, and actively ingested probiotics fail to significantly
alter S. aureus nasal carriage (126, 127).

Such “interference” is not confined to co-existing bacteria. Syn-
ergistic and antagonistic signaling may occur between kingdoms
of normal flora. In murine infection models, co-infection with
Candida albicans synergistically enhances virulence and mortality
in systemic S. aureus infection (128). This is associated with an

increase in pro-inflammatory cytokines and end-organ cellular
infiltrates indicating fungal-bacterial modulation of host innate
immune response (129). Conversely, the candidal quorum-sensing
molecule farnesol inhibits S. aureus biofilm formation and com-
promises cell membrane integrity in vitro (130). Such modulatory
cross-kingdom signaling is not well understood during asympto-
matic in vivo colonization. Nevertheless, the prospect of altering
the local constituents of the nasal microbiota to direct S. aureus
colonization is tantalizing.

THE IMPACT OF THE MICROBIOTA ON IMMUNE DEVELOPMENT
The microbiota is overwhelmingly comprised of anaerobic bacte-
ria residing in the distal gastrointestinal tract, although all mucosal
surfaces are colonized with various microorganisms. Most knowl-
edge of the interactions between colonizing organisms and host
immunity relates to the intestinal microbiota. Colonization with
these organisms provides benefits to the host by adding metabolic
function and preventing pure pathogen overgrowth, but many gut
microbes are also potentially pathogenic. Containing the growth
of the vast number of “non-self”microbial cells in contact with the
intestinal epithelium is a significant challenge to host immunity,
but responding with over-zealous inflammatory activity results
in host damage. Thus, while immune response must be present
for health, it must also be tightly regulated and directed in a way
appropriate to each tissue or organ site.

Induction and maintenance of immune tolerance to commen-
sal intestinal organisms is essential to normal local and systemic
lymphoid maturation (131–133). The microbiota orchestrates the
differentiation and homeostasis of various T cell subsets in ani-
mals. It regulates development of pro-inflammatory intestinal
Th17 cells, and anti-inflammatory regulatory T cells (Tregs) both
in the intestine and systemically (134). Tregs are greatly reduced
in germ-free animals, and this depletion results in detrimental
inflammation due to expansion of unopposed microbe-specific
pro-inflammatory T helper subsets (135, 136). Conversely, in skin,
commensals normally drive pro-inflammatory tissue-resident T
cells preferentially, and germ-free animals have greatly increased
numbers of skin Tregs (137).

Much less is known about the mechanisms and outcomes of
microbial immunomodulation in humans, but our host immune
responses may also be manipulated to favor a colonizer’s per-
sistence. Co-culture of human peripheral blood mononuclear
cells (PBMCs) with species of Lactobacillus and Bifidobacterium
show differences in the induction of Tregs specific to those
species (138). C. albicans produces prostaglandins that reduce
lymphocyte proliferation, TNF-α and chemokine production
while upregulating IL-10 production in mammalian cells (139).
Such immunomodulation of effector and Treg response mech-
anisms by intestinal microbes has also been implicated in pro-
tecting against development of systemic allergic and autoimmune
disorders (140–142).

THE IMPRINT OF THE MICROBIOTA ON HUMAN ADAPTIVE IMMUNITY
In animals with controlled mucosal exposure to gut commensal
antigens, the development of specific immune responses is limited
to the mucosal and local mesenteric lymphoid organs without
spread to secondary lymphoid organs or development of systemic
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immunity (143). T lymphocytes are essential to this compartmen-
talized response and their depletion results in systemic microbial
translocation (144).

While in a tolerant co-existence with the microbiota, humans
nonetheless often develop a systemic adaptive immune response to
these organisms, perhaps as a result of transient bacteremias due
to such microbial translocations. Circulating antibodies to com-
mensal microbial antigens including C. albicans, Escherichia coli,
Clostridium difficile, Neisseria, and Bacteroides species are com-
mon in healthy individuals (145–149). These antibody responses
are significantly elevated in some cases of chronic or acute intesti-
nal barrier disruption (150–152). Adaptive cellular responses are
also normally produced, with small numbers of E. coli-specific
Th1 cells present in the peripheral blood of healthy individuals
(153). Experimental gastroenteritis and subsequent translocation
of intestinal bacteria enhances systemic microbiota-specific mem-
ory Th1 cell development (154). Despite the presence of these
primed B and T lymphocytes, they are not associated with ongo-
ing uncontrolled systemic inflammatory responses in the absence
of invasive infection. Instead, the compartmentalized mucosal
immune response tolerates but tightly confines the intestinal
microbiota to its appropriate site. Much less is known, however,
about the impact of the microbiota at other sites on local and
systemic immune response.

SITE-SPECIFIC ADAPTIVE IMMUNITY
The establishment and maintenance of balanced interactions
between the host and its microbiota seem a key requirement for
health, but little is known about the unique immunomodulation
by most pathobionts in humans. Understanding these mechanisms
and translating the findings into therapeutic interventions remains
a major challenge but an attractive avenue for future vaccine
development. Both pro- and anti-inflammatory antigen-specific
lymphocytes may be induced by bacterial colonization of extra-
intestinal sites as well. The polarization and efficacy of these cells
may in fact be completely dependent on the site or compartment
at which they first encounter the immune system. In an animal
model of Listeria monocytogenes infection, for instance, intra-
venous inoculation drives the development of systemic long-lived
Th1 effector memory cells, whereas intranasal infection with the
same organism drives short-lived central memory Th17 cells (155).

In humans, this concept of site-specific adaptive immunity has
been elegantly explored in the case of S. pneumoniae. Various
pneumococcal-specific T cells in humans – Th1, Th17, Tregs –
are much more numerous in tonsillar lymphoid tissue close to
the site of colonization, than in the peripheral blood (156). Sim-
ilar mucosal Th17 responses to experimental colonization are
seen in mice and humans, and this protects against subsequent
colonization in both (157, 158). Human tonsillar lymphocytes
produce pro-inflammatory IL-17A in response to pneumococcal
antigens, which improves in vitro phagocytic killing of the organ-
ism (159). In contrast, adenoidal tissue of children naturally colo-
nized with S. pneumoniae shows increased proportions of IL-10-
secreting pneumococcal-specific Tregs, which inhibit CD4+ pro-
liferation and production of pro-inflammatory cytokines (IFNγ,
TNF-α, and IL-17A) (160). The relative proportions of pro- and
anti-inflammatory T cells specific to S. pneumoniae in tonsillar

lymphocytes are roughly equal. These local immunomodula-
tory Tregs may thus reduce inflammation-related airway damage
during infection, but facilitate the persistence of pneumococcal
carriage.

In peripheral blood lymphocytes, the picture is very different.
The circulating immunosuppressive Treg phenotype is far less evi-
dent and the balance is overwhelmingly skewed in favor of Th1
and/or Th17 cells (156, 159, 161). This compartment is primed
toward a rapid pro-inflammatory cellular response, and also has
ready circulation of anti-pneumococcal antibodies, both of which
are critical for efficient bacterial clearance in invasive disease. This
shows that the bias of appropriate host response is site-specific,
and anti-pneumococcal cells’ function and mechanisms of pro-
tective immunity may also vary by site. Normal host response is
tailored to a balanced tolerance at sites normally colonized by com-
mensal organisms, and rapid attack at normally sterile sites. This
tightly regulated balance between pro- and anti-inflammatory
responses to S. pneumoniae seems to greatly influence the outcome
of colonization and perhaps even that of infection (157, 162).

Such site-specific characterization of local and systemic
immune response to colonization, and exploration of the rela-
tive importance of these in the prevention of invasive disease have
only been minimally elucidated for S. aureus to date and are further
discussed below.

THE EFFECT OF S. AUREUS COLONIZATION ON THE HOST
IMMUNE SYSTEM
In the battle between microbe and host during infection, many S.
aureus attributes that contribute to its virulence and lethality have
been described, but much less is known about the host’s defense
or breaching of this defense. Where this has been studied it is
usually in the context of invasive disease, hence there is extremely
limited knowledge of host response during asymptomatic periods
of colonization. Critical questions remain unknown. Are there
particular protective actions preventing colonization? What host
immune failures occur to allow invasion? And does the immune
imprint of colonization affect subsequent response to invasive
infection?

THE INFLUENCE OF COLONIZATION ON OUTCOME OF
INFECTION – A HINT THAT COLONIZATION MATTERS?
Colonization is known to substantially increase the risk of sub-
sequent infection, and invasive S. aureus disease carries a high
mortality rate. On the other hand, it is clear that being a carrier
alone – like a large proportion of the healthy population – does
not cause death or other adverse consequences in the absence of
infection. It is unknown whether host immunological adaptation
to the colonizing strain in nasal carriers confers any advantage or
disadvantage in recovery from active infection.

One notable large-scale Dutch study retrospectively examined
the incidence of nosocomial S. aureus bacteremia and mortality in
carriers (persistent and/or transient) vs. non-carriers in a 120-day
follow-up period (37). As expected it showed a higher incidence
of bacteremia among carriers, although all-cause or infection-
attributable mortality was not significantly different between both
groups (0.1 vs. 0.1%; p= 0.81 for S. aureus-attributable deaths).
However, when the subset who did develop nosocomial bacteremia
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were analyzed independently, carriers appeared to have a lower all-
cause and S. aureus-attributable mortality (18 vs. 47%; p= 0.005
and 8 vs. 32%; p= 0.006). Severity of disease and incidence of sep-
tic shock were not reported. The carrier group were significantly
younger and had fewer cardiac issues, which may explain their
more favorable outcomes. Intriguingly, however, there may have
been a key difference in their immune responses. The carriers were
a more “immunocompromised” group (35 vs. 12%; p= 0.02) –
although this is unfortunately not further defined – which may
have globally dampened potentially harmful “over-zealous” innate
and adaptive responses in the setting of sepsis. Alternatively, they
may have had a more appropriate or well-orchestrated specific
response to invasive disease, given their prior exposure and a
degree of potential immune tolerance to S. aureus.

A meta-analysis looking at the few observational studies that
have examined the association between pre-morbid S. aureus colo-
nization and mortality showed that carrier status showed a similar
non-significant trend in reducing mortality directly attributable
to the infection (163).

The immune mechanisms induced by colonization that might
result in such improved outcomes following infection are not
defined, although some clues exist. In humans, high titers of anti-
TSST-1 seem to be protective against staphylococcal toxic shock
syndrome in that the disease seems to occur in those without pro-
tective anti-TSST antibodies (164). Persistent nasal carriers have
higher titers of neutralizing antibodies to several superantigens
(sAgs) that significantly reduce T cell proliferation and activa-
tion (165). This may lower their risk of developing toxic shock
syndrome or attenuate the severity of sepsis. Higher levels of anti-
bodies against several S. aureus toxins just prior to or at the onset
of infection decreases the likelihood of developing sepsis during
bacteremia, and although pre-morbid colonization was not for-
mally assessed, the patients with improved outcome had a history
of S. aureus infections (166). Establishing whether there is any
association between the immune imprint of S. aureus coloniza-
tion and the mortality attributable to this infection is critical for
orchestrating and predicting response to infection and vaccines in
future patients.

HUMORAL RESPONSE TO S. AUREUS COLONIZATION
Recognition and handling of S. aureus by the innate immune sys-
tem is notable and has been outlined elsewhere (167–169). This
type of immunity is currently considered to lack specific mem-
ory, and thus is not as attractive a target as the adaptive immune
system for vaccine research (170). Humoral immunity is more
enticing and established, but there a number of caveats against its
promise in the case of S. aureus. B cell deficiencies in humans are
not associated with increased infection rates, and do not worsen
outcomes in animal challenge models (171–173). S. aureus is
uniquely armed with protein A to eliminate antibodies formed
against it by binding to their Fcγ domain and by interacting with
B cells to ultimately cause their anergy and apoptosis (174–176).
This leads to a compromised adaptive immune response against
other S. aureus antigens. Serum antibodies certainly seem to have
functional antibacterial behaviors in vitro, but there may well
be other staphylococcal products inhibiting optimum antibody
activity in vivo (177, 178).

Frequent exposure to S. aureus does indeed imprint a mem-
ory antibody response in the host, although to a varying extent.
The mechanism of induction of antibodies by colonization is
not established. Transient bacteremias, self-resolving minor infec-
tions or absorption of toxins across the mucosa could directly
explain systemic immune exposure to microbial antigens (179).
Colonization alone less easily explains the production of adap-
tive immune memory. It only results in antibody formation to a
limited selection of the S. aureus antigens known to be present,
and experimental nasal colonization in humans does not induce
significant humoral changes (180, 181).

Whether antibodies are implicated in preventing colonization –
by inhibiting adherence, facilitating immediate clearance, or other
unknown methods – is also undetermined. It is clear that transpla-
cental transfer of a lifetime’s collection of maternal anti-S. aureus
IgG does not protect infants from colonization in infancy, nor
does the development of their own anti-S. aureus antibodies pre-
vent subsequent colonization (182, 183). Most adults and children
have a variable degree of anti-S. aureus antibodies of various
classes present in serum, whether colonized or not (178, 183, 184).
Local antibodies in the nares are less studied although show some
correlation with systemic titers (178).

Different studies have found lower or higher levels of antibodies
against S. aureus antigens among nasal carriers and non-carriers
(64, 177, 178, 182, 184). The overwhelming trend is of considerable
inter-individual variation, and findings are often contradictory.
Consistently reproducible key patterns of antibody titers or differ-
ences in functionality between carriers and non-carriers have not
been shown. Unfortunately, not all studies have rigorously iden-
tified true persistent carriers before drawing conclusions about
differences in antibody levels, and those that have may be more
reliable (11, 178, 180).

Some animal studies have shown antibody-based interventions
to prevent S. aureus colonization. Production of antibodies to IsdA
or IsdH prevented nasal colonization of cotton rats, but only when
a lower bacterial inoculum was used (64). Intranasal immuniza-
tion of mice with recombinant ClfB or systemic administration of
anti-ClfB monoclonal antibody reduced bacterial load but did not
prevent colonization (185). Immunization to prevent colonization
in humans has not been tested.

Whether in infection or colonization, antibody patterns are
extremely diverse and it is difficult to discern clear patterns. Of
course, only a fraction of the antigens in S. aureus’s protein
and polysaccharide repertoire have been evaluated for antibody
response thus far, and perhaps combining patterns of multiple
antibodies may better discriminate between groups. Nonethe-
less, even patients infected or colonized with genetically similar
organisms produce unique responses (186). This further supports
the theory of a uniquely personalized host-microbe relationship
dependent on the temporal history of exposure, number, and
genetic diversity of strains and intrinsic adaptive host response.

ADAPTIVE CELLULAR IMMUNE RESPONSE TO S. AUREUS
COLONIZATION
Evidently, colonization – or perhaps more accurately transient
microinvasions or other exposures to S. aureus – influences sys-
temic antibody repertoire. It is equally likely that this history
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of exposure induces adaptive cellular immune responses, and
of course T helper cells are essential for optimal B cell activity.
There is extremely limited data on this in the case of S. aureus
colonization.

Early intestinal colonization with S. aureus in children is asso-
ciated with increased numbers of systemic IL-4 and -10 producing
cells (187). It may also predict a higher likelihood of atopic disease
(188). Airway exposure to S. aureus enterotoxins has been linked
to the development of asthma and allergic rhinitis, perhaps by
inducing local Th1/Th17 responses (189–191).

T cells in nasal lymphoid tissue mediate clearance of S. aureus
from nasally inoculated mice. This decolonization is dependent
on the Th17 response and facilitated via IL-17A and its associated
neutrophil influx (192). Unlike humans, mice are naturally some-
what resistant to nasal colonization, and further understanding
of these Th17 responses could be used to develop interventions
to reduce or understand human colonization. The mechanisms
of local and systemic cellular responses to nasal colonization and
their relative importance in the prevention of invasive disease have
not been fully elucidated for S. aureus to date, although some
evidence points to suppression of local pro-inflammatory signals
facilitating persistent colonization (193–195). A proposed mech-
anism for nasal carriage and resistance to carriage is presented in
Figure 2.

THE IMPORTANCE OF T CELLS IN S. AUREUS INFECTION
AND THEIR MODULATION OF IMMUNITY
Some animal and preliminary human data has proposed an impor-
tant role for various T cells in dealing with certain S. aureus
infections. However, as discussed above, human exposure to the
organism long prior to an episode of infection will likely deter-
mine the nature of the T cell response re-activated during later
disease. Understanding how T cells are “primed” during coloniza-
tion is fundamental to manipulating their activity for adjunctive
treatment or vaccination.

THE ROLE OF T CELLS IN ANIMAL MODELS OF S. AUREUS INFECTION
In murine wound infection models, T cell deficient mice exhibit
lower concentrations of CXC chemokines in local tissue due
to a reduction in lymphocyte-derived IFN-γ (196). This results
in less trafficking of CD4+ cells and neutrophils to the site,
reduced inflammation, and lower bacterial burden (197). Absence
of gamma-delta T cells producing IL-17A also leads to a similar
phenotype (198, 199).

In systemic infection T cells appear to be crucial to survival with
rapid mortality following intravenous challenge in T cell knock-
out mice (173). Th1 and Th17 subsets seem most critical, and both
IFN-γ and IL-17 are routinely produced during systemic infection
(200). Deficiency in IFN-γ but not IL-17A results in increased

FIGURE 2 | Proposed immunomodulation affecting and resulting from
colonization in persistent and non-persistent carriage. (A) The epithelium
and local environment of the nares in individuals with S. aureus carriage may
be more favorable for colonization with high levels of host ligands to facilitate
adhesion, and reduced concentrations of the potent anti-staphylococcal
peptide human β-defensin 3 (hBD-3) in nasal secretions. Interaction and
processing of S. aureus by local antigen-presenting cells may result in an

immune tolerance and suppression of pro-inflammatory responses. Inhibition
of bacterial clearance would allow persistent colonization. (B) In non-carriers,
the local environment and response might resist successful S. aureus
colonization. Nasal secretions may contain higher levels of hBD-3 or other
anti-microbial peptides. Local immune response to the organism could be
more pro-inflammatory and promote the expansion of Th17 cells to attract
neutrophils and create local inflammation that facilitates bacterial clearance.
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mortality (201, 202). However, Th17 expansion may be essential
to effective vaccine responses (202, 203).

THE ROLE OF T CELLS IN HUMAN S. AUREUS INFECTION
With the exception of the superantigens, few S. aureus-specific T
cell epitopes have been identified, and the normal human T cell
response to this organism has had negligible evaluation (204–207).
There have been no human studies examining the role of T helper
cells in S. aureus colonization or invasive infection, but there are
some clues as to the importance of T cells in human S. aureus
disease.

Particular T cell subsets have been implicated in intact cuta-
neous and mucosal immunity to S. aureus. A heterogeneous group
of disorders may cause the chronic mucocutaneous candidiasis
(CMC) syndrome, which is characterized by integumentary T cell
hypo-responsiveness to C. albicans antigens (208). These patients
suffer from protracted C. albicans and S. aureus mucocutaneous
infections. Inborn errors of Th17 cells seem to underlie CMC
(209, 210). Patients with the rare autosomal dominant hyper-IgE
syndrome (AD-HIES) are prone to CMC, and to staphylococcal
skin and lung abscesses along with other abnormalities (211, 212).
Mutations in the signal transducer and activator of transcription
3 (STAT3) gene account for the majority of cases (212). STAT3
is involved in the signal transduction of several pro- and anti-
inflammatory cytokines, and stimulation of PBMCs from these
patients shows increased secretion of TNF-α and IFN-γ (213).
Naïve CD4+ T cells with this mutation fail to differentiate into
Th17 cells, but retain the ability to differentiate into other sub-
sets (214, 215). Interestingly these patients do not seem more
prone to S. aureus bacteremias despite their global systemic Th17
deficiency. This may be explained by differences in site-specific
immune response. Unlike cells from other sites, human skin and
respiratory epithelial cells seem to require the synergistic stimuli of
both Th17-derived and classical pro-inflammatory cytokines for
enhanced production of AMPs (h-βD-2 and -3) and neutrophil
chemotaxins (216).

HIV-infected individuals are also commonly affected with
recurrent skin and mucosal infections, frequently caused by C.
albicans and S. aureus. Of all CD4+ cells, HIV-positive patients

preferentially show profound loss of circulating Th17 cells, even
at early disease stages (217, 218).

Th17 cells thus seem essential for intact mucocutaneous immu-
nity to extracellular bacteria and fungi. Specific T cell responses in
infections of other sites are less well understood.

T CELL IMMUNOMODULATION INDUCED BY S. AUREUS AND ITS
EFFECTS
The multiplicity of mechanisms utilized by S. aureus to evade the
innate immune system and cause infection are staggering (219).
Its means of skirting the adaptive immune system are less well
appreciated but its ability to delete or block development of evi-
dence of its presence must surely contribute to the lack of an
effective immunological memory. Invasive S. aureus infections are
associated with decreased transcription of genes relating to adap-
tive immunity and increased expression of myeloid and innate
immunity genes (220, 221). Several microbial factors are known
to directly interact with lymphocytes (Table 1).

Secreted or wall-anchored staphylococcal protein A binds IgG
in the incorrect orientation for neutrophil recognition and thus
inhibits opsonophagocytosis. It also binds to the VH3 region of
IgM on the surface of B lymphocytes, initiating a B cell receptor-
mediated programed cell death that results in significant depletion
of the reservoir of potential antibody-producing cells (174). The
presence of an array of superantigenic toxins directly activates vast
numbers of T cells, but this is followed by the loss of these cells’
ability to respond to these antigens (anergy). This prevents normal
development – via MHC Class II/TCR presentation of processed
antigens – of true microbial antigen-specific effector and mem-
ory cells (226). At least one of these superantigens is expressed
by most circulating clinical isolates (223, 227). The MHC Class
II analog protein (Map) is a secreted S. aureus protein with sim-
ilarity to the MHC peptide-binding groove. Its binding reduces
lymphocyte proliferation and shifts this response in a Th2 direc-
tion, thus suppressing the Th1 responses shown to be important
for bacterial clearance in animal systemic infection (228). CCR5
on the surface of macrophages and T lymphocytes appears to be
necessary for Leukotoxin ED (LukED) to produce pore-forming
cytotoxicity, and absence of either host CCR5 or staphylococcal

Table 1 | Staphylococcal factors implicated in directly modulating the host adaptive immune response.

Immunomodulatory

factor

Prevalence in

clinical strains (%)

Evidence for activity

in colonization

Human target Effect

Protein A (Spa) 91 (222) Mostly transcribed in

persistent carriers (58, 222)

(i) Fc region free IgG;

(ii) B cell-surface IgM

VH3 region

(i) Inhibits opsonophagocytosis;

(ii) programed B cell death

Superantigens (staphylococcal

enterotoxins and toxic shock

syndrome toxins)

73 (223) Variably transcribed during

carriage (181)

MHC Class II Binds MHC Class II to the T cell

receptor to cause initial activation

followed by anergic unresponsiveness

MHC Class II analog protein

(Map)

94 (222) Unknown MHC peptide-binding

groove

(i) Reduced lymphocyte proliferation;

(ii) Th2-predominant response

Leukotoxin ED 30–87 (224, 225) Unknown CCR5 (T lymphocytes

and macrophages)

Cell membrane pore formation causing

cytotoxicity
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LukED results in lower levels of pro-inflammatory cytokines and
markedly reduced mortality in systemic infection models (229).
However, these factors have largely been shown in animal infection
models or in vitro, without necessarily simulating physiological
concentrations. More importantly, none of them have been exclu-
sively examined for their immunomodulatory effects in the setting
of colonization.

The balance between pro-inflammatory and anti-inflammatory
adaptive responses required for controlled but successful bacter-
ial clearance and clinical recovery are unknown, as is whether
or not colonization influences this balance. Repeated or pro-
longed S. aureus encounters may lead to an altered and even
immunosuppressive response to its antigens at certain sites.

Children with AD and S. aureus skin colonization have glob-
ally reduced IFN-γ production from CD4+ PBMCs in response to
non-specific stimulation, particularly those with higher bacterial
loads (193). This finding may, of course, be more to do with the
underlying disease than the organism. Human monocyte-derived
IL-10 has been experimentally shown to reduce development
of pro-inflammatory Th1/Th17 responses in vitro (230). This
inhibitory response is far less dramatic when dendritic cells are
the antigen-presenting cells (APCs), which may support the site-
specific concept of aggressively responding to invasion of normally
sterile sites like the bloodstream. Using monocytes to prime naïve
human T cells with heat-killed S. aureus produces antigen-specific
populations of Th1 and Th17 “pro-inflammatory” cells. How-
ever, persistent restimulation of these S. aureus-specific Th17 cells
results in a switch to an “anti-inflammatory” phenotype – reduced
IL-17 and increased IL-10 production. The same pattern was seen
in S. aureus-specific human memory Th17 and Th1/Th17 cells
(231). These immunomodulatory responses may occur upstream
of the adaptive response, as interactions of the innate immune sys-
tem with S. aureus produce cytokines to polarize T cell production
and memory responses. For instance, staphylococcal peptidogly-
can uses TLR2 signaling to induce IL-10 production and apoptosis
of human APCs (232).

Similar immune “switching” is seen in animals after exposure,
where these effects can then be evaluated in infection challenge
experiments. Persistent systemic exposure to S. aureus in mice also
leads to in vivo T cell clonal anergy and immunosuppression which
may be IL-10 mediated (233–236). Intraperitoneal vaccination of
naïve mice with heat-killed S. aureus switches their cytokine pat-
tern on subsequent intravenous challenge. They show decreased
IL-17, unchanged IFN-γ, and increased IL-10 production, as
compared with unvaccinated mice (200). Staphylococcal pepti-
doglycan exposure increases plasma IL-10 and reduces IFN-γ and
TNF-α concentrations in response to intravenous bacterial chal-
lenge even in the absence of intact TLR2 signaling. Such “primed”
immune-tolerant mice repeatedly demonstrate improved bacterial
clearance and significantly reduced mortality in systemic S. aureus
disease (98, 232, 237).

It could be proposed that inducing a degree of S. aureus-specific
immunosuppression may be a useful defensive adaptation against
the pro-inflammatory “cytokine storm” that would be expected
if superantigen-provoked massive T cell activation was allowed
to go unopposed. It is remarkable that despite the prevalence and
transcription of multiple superantigens in clinical infections, toxic

shock syndrome is much more rarely observed than S. aureus bac-
teremia (223). Staphylococcal superantigen stimulation induces
both TCR-mediated clonal anergy and Tregs producing IL-10 (235,
238). Rather than being protective, however, high levels of serum
IL-10 at presentation in S. aureus bacteremia patients strongly
predicts their mortality, although this is a relatively crude mea-
surement and its cellular source or specificity in this setting is not
determined (239).

Successful colonization in mice seems to be facilitated by an
immunosuppressive predominance, and clearance dependent on
developing specific pro-inflammatory (Th17) responses. Colo-
nization in humans may mirror this pattern. The effects colo-
nization has on innate immune signaling, polarization of systemic
adaptive immunity, and whether these influence clinical outcome
during subsequent infections is completely unknown. Closing
these knowledge gaps is essential to developing an effective vaccine.

ANTI-STAPHYLOCOCCAL VACCINE DESIGN IS COMPLICATED
BY COLONIZATION
An effective vaccine to prevent S. aureus disease remains elusive.
Mathematical models conclude a vaccine of even relatively lim-
ited efficacy (≤10%) would significantly decrease the incidence of
invasive disease and be extremely cost effective in high-risk popula-
tions (240–242). Some important points on colonization’s impact
on immunity and the challenges of producing such a vaccine are
illustrated in the most important human studies to date.

CONSIDERATION OF COLONIZATION IN IMPORTANT HUMAN ANTI-S.
AUREUS VACCINE STUDIES TO DATE
Passive and active immunization strategies have been evaluated to
prevent occurrence of or improve outcome of S. aureus bacteremia
(243–249). Only two anti-S. aureus vaccines have progressed to
disappointing Phase III clinical trials and those that have com-
pleted Phase II have not suggested signs of efficacy to date. All have
aimed to use antibodies to mediate their effect. Production and
adoptive transfer of these antibodies showed promising protection
in animal challenge models in all preclinical studies. The largest
clinical studies raise the possibility that colonized individuals may
respond differently to vaccination.

CP5 and 8 immunization
The most prevalent S. aureus capsular types 5 and 8 (CP5 and 8)
were conjugated to a protein carrier and this vaccine was tested in
a hemodialysis population (243). Despite high antibody titers in
vaccinees, a reduction in S. aureus bacteremia was not observed,
although not all clinical isolates expressed CP. Twenty-two per-
centage of the participants were colonized prior to vaccination
where colonization was defined as two out of two positive cul-
tures for S. aureus from swabs of the anterior nares 2 weeks apart.
Tunnel exit site colonization was not reported. They observed that
while nasal carriage was a risk factor for increased bacteremia (7.6
vs. 3.1 per 100-person-years; p < 0.01) among placebo recipients
as expected, in vaccine recipients, the rate of S. aureus bacteremia
among carriers was not higher than that of the non-carriers (3.0 vs.
3.1 per 100-person-years; p= 0.82). Although the numbers who
developed invasive disease were small, it is an interesting observa-
tion suggesting that nasal carriage may induce a different response
to vaccination.
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A smaller study of the same vaccine in healthy volunteers looked
specifically at its impact on colonization (250). All had comparable
antibody response post-vaccination, regardless of prior coloniza-
tion status, but nasal colonization rates were not significantly
affected.

IsdB immunization
In a murine model, immunization with the highly conserved
iron-scavenging protein IsdB showed decreased mortality in a sub-
sequent intravenous challenge with live S. aureus and seemed to
correlate with anti-IsdB antibody titers (251). It was also shown to
confer T cell-mediated protection by expanding a Th17 antigen-
specific population, and adoptive transfer of these antigen-specific
CD4+ cells conferred protection (203). This dual activation of
humoral and cellular immunity in animal models, as well as the
antigen’s specificity for and conservation across S. aureus strains,
made IsdB a highly attractive molecule for vaccination. Healthy
humans have baseline anti-IsdB antibodies – presumably due to
prior exposure and colonization – and titers have been shown to
increase significantly between acute and convalescent samples in
patients with S. aureus bacteremia as compared to patients with
alternative infections, suggesting this response may play a role in
recovery (252).

Phase IIa studies were carried out in chronic hemodialysis
patients, and produced increased antibody responses in vacci-
nees, and increased opsonophagocytic functional activity in a
subset (253). Despite the fact that 35–84% of these patients tend
to be colonized with S. aureus, carriage rate was not reported,
although prior exposure was suggested as an explanation for the
brisk response and higher antibody titers seen following vacci-
nation as compared to healthy volunteers (12). In Phase III pre-
cardiothoracic surgery patients, vaccination produced increased
anti-IsdB titers, but failed to significantly reduce the incidence of
S. aureus bacteremia, deep sternal wound infections, or all-cause
mortality (249). However, the trial was terminated early due to
increased mortality among vaccine recipients who developed S.
aureus infection vs. placebo recipients who did, especially among
those with MRSA disease. Nasal colonization rates were similar
between vaccine and placebo groups, although criteria used to
define this were not shown. As would be expected, invasive dis-
ease was higher among carriers than non-carriers, although these
groups seemed to respond differently, just as with the CP5 and
8 vaccine trial. Vaccine efficacy appeared slightly greater in the
vaccinated carrier group in post hoc analysis – invasive disease inci-
dence was 3.3% in vaccinated carriers vs. 5.5% in placebo carriers
(p= 0.09).

DEFINING THE PURPOSE OF AN ANTI-S. AUREUS VACCINE
A candidate vaccine must have a clearly defined purpose
(Figure 3). Should a vaccine aim to prevent colonization? To
prevent invasion? To augment the immune response to invasion
and thus attenuate severity of disease? Should it target high-risk
patient groups or be universal? Should children or infants be tar-
geted for vaccination as their higher carriage rates make them
greater potential reservoirs for transmission? What antigens, route
of delivery, or adjuvant should be used? What collateral effects can
be expected? Could there be a herd immunity effect? Might there

FIGURE 3 | Outline model of a protective vaccine against S. aureus
infection. A vaccine may be universal or specifically target high-risk groups.
It should ideally aim to elicit humoral, cellular, and phagocytic responses.

be unexpected and perhaps harmful alterations in the balance of
the local microbiota?

THE POTENTIAL IMPACT OF S. AUREUS VACCINES ON NASAL
COLONIZATION
Unlike S. aureus, many other nasopharyngeal pathobionts have
well-characterized disease-causing serotypes, or they mediate their
disease by secreting local toxins rather than systemic invasion.
Several also have known mechanisms of bacterial clearance (e.g.,
opsonizing antibodies to facilitate phagocytosis) and an estab-
lished protective immunity effect whereby natural infection pre-
vents against repeat episodes of disease. For S. aureus, none of these
is known. As such, the development of a vaccine is significantly
more challenging.

Since the introduction of widespread childhood vaccination,
nasopharyngeal colonization rates have dropped for Corynebac-
terium diphtheriae, H. influenzae capsular type b (Hib), and vac-
cine serotypes of S. pneumoniae (254–256). This is in spite of
the fact that many of their vaccines have specifically “anti-disease”
effects and may not have been expected to influence carriage, other
than reducing the efficient bacterial spread by those with disease.

The status of S. aureus as a harmless commensal organism in
a significant proportion of the population complicates vaccine
design. Colonization is the greatest risk factor for disease, yet the
vast majority of carriers will never develop invasive disease. Impor-
tantly, no evolutionary or other advantage has been conclusively
observed among persistent carriers of S. aureus, and conversely, no
convincing disadvantage observed among those who seem resis-
tant to colonization. Defining the differences between carrier and

www.frontiersin.org January 2014 | Volume 4 | Article 507 | 11

http://www.frontiersin.org
http://www.frontiersin.org/Microbial_Immunology/archive


Brown et al. S. aureus colonization and immunomodulation

non-carrier groups has proved difficult. They are most likely multi-
factorial – differences in host genetics and epithelial cell molecules,
differences in co-existing microbiome, and perhaps differences in
S. aureus that make some strains superior colonizers. Difficulties
in establishing clear differences between colonizing and disease-
causing strains would suggest that vaccine candidates effective at
producing protection against S. aureus infection may also pro-
tect against colonization as an unintended collateral effect. If so,
absence of S. aureus may alter the normal balance of the nasal
microecology with potentially unpredictable results. Overgrowth
of competing pathobionts could result in their causing invasive
disease, or as yet unknown favorable effects of S. aureus on local
and systemic immunity could be lost.

CONSIDERING MORE THAN ANTIBODY RESPONSE IN VACCINE DESIGN
Inducing humoral immunity would seem the most logical place
to start, given its success in vaccines against S. pneumoniae, N.
meningitidis, and H. influenzae. In comparison to adaptive cel-
lular responses, antibody responses are easier to measure, and
depend only on the conserved tertiary structure of a protein or
polysaccharide, rather than the unknown peptide conformation
of an antigen after HLA-restricted processing and presentation
by APCs. However, despite multiple target antigens successfully
inducing antibodies, this approach alone has not been success-
ful. This is perhaps not surprising in light of mounting evidence
that S. aureus has a significant propensity to “hide” intracellularly,
and antibodies target extracellular pathogens (257). Addition-
ally, the presence of staphylococcal protein A on the cell wall is
a crafty anti-humoral defense mechanism, enabling the organ-
ism to immobilize antibodies on its surface and thus render them
ineffective. Most importantly, clinical evidence that antibodies are
important mediators of protective immunity is completely lacking,
whereas cellular immune response seems to have a role in deter-
mining response to infection and perhaps colonization. It may
also be likely that specific cell subsets are involved in protection
against disease only in certain sites – for instance, Th17 cells appear
relevant in skin and mucosal disease but are not convincingly
important once systemic invasion has occurred (199, 202, 258).
As such, numerous mechanisms to ensure multi-site immunity
should be employed. It is now widely accepted that anti-S. aureus
vaccine strategies may need to drive both humoral and cellular
immune responses to confer efficient protection, and will probably
require multivalent antigens and perhaps a prime-boost approach.

THE LACK OF AN ANALOGOUS ANIMAL MODEL FOR CHALLENGE
STUDIES IS PROBLEMATIC
A concerning issue is the use of experimental animals who are not
natural hosts for S. aureus in research for future vaccines. Studying
candidate vaccines in rodent models has inherent limitations due
to well-known differences in anatomy and immunobiology (259).
Vaccine strategies shown to induce both cellular and humoral
immune responses in rodents may not protect even these ani-
mals in challenge studies (260). There currently is no model truly
analogous to humans to test the influence of natural and dynamic
colonization on potential vaccines (261, 262).

Many animal studies define the efficacy of their interventions
as a reduction in quantitative bacteremia or organ bacterial load,

rather than sterile protection against infection. In humans, how-
ever, a threshold of “tolerable” or “safe” S. aureus bacteremia has
not been found. Even endovascular infections have bacterial loads
<1000 CFU/mL in humans, and the reduction in organ bacter-
ial loads reported as success in vaccinated animal studies may be
completely irrelevant for human infections (263–265). Rather, the
presence of S. aureus in a blood culture at any level is always con-
sidered clinically significant (266). Perhaps unsurprisingly, many
interventions shown to reduce staphylococcal sepsis in animal
models of systemic disease have repeatedly failed to translate into
a clinical effect in humans.

Regardless of their colonization status at the time of enrollment
in a clinical study – unlike their laboratory animal counterparts –
human participants are certainly not immunologically naïve to S.
aureus. Initial exposure may prime the immune system and alter
its response to subsequent bacterial encounters. Repeat antigen
exposure may polarize and drive different cellular responses in
humans than those we may hope for or expect from animal mod-
els. No candidate vaccines to date have been tested in challenge
models in species that can be naturally colonized with S. aureus.
A lifetime’s exposure to S. aureus may leave a critical imprint on a
person’s immunological memory that affects subsequent response
to vaccination.

CONCLUSION
The human immune system readily recognizes and mounts spe-
cific responses to S. aureus antigens in settings of transient
exposures, persistent colonization, local, and systemic disease.
Immunogenicity does not appear to be the problem,but producing
a lasting protective immunity remains elusive. The major problem
facing vaccine researchers is that correlates of immune protection
in human S. aureus colonization and disease are not sufficiently
understood, and whether a protective immune response can in fact
be produced in humans is unknown. Thus, choosing markers to
measure the efficacy of vaccines in preclinical studies is extremely
challenging. It seems that gaining a true understanding of host-
pathogen interactions, both in health and disease, should be an
immediate focus of research.

Colonization is the greatest risk factor for infection, and may
modify its outcome. As such, it is essential that its impact and rele-
vance should be routinely assessed in future clinical studies. Expo-
sure to S. aureus through colonization may have immunomodu-
latory effects on the cellular and/or humoral responses that could
potentially influence vaccine-induced immunity, and thus dif-
ferent populations may produce different responses. Outcomes
measured should routinely extend beyond antibody titers – which
are of questionable significance – and include changes in the
frequencies or phenotypic response of specific T lymphocyte
populations.

It seems foolhardy to ignore the immunological memory cre-
ated by colonization in trials that aim to assess the immunological
effects of candidate anti-S. aureus vaccines in specific populations.
It is completely unknown whether suppression or enhancement
of particular cellular responses during human colonization and
disease has any effect on the prevention or clearance of invasive
infection. Until we understand how nasal colonization impacts
host immune response, we will continue to immunize in the dark.
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