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Natural Killer (NK) cells are major effector cells of the innate immunity. The discovery, over
two decades ago, of major histocompatibility complex-class I-specific inhibitory NK recep-
tors and subsequently of activating receptors, recognizing ligands expressed by tumor or
virus-infected cells, paved the way to our understanding of the mechanisms of selective
recognition and killing of tumor cells. Although NK cells can efficiently kill tumor cells of
different histotypes in vitro, their activity may be limited in vivo by their inefficient trafficking
to tumor lesions and by the inhibition of their function induced by tumor cells themselves
and by the tumor microenvironment. On the other hand, the important role of NK cells
has been clearly demonstrated in the therapy of high risk leukemias in the haploidentical
hematopoietic stem cell (HSC) transplantation setting. NK cells derived from donor HSC kill
leukemic cells residual after the conditioning regimen, thus preventing leukemia relapses.
In addition, they also kill residual dendritic cells and T lymphocytes, thus preventing both
GvH disease and graft rejection.
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INTRODUCTION
Natural Killer (NK) cells play a central role in innate immunity as
they mediate early defenses against viral infections and, more in
general, against pathogens. However, NK cells are also involved in
immune surveillance against tumors and prevent dissemination of
metastatic tumors (1, 2). The NK effector function against tumors
and virus-infected cells is mostly related to their cytolytic activity.
In addition, by the secretion of various cytokines and chemokines,
NK cells promote inflammatory responses and exert a regulatory
control on downstream adaptive immune responses by influenc-
ing not only the strength, but also the quality of T cell responses.
T helper-1 responses, favored by NK cells, further contribute to
anti-tumor and anti-virus defenses. In turn, NK cell function is
regulated by cytokines, including IL-15, IL-2, and IL-18 (3) as well
as by cell-to-cell interactions involving different cell types primar-
ily dendritic cells (DC) (3–5), macrophages (6), and mesenchymal
stromal cells (7, 8). NK cells migrate to inflamed tissue and to
secondary lymphoid organs where they can encounter tumor cells
and participate to the first line of defense against pathogens. NK
cells originate from hematopoietic stem cells (HSC) and undergo
maturation primarily in the bone marrow (BM). However, evi-
dence has been accumulated during the past several years that
NK precursors at different stages of differentiation are present in
tonsils (9), lymph nodes (10), decidua (11), and gut-associated
lymphoid tissues (12). In addition, precursors capable of under-
going in vitro differentiation toward NK cells were isolated from
human thymus over two decades ago (13).

INHIBITORY AND ACTIVATING NK RECEPTORS: PAST AND
PRESENT
In spite of their functional relevance in defenses against viruses
and tumors, NK cells remained mysterious and poorly considered
for many years after their discovery (14–16) so that core questions
regarding the molecular mechanisms involved in their ability to
discriminate between normal and tumor or virus-infected cells
remained unanswered. However, starting in early 90s, we began
to gain a fair idea on the mechanisms regulating NK cell activa-
tion and function. In late 80s, Ljunggren and Kärre had proposed
the “missing self hypothesis” (17), based on the observation that
NK cells could efficiently kill a murine lymphoma cell line that
had lost major histocompatibility complex (MHC)-class I, while
the parental MHC-class I+ lymphoma cells were resistant to lysis.
Thus, it appeared that NK cells could sense MHC-class I mol-
ecules, sparing MHC-class I+ cells while killing MHC-class I−

cells. In addition, a clue that NK cells could sense even allelic
differences on hematopoietic target cells was provided by the
hybrid resistance phenomenon in which NK cells could reject
parental BM graft in F1 hybrid mice (18). Another experiment
suggesting that MHC-class I molecules could influence NK cell
function was the detection of human NK cell proliferation in
mixed lymphocyte culture against stimulating cells from unre-
lated donors (in the presence of IL-2). In addition, such cultured
NK cells could lyse phytohemagglutinin (PHA) blasts isolated
from the same stimulating donor (19). Taken together, these data
were compatible with the expression, at the NK cell surface, of
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inhibitory receptors sensing MHC-class I molecules. The discov-
ery of surface molecules expressed by human NK cell subsets that
could inhibit the NK cell cytotoxicity upon monoclonal antibody
(mAb)-mediated crosslinking (20, 21), was the first step toward
the identification of human leukocytes antigen (HLA)-class I-
specific inhibitory receptors recognizing allelic forms of HLA-C
(22). Remarkably, in parallel, Yokoyama et al. had identified Ly49
molecules as the murine receptors for MHC-class I (23). A num-
ber of novel receptors belonging to the same Ig-superfamily of the
two HLA-C-specific prototypes (named p58.1 and p58.2) were
identified and collectively called killer Ig-like receptors (KIRs).
They also recognized allelic forms of HLA-B or -A allotypes (24–
27). In addition, activating KIRs were discovered (28) that were
similar to the corresponding inhibitory KIRs in the extracellular
Ig-domains, but substantially differed in the transmembrane and
in the intracytoplasmic portions (29). Both inhibitory and acti-
vating KIRs have been shown to play an important role in the cure
of high risk leukemias in the haploidentical HSC transplantation
setting (see below). Genetic analysis revealed that KIR-encoding
genes evolved and diversified rapidly in primates and humans
(30). Likewise the HLA loci, KIR sequences were found to be
highly polymorphic. KIR genes are organized as a family in the
leukocyte receptor complex in chromosome 19 and are inherited
as haplotypes. KIR haplotypes exhibit variability in the number
and type of genes and in allelic polymorphism of the individual
KIR genes, resulting in extensive genetic diversity. On the basis of
their gene content, KIR haplotypes have been divided into group
A (with a fixed gene pattern mainly including inhibitory KIR)
and group B (more variable and including several activating KIR)
(31). Other receptors with different HLA-I specificities, including
CD94/NKG2A and LIR-1, were discovered and characterized (32,
33). Since inactivation of NK cell function represents a central fail-
safe mechanism to prevent killing of normal self HLA-class I+ cells,
the existence of activating receptors that are triggered upon inter-
action with normal cells had to be postulated. Experiments aimed
at identifying these receptors were successful and three impor-
tant activating NK receptors named NKp46 (34, 35), NKp44 (36,
37), and NKp30 (38) were discovered and molecularly character-
ized (39). These molecules, collectively termed natural cytotoxicity
receptors (NCRs), were found to play a central role in tumor cell
recognition and killing. Additional surface molecules functioning
as activating receptors or co-receptors were subsequently identi-
fied. Some of these molecules, primarily NKG2D and DNAM-1,
were also shown to play an important role in target cell recog-
nition and lysis (40, 41). Remarkably, the known ligands of such
receptors are over-expressed or expressed de novo upon cell stress,
particularly when consequent to tumor transformation or viral
infection (40, 42, 43). The fact that NK cell activation may occur
only upon interaction with abnormal target cells represents an
important checkpoint to control unnecessary NK cell activation
(44). In case of NK cell interaction with ligand-positive stressed
cells, the latter are protected from lysis because of the engagement
of HLA-I-specific inhibitory NK receptors by HLA-I molecules
expressed normally, or even upregulated in these cells. On the con-
trary, virus-infected or tumor cells lack the expression of HLA-I
molecules and upregulate the expression of NK activating recep-
tor ligands becoming susceptible to NK cell lysis. The ligands of

the main activating NK receptors include the human leukocyte
antigen-B-associated transcript 3 (BAT-3) and B7H6 for NKp30
(45, 46), a novel isoform of the mixed-lineage leukemia-5 protein
(MLL5) for NKp44 (47), PVR (CD155) and Nectin-2 (CD112) for
DNAM-1 (42), and MICA/B and ULBPs for NKG2D (43). Direct
identification of such ligands in tumor cells may allow predicting
whether a given tumor may be susceptible to NK-mediated killing
(see below for details).

NK CELLS AND SOLID TUMORS
Besides specific T lymphocytes, also NK cells are thought to play an
important role in cancer immunosurveillance. NK cells are capa-
ble of recognizing and killing a wide variety of tumor cells. NK
cells are potentially capable of eliminating tumors with reduced or
absent MHC-class I expression that evade CD8+ T cell-mediated
control. Therefore, they are playing a complementary role in anti-
tumor activity. Recent studies also suggest that NK cells recognize
and kill cancer stem cells (CSCs) (48, 49). Within the tumor mass,
CSCs represent a small subpopulation of quiescent, self-renewing,
chemo- and radio-resistant cells and hence they are responsible
for tumor relapses after cytoreductive therapies.

In clinical studies, the degree of NK-mediated cytotoxic activ-
ity has been inversely correlated with cancer incidence in long
survey subjects (50). In addition, several studies have provided
evidence that, in a variety of different solid tumors, such as lung,
gastric, colorectal, and head and neck cancers, the presence of high
numbers of tumor-infiltrating NK cells correlates with improved
prognosis of cancer patients (51–53). Despite the fact that NK cells
represent a potential tool to eliminate tumor cells, NK cell-based
immunotherapy has resulted in limited clinical benefit (54). In
particular, this holds true in the case of solid tumors, suggesting
that mechanisms of resistance at the level of the tumor microen-
vironment may be prevailing in many cases. This may reflect the
limited capacity of adoptively transferred NK cells to traffic to
tumor sites (55, 56).

Of note, factors regulating NK cell recruitment into neo-
plastic tissues are highly influenced by the tumor type, and by
the chemokine profile of the tumor microenvironment. Several
studies suggested that certain solid malignancies are infiltrated
by variable numbers of NK cells. Those include, non-small cell
lung cancers (NSCLC), gastrointestinal sarcoma (GIST), colorec-
tal and renal cell carcinoma, and lung metastases (57–59). A
recent study suggested that CD56+ NK cells could scarcely infil-
trate melanomas, hepatocellular carcinomas, breast cancers, and
renal cell carcinomas (60). Other studies reported that NK cells in
solid tumors are often not located in direct contact with tumor
cells but within the stroma (55, 61) and usually functionally
anergic.

Thus, tumor cells may have developed various escape mech-
anisms to avoid NK-mediated killing. Hence, the tumor cells
themselves or even tumor stromal cells may be actively involved
in inhibition of NK cell function. Indeed, the tumor microen-
vironment may greatly influence NK-mediated defenses by a
number of immunosuppressive strategies. Similar to T cells,
tumor-infiltrating NK cells may be inhibited in their functional
capability (57, 62–64). It has been shown that impaired NK cell
function is often associated with down-modulation of activating
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NK receptors. The molecular mechanisms underlying this down-
regulation are only partially understood. In this context, ligand-
induced receptor down-regulation may play a relevant role. This
may be consequent to receptor blocking by ligand shed from tumor
cells or to intercellular transfer (a phenomenon known as trogocy-
tosis) (65, 66). In addition, chronic ligand-induced stimulation of
NK cells may account for the down-regulation of activating recep-
tors such as NKG2D (67). Surface molecules expressed by tumor
cells could also inhibit NK cell function. For example, MUC16,
a glycoprotein expressed on the surface of ovarian cancer cells
inhibits synapse formation between tumor cells and NK cells (68).
In addition, cytokines or soluble mediators such as TGF-β and
PGE2, synthesized either by tumor or by stromal cells down-
regulate the surface expression of NKp30, NKp44, and NKG2D
and, consequently, NK cell cytotoxicity and cytokine production
(69, 70). Furthermore, the enzyme indoleamine 2,3-dioxygenase
(IDO) (over-expressed by some tumor cells including melanomas)
may also contribute to the establishment of immune tolerance in
the tumor microenvironment. In this context, a recent study by our
group in melanomas reported that NK cell function may be sup-
pressed by IDO-generated l-kynurenine (a tryptophan-derived
toxic metabolite) (71). Finally, also the pro-inflammatory cytokine
macrophage migration inhibitory factor (MIF) has been shown to
inhibit the NKG2D expression in peripheral blood (PB) NK cells
derived from ovarian cancer patients (72) (Figure 1A).

The hypoxic condition in cancer tissues may also contribute
to tumor escape from NK cells. In a recent study, we observed
that hypoxia can significantly impair both the surface expres-
sion and the function of major activating NK receptors involved
in tumor recognition, including NKp46, NKp30, NKp44, and
NKG2D. Accordingly, the NK-mediated cytotoxicity against tumor
cells was sharply decreased under hypoxia conditions (Figure 1A).
Interestingly, hypoxia did not affect CD16 (FcγRIII) expression
and function. Therefore, NK cells maintained the ability to effi-
ciently kill mAb-coated target cells. These data imply that even at
low oxygen tension, targeting of tumors with mAbs may be effec-
tive by NK cell-mediated antibody dependent cellular cytotoxicity
(ADCC) (73) (Figure 1B).

The described mechanisms of inhibition help to better under-
stand how tumors and their microenvironment can alter the ability
of NK cells to elicit an effective anti-tumor response. In view of
the immunosuppressive effect exerted by tumor cells at the tumor
site, new strategies are required to prevent inhibition of potentially
efficient effector mechanisms, for example by blocking the soluble
mediators with immunosuppressive activity. Notably, these strate-
gies may be applied to design novel protocols of NK cell-based
adoptive immunotherapy to treat solid tumors.

NK CELLS IN THE THERAPY OF HIGH RISK LEUKEMIAS
Over the past 40 years, allogeneic hematopoietic BM or HSC
transplantation from HLA-matched donors has been increasingly
used to treat thousands of patients with malignant (primarily
leukemias) or non-malignant disorders (e.g., severe combined
immunodeficiencies) (74, 75). However, approximately one-third
of patients in need of an allograft do not find a compatible donor,
including matched-unrelated donors (MUD) and umbilical cord
blood (UCB). However, the majority of patients, particularly

FIGURE 1 | NK cell-based approaches in the immunotherapy of tumors
and leukemias. (A) NK cell function may be greatly hampered by inhibitory
factors and/or cytokines produced by tumor cells or cells of the tumor
microenvironment (e.g., fibroblasts, F) and by hypoxia that primarily induce
down-regulation of activating NK receptors. (B) CD16-mediated antibody
dependent cytotoxicity (ADCC) appears to be poorly susceptible to the
inhibitory tumor microenvironment. This mechanism may contribute to the
positive clinical outcome of patients treated with tumor-specific monoclonal
antibodies (mAbs). (C) In the T-depleted haplo-HSCT, KIR+ alloreactive NK
cells derived from donor HSC (generated after 6–8 weeks) kill leukemia
blasts (inducing GvL), DC (preventing GvHD), and T cells (preventing graft
rejection) remaining after the conditioning regimen. (D) In haplo-HSCT, early
leukemia relapses and severe viral infection may occur during the time
interval (6–8 weeks) required for the generation of efficient alloreactive NK
cells. The novel approach based on TCR α/β+- and B cell-depletion allows the
infusion of donor-derived mature alloreactive NK cells and TCR γ/δ+ cells
together with HSC, thus allowing a better control of leukemia relapses,
GvHD, graft rejection, and viral infection/reactivation.

children or young adults, have a family member identical for
one HLA haplotype and mismatched for the other (the so-called
haploidentical donor), who could serve as donor of HSC. This,
haplo-HSC transplantation offered a promptly available treatment
to any patient lacking a matched donor or suitable UCB units (76–
78). However, because of the incompatibility at three major HLA
loci, it became clear that an extensive T cell depletion was strictly
necessary to prevent fatal graft versus host (GvH) reactions (79).
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T cell-depletion associated to high intensity immunosuppres-
sive/myeloablative conditioning regimens and the use of very large
numbers (“megadoses”) of highly purified PB-derived CD34+

cells resulted in: (a) the successful engraftment of HSC across the
HLA barrier; (b) a very low incidence of grade II–IV acute GvH dis-
ease (GvHD), even in the absence of post-transplant prophylactic
immune suppression (80–82). However, removal from the graft
of mature T cells that, in HLA-matched transplants, are mainly
responsible for protection from severe infections resulted in a state
of immune deficiency for several months after transplantation. In
order to overcome, at least in part, this major disadvantage, the
adoptive infusion of T cell lines or clones specific for common life-
threatening pathogens, including cytomegalovirus, Epstein–Barr
virus, adenovirus, and Aspergillus, has been applied successfully in
pilot trials (83–85). Another possible consequence of the extensive
T cell depletion was a higher rate of leukemia relapses. However,
milestone studies in acute myeloid leukemia (AML) adult patients
receiving a haplo-HSCT revealed that the graft versus leukemia
(GvL) effect was mediated by NK cells generated from donor
HSC. This effect was detectable almost exclusively in patients
transplanted with donors who had NK cells alloreactive toward
recipient cells. These studies clearly indicated that also cells of the
innate immunity, such as NK cells, may guarantee a successful
clinical outcome in this transplantation setting (81, 82).

The noticeable beneficial effect of alloreactive NK cells, first
assessed in adult AML, was subsequently reported in children with
high risk acute lymphoid leukemia (ALL) (82, 86, 87). Indeed, the
probability of leukemia relapse was very low and the survival rate
was at least as good as that of patients receiving a HLA-matched
sibling or unrelated donor. Notably, the NK-mediated GvL effect
is separated by the occurrence of GvHD, thus clearly indicating
that alloreactive NK cells kill leukemia blasts while sparing normal
tissues, despite the KIR–HLA-I mismatch. In view of the favor-
able clinical outcome and the immediate availability of a family
haploidentical donor, haplo-HSCT has been included as a valu-
able option for treating pediatric patients with life-threatening
leukemias (88).

In haplo-HSCT, the first wave (occurring after 2–3 weeks) of
NK cells derived from donor CD34+ HSC cells is composed
of CD56bright cells expressing CD94/NKG2A as the only HLA-
I-specific receptor. These cells are relatively immature and display
low levels of cytolytic activity. The appearance of KIR+ NK cells
(containing the alloreactive subset) requires four to six additional
weeks. Therefore, it is conceivable that an efficient NK-mediated
anti-leukemic effect occurs only after this time interval from
transplantation (87, 89–91) (Figure 1C).

Given the central role of alloreactive NK cells in preventing
leukemia relapses, information on the size of the alloreactive sub-
set in potential donors appeared particularly relevant for optimal
donor selection (92). In addition, this information was crucial
to assess the generation of this subset in the recipient and its
persistence over time. The basic criteria applied for donor selec-
tion have been the phenotypic identification of the alloreactive
NK cell subset and the assessment of the NK cytotoxicity against
leukemia cells (87, 93). Cytofluorimetric analysis, using appro-
priate combinations of monoclonal antibodies conjugated with

different fluorochromes, allowed to identify the alloreactive sub-
set. While only inhibitory KIRs were originally assessed, the more
recent availability of mAbs, capable of discriminating between
activating and inhibitory KIRs, allowed to extend the analysis to
activating KIRs and to better define the size of this subset. This
revealed to be particularly important for prevention of leukemia
relapses, primarily in donors expressing the activating KIR2DS1,
provided that patient’s cells express the ligand of such activating
receptor (i.e., HLA-C2 alleles) (87, 93, 94). Other selection criteria
have been added that are fundamental particularly in donor–
patient pairs in whom no alloreactive NK cells can be found. One
is based on KIR genotype analysis, since selection of donors with
KIR B haplotypes was associated with significant improvement in
disease free survival in adult AML patients. This suggests that acti-
vating KIRs, particularly those located in the centromeric portion,
play a positive role in GvL (95, 96). In addition, mothers were
found to be better donors than fathers (97). By applying all these
criteria to donor selection, the survival rate of patients receiving a
haplo-HSCT is now over 70% in children with high risk, otherwise
fatal, ALL.

As specified above, in haplo-HSCT, the appearance of KIR+NK
cells may require 6–8 weeks after donor CD34+ cell transplanta-
tion. Therefore, their anti-leukemia effect is relatively delayed. In
case of rapidly proliferating leukemia blasts and/or of high tumor
burden residual after the conditioning regimen, this delay may
result in leukemic relapses as well as in impaired control of infec-
tions (74). In order to minimize this risk, donor-derived mature
alloreactive NK cells, either resting or expanded in vitro, can be
infused at transplantation or shortly after. A particularly promis-
ing approach based on the negative selection of T lymphocytes
expressing the αβTCR associated with B cell depletion has recently
been applied (98) (Figure 1D). This approach allows the accurate
removal of αβ T cells, responsible for the occurrence of GvHD.
In addition, in this novel transplantation setting, it is possible not
only to transfer to the recipient high numbers of CD34+ cells, but
also mature NK cells and γδ T cells. Thus, mature, alloreactive NK
cells can promptly exert their anti-leukemia activity and prevent
GvHD. A similar effect can be mediated by γδ T cells in virtue of
their ability to kill leukemia blasts (which express ligands recog-
nized by NK cells and/or γδ T cells). In addition, both cell types
can control viral infections or reactivation that may represent life-
threatening complications in these patients (99). Additional donor
selection criteria can be based also on the higher proportion of NK
and γδ T cells in their PB. Preliminary data are particularly encour-
aging even against pediatric AML that were not cured efficiently by
the conventional haplo-HSCT approach upon infusion of CD34+

cells (Locatelli et al. study in progress). An additional particu-
larly promising approach resides in NK cell manipulation using
anti-KIR mAbs (100). These mAbs, now studied in phase II clin-
ical trials in patients with multiple myeloma or AML, can stably
block KIRs and allow NK-mediated killing of autologous or HLA-
matched tumor or leukemia cells, thus conferring alloreactivity to
any KIR+ NK cell.

In conclusion, the discovery of NK cell receptors and of the NK
alloreactivity represented a true revolution in allo-HSCT and in
the cure of otherwise fatal leukemias.
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