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INTRODUCTION TO THE
GUT–MICROBIOTA PARADIGM
Recent studies have highlighted the impor-
tance of cross-talk between our immune
systems and our gut microbiota, the com-
plex community of over 100 trillion com-
mensal microorganisms (bacteria, archaea,
fungi, and protozoans) that resides in the
human gastrointestinal tract and which
numbers about 10 times the total cells in
the human body (1). The gut microbiota
contribute profoundly to the function and
structure of the gastrointestinal mucosa,
establishing a robust network that provides
us with increased digestive capacity for
essential nutrients and non-nutrient fac-
tors, such as vitamins. It also protects us
from infection by pathogenic microbes (2).
Dysbiosis, or unbalanced shifts in the com-
position of the microbiota, may contribute
to inflammatory bowel disease and necro-
tizing enterocolitis in premature infants,
and are also increasingly linked to rheuma-
toid arthritis, multiple sclerosis, diabetes,
and asthma, as well as obesity (2).

The gastrointestinal tract, which is the
largest mucosal surface in the body (with a
surface area of about 300 m3 in adults), is
lined by a single layer of polarized colum-
nar epithelial cells firmly bound to one
another by tight junctions and covered by a
stratified mucus layer, that together provide
a barrier containing the microbiota within
the lumen. Cross-talk between the micro-
biota and immune cells of the mucosa
[dendritic cells (DCs) and macrophages],
communicated through this barrier, has
regulated the evolution and development
of our immune systems (3–6) and differ-
entiated our ability to recognize and dis-
tinguish between beneficial and pathogenic
microbes. Microbe recognition is achieved
through epithelial cell and immune cell
expression of germline-encoded pattern

recognition receptors (PRRs) that bind dis-
crete microbe-associated molecular pat-
terns (MAMPS) expressed by both com-
mensal and pathogenic microbes (7–9).
PRR expression is tightly regulated on
the apical and basolateral surfaces of the
epithelial cells, such that binding of PRRs
can activate a series of host defense reac-
tions, including the directed release of
soluble mediators, depending upon the
nature of the antigen and the polar-
ized epithelial surface communicating with
the bacteria. Intestinal DCs orchestrate
and direct mucosal adaptive immune
responses, balancing immune tolerance to
harmless antigens and effector responses
against enteric pathogens (10). To facili-
tate these functions, populations of intesti-
nal macrophages, and DCs, strategically
located in the sub-epithelial lamina pro-
pria (11), sample luminal antigens pro-
vided by specialized epithelial cells (gob-
let cells) (12) or by inserting dendrites
between epithelial cells into the lumen (13–
15), and phagocytose pathogenic microbes
that encroach into the mucosa (11). DCs
expressing the mucosal marker CD103,
migrate to the MLNs, where they present
acquired mucosal antigenic molecules to
responsive naïve T cells (16, 17), induc-
ing the expansion of tolerogenic or effector
memory T cell populations expressing the
gut homing markers α4β7 and CCR9 (18,
19), that support the T cell recruitment to
the lamina propria.

THE POSSIBLE ROLE OF EPITHELIAL
CELL-DERIVED EXOSOMES IN THE
REGULATION OF ADAPTIVE IMMUNE
RESPONSES AGAINST THE
MICROBIOTA
In addition to the release of soluble
mediators, epithelial cells also release a
wide variety of proteins, lipids, mRNAs,

and microRNAs contained within secreted
nanovesicles, or exosomes, that are formed
inside the secreting cells in endosomal
compartments called multi-vesicular bod-
ies (MVBs) (20, 21). Apical secretion of
exosomes into the lumen may modulate the
function of distant cells along the gastroin-
testinal tract, or regulate the homeostasis of
gut microbiota, through delivery of antimi-
crobial products (22). Exosomes released
basolaterally into the mucosa may also
regulate local innate responses to invad-
ing bacteria through microbicidal activ-
ity (22). Moreover, epithelial cell-derived
exosomes released into the mucosa may
be taken up by mucosal DCs and trans-
ported to the MLNs, where their contents
can effect the direction of mucosal adap-
tive immune responses, thereby directing
the education of tolerogenic CD4+ T cell
populations in conditions of homeostasis,
as well as effector CD4+ T cells required to
combat pathogenic microorganisms dur-
ing microbial invasion or infection of
the intestinal mucosa. Thus, intestinal
epithelial cell-derived exosomes contain-
ing αvβ6 integrin and food antigen are
reported to induce TGF-β+ tolerogenic
DCs and antigen-specific TGF-β+ T reg-
ulatory cells, whereas food antigens in the
absence of exosomes, induce a Th2-skewed
response (23). Conversely, exosomes con-
tribute to protection against luminal infec-
tion with the protozoan parasite Cryp-
tosporidium parvum, where activation of
TLR4/IKK2 signaling and the promotion
of the SNAP23-associated vesicular exocy-
totic process (22) induces the formation
and release of exosomes into the lumen
that contain epithelial cell-derived antimi-
crobial peptides, including cathelicidin-37
and beta-defensin 2. Inhibition of this
TLR4 signaling decreases exosomal con-
tent, reducing the ability of the cell to target
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antimicrobial peptides against the infec-
tious agent locally, and perhaps influenc-
ing host antigen presentation against the
bacterium systemically (22) – important
evidence that exosome contents are regu-
lated by events occurring locally in the cells
from which the exosomes derive. Taken
together these data suggest that epithe-
lial cell-derived exosomes play an impor-
tant role, informing not only local innate
immune responses, but also DC induction
of adaptive immune responses, to luminal
microbiota.

THE FORMATION AND TRANSFER OF
EXOSOMES FROM THE INTESTINAL
LAMINA PROPRIA TO THE
MESENTERIC LYMPH NODES
Exosomes were first isolated from cultured
cells, but are now known to be released
from many cells including red blood cells,
platelets, epithelial cells, lymphocytes, DCs,
tumor cells (24–27). Exosome cargo is
stringently regulated by the immune con-
dition of the cells forming the vesicles, and
their transfer, by direct cell–cell contact or
across gap junctions or synapses, facilitates
the exchange of molecular messages, even
over considerable distances. In the forma-
tion of exosomes, all types of cell so far
examined bud off from their plasma mem-
branes small lipoprotein vesicles (around
80 mm) that contain a wide variety of mol-
ecules including proteins, various types of
RNA including mRNAs and microRNAs,
DNA, lipid, and saccharides (28). Exo-
somes are constructed inside MVBs within
the donor cell by invagination of its mem-
brane. A complex mechanism then uploads
a number of specific molecules into the
exosome as its cargo. The MVB is then traf-
ficked to the plasma membrane with which
it fuses to release the contained exosomes
into “extracellular space.”

Importantly, the exosomal lipoprotein
vesicular coats protect the exosome cargo
from degradation (29), even from highly
destructive elements such as catabolic
enzymes found within phagolysosomes,
thus it is likely that exosomes remain
undamaged when taken up by DCs in the
mucosa. Within the lymph node, trans-
fer of cargo from the DC to the T cell is
thought to involve the immune synapse
(IS), which is intimately involved in anti-
gen presentation between DCs and T cells.
Exosomes are taken up within the IS

by calveoli- or clathrin-dependent mech-
anisms (30, 31), and transported to spe-
cific loci in the receiving cell, including
the perinuclear zone, where the vesicle
opens and the cargo is released. A model
for the transfer of exosomes across the IS
may be provided by the manner by which
an exosome probably crosses the synapse
between neurons. The traditional picture
of a synapse was that the axon terminal
and the postsynaptic spine are separated
by “extracellular space” filed with cyto-
plasm. The exosome was pictured as cross-
ing this fluid cytoplasm. However, elec-
tron microscopy shows that such “space”
is vanishingly thin. Instead, the “space” is
mainly filled with astrocyte cuffs tightly
packed around the central part of the
synapse plus a network of nanotubes and
fibers crossing the central part (32–35).
This central part is specialized for the
transmission of neurotransmitter mole-
cules, and the outer ring for the trans-
mission of exosomes (36). Astrocytes both
receive (37) and bud off (38, 39) exo-
somes, so it is likely that exosomes cross
the synapse via the astrocyte cuff and
nanotubules.

Much of the load carried by exosomes
consists of epigenetic material (protein
transcription factors, a wide variety of
RNAs, and lengths of DNA). Epigenetic
material consists of four main categories:
(a) molecules that act directly on DNA by
promoting co-valent binding (e.g., DNA
methylases and demethylases) or non-co-
valent binding (e.g., protein transcription
factors); (b) agents that module the acces-
sibility of DNA by promoting co-valent
binding to histones (e.g., histone methy-
lases and acetylases); (c) mRNAs that
induce de novo protein synthesis in the tar-
get cell; and (d) micro RNAs that bind to
mRNAs and modulate their activity (28).
Exosomes from different types of cell carry
different patterns of these transcription
factors in their loads. In many cells, such
as neurons, exosome formation is closely
modulated by the degree of activity of that
cell. For example, activation of glutamate
receptors leads to a marked increase in
exosome production mediated by calcium
inflow. The exact composition of exosome
loads is also exquisitely sensitive to the
functional condition of the donor cell.
For example, when a normal cell becomes
cancerous, the ingredients of the load that

its exosomes carry changes dramatically
(28). Furthermore, the surfaces of different
types of exosomes carry different patterns
of glycosylation that can act as identi-
fying signals, so that the exosome will
bind to complementary patterns of gly-
cosylation on the correct target cell (40).
Other possible identification molecules
that would allow an exosome to bind to its
proper target are the heparin sulfate pro-
teoglycans (HSPGs). Exosomes have been
shown to enter cells via HSPG-mediated
endocytosis. Heparanse enzyme activity is
required for robust enhancement of exo-
some secretion (41–44). Exosomes from
cancer cells depend on cell-surface HSPGs
for their internalization and functional
activity (30).

CONCLUSION
This scenario offers an exciting new par-
adigm. Firstly, exosomes released from
the apical or basolateral surface of gas-
trointestinal epithelium may contribute to
antimicrobial defenses in the gut lumen.
Secondly, and more interestingly, exosomes
may be transported to the MLN where
they modulate, by the epigenetic mecha-
nisms listed above, host adaptive responses
to luminal antigens. We are thus suggesting
that there are two channels of commu-
nication between intestinal epithelial cells
and target T cells in lymph nodes. The
first transmits information (“software”)
reflecting the contents of the gut, obtained
and transmitted by DCs in the man-
ner described earlier. The second chan-
nel transmits epigenetic instructions, in
particular specific miRNAs, via exosomes
to the T cell, so that it can develop the
optimum molecular mechanisms or reac-
tions (“hardware”) to process the incoming
“software.” A similar system is found in the
nervous system (28): information about
the environment is transmitted by spike
codes in axons (“software”) and instruc-
tions on how to best process this software
is transmitted by epigenetic molecules via
contained within exosomes. Together this
results in changes in the basic functions of
the receiving neurons by altering the syn-
thesis of key proteins that play an essential
role in these processes.
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