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It was recently proposed that T lymphocytes, which closely interact with APCs, can
extract surface molecules from the presenting cells when they dissociate.These observa-
tions question the classical view of discrete interactions between phenotypically defined
cell populations. In this review, we summarize some reports suggesting that membrane
exchange at the immune synapse can be a vector for intercellular communication and
envisage some consequences on the biology of T cells.
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INTRODUCTION
The first evidence that activation of T and B lymphocytes required
a co-operation between distinct cell types was provided in the late
60s. In 1967, Mosier showed that both adherent and non-adherent
cells were necessary for the induction of antibody formation to
sheep red blood cells in vitro (1). A few years later, it was shown
that recognition of soluble protein antigens by guinea pig T lym-
phocytes required the presentation of antigen on histocompatible
macrophages (2). Since then, numerous observations have high-
lighted the multiple interactions, which occur at various steps of
the immune response: in particular, antigen-presenting cells are
likely to provide three signals to T lymphocytes, which in turn
trigger antibody production by B cells. These cell populations are
located at discrete sites in lymphoid organs and migrate to par-
ticular sites to interact with each other. The immune response
appears therefore as an exchange of signals between cells display-
ing well-defined phenotypes, and the specificity of the interaction
is ensured by receptor/ligand interaction or binding of soluble
cytokines on their receptor.

However, recent observations may challenge this scenario.
Indeed, there is increasing evidence that intercellular transfer of
membrane fragments and molecules occurs frequently during
cell–cell close contact, thereby modifying the phenotype and prob-
ably the function of immune cells. This process has been named
“trogocytosis,” from the ancient Greek trogo, meaning “gnaw.” In
this report, we will review recent observations illustrating mem-
brane exchange between immune cells, focusing on T cells and
antigen-presenting cells, and envisage the possible physiological
consequences of this phenomenon.

TCR MHC/PEPTIDE COMPLEX
A number of old reports have documented the existence of T cells
bearing IA antigens on their membrane, at a time when MHC
restriction was unclear and the T cell receptor unidentified. In
particular, Nepom et al. showed that I-A+ T cell blasts appeared in
antigen-stimulated proliferative culture, and that this acquisition

was strictly antigen-dependent and required positive adherent
antigen-presenting cells (3). Subsequent reports confirmed that T
cells may acquire peptide/MHC complexes at the T cell–APC inter-
face. Huang et al. showed that these complexes on APCs formed
clusters at the site of T cell contact within minutes, and were
subsequently acquired and internalized in T cells (4). The inter-
cellular transfer of membrane molecules was also observed in vivo
in several models: rat T cells transferred in irradiated SCID mice
acquired MHC molecules as well as adhesion and costimulatory
molecules (5), and encephalitogenic T cells were shown to express
abundant surface MHC class II molecules in rat and mouse models
of EAE (6). In addition, in the course of studies aimed at under-
standing the affinity maturation of secondary T cell responses,
Kedl et al. (7) provided evidence for a mechanism of stripping of
antigen/MHC complexes by T cells. The interaction of antigen-
specific T cells with the APCs in vivo induced the selective loss of
the antigen–MHC ligand from the surface of DCs. Another report
describes the transfer of specific GFP–MHC–peptide complexes
from transfected fibroblasts to T cells. Among T cells interacting
with transfected fibroblasts, about 10% spontaneously dissoci-
ated within about 10 min and acquired GFP-labeled complexes
from the immunological synapse. The intercellular transfer was
peptide-specific and -correlated with the activation state of the T
cell, as assessed by CD69 expression (8). Acquisition of membrane
molecules from APCs seems to be an inherent feature of acti-
vated CD4+ T cells, and continues during cell cycle progression
(9). Of note, T helper cells and regulatory T cells have a com-
parable capacity of trogocytosis in vivo, as demonstrated by the
similar acquisition of MHC II by CD4+CD25− (helper T cells)
and CD4+CD25+ (regulatory T cells) cells from HA-transgenic
mice adoptively transferred into Balb/c mice followed by immu-
nization with HA (9). Finally, a recent report demonstrates that
MHC II was displayed on the surface of TCR transgenic CD8 T
cells activated in vitro with the cognate peptide. Notably, in mice
infected with LCMV Arm i.v., up to 25% of viral peptide-specific
CD8+ T cells displayed MHC II on their surface. Among the three
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major populations of APCs, DCs transferred the most MHC-II
onto CD8+ T cells (10).

COSTIMULATORY SIGNALS
In addition to the appropriate antigenic signal, APCs may provide
costimulatory signals, which are required for optimal activation
of naive T cells. Several ligand/receptor pairs have been described,
which potentialize the signal induced via the TCR. In particular,
signaling downstream of the CD28 receptor on T cells positively
regulates proliferation and survival of T cells, as well as their
cytokine production (11). The first evidence that B7 ligands could
be taken up by T cells was provided by Hwang et al. who showed
that rat T cells acquired murine CD80 and CD86, both in vitro
when co-cultured with murine DCs or in vivo when transferred
into irradiated SCID mice (5). This acquisition was under the
control of either CD28–B7 or TCR–peptide–MHC interaction:
indeed, CD28−/− T cells cultured with DC displayed a 10-fold
reduced expression of MHC II and CD80, as compared to CD28+

T cells. Subsequent studies confirmed these observations in mice,
using cocultures of DCs and CD86/CD80 double knock-out T cells
(12). The acquisition was directly related to the strength of signals
1 and 2. Interestingly, the observations suggest a different out-
come in naïve versus memory T cells: naïve T cells became capable
of acting as APCs, whereas memory T cells underwent increased
apoptosis.

PHYSIOLOGICAL CONSEQUENCES
POSITIVE REGULATION
Although the physiological consequences of the intercellular trans-
fer are still questionable, several observations suggest an active role
in the immune responses. (i) Kedl et al. concluded that T cells may
compete with each other by lowering the amount of antigen–MHC
complexes on the APCs, and showed that their ability to com-
pete was affected by their affinity for the MHC/antigen complexes,
thereby driving the affinity maturation of memory T cell responses
(7). These data provided a mechanism for their previous observa-
tion that competition between T cells of the same peptide–MHC
specificity occurred efficiently in vivo (13); (ii) The transferred
antigen–MHC complexes appeared associated with molecules that
imply continuous signaling, namely the src family kinase p56lck
and tyrosine-phosphorylated proteins. The sustained signaling
may be required for full activation of T cells even when contacts
with DCs are of short duration (8); (iii) CD8+ T cells have been
shown to acquire MHC class II molecules in vitro and in vivo in
response to viral infection, a transfer which conferred to them the
capacity to directly activate CD4+ T cells. The direct CD4/CD8
T cell interaction may contribute to help for CD8+ T cells and
provide an alternative model to the DC licensing or the three cell
cluster (10); (iv) the intercellular transfer of antigen–MHC com-
plexes may expand the repertoire of cells that can function as APCs,
and regulate an ongoing immune response. This hypothesis would
be consistent with a recent report (14) showing that differentiation
of CD8+ T cells required not only T cell–APC interactions but also
T cell–T cell synapses. The authors showed that these T cell inter-
actions promoted critical synaptic cytokine exchange, allowing
CD8+ T cells to share IFN-γ for example, and interpret their data
as a collective decision-making resulting to positive reinforcement.

However, it is possible that, in addition, these synapses could medi-
ate antigen-specific signaling through the captured peptide–MHC
complexes.

NEGATIVE REGULATION
Conversely, intercellular transfer may downregulate immune
responses. There is some evidence that the presence of APC-
derived peptide/MHC complexes on T cells may render them
susceptible to fratricide lysis. Huang et al. have indeed shown that
T cells cultured with APCs for 1 h were susceptible to lysis pro-
vided a high density of peptide/MHC complexes was transferred
(4). Another report confirms that triggering of fratricide required
extremely high levels of antigenic peptides (15), suggesting that
this mechanism of exhaustion would occur in the presence of
high antigen concentration, i.e., in certain viral infections.

A few studies revealed an interesting correlation between anergy
induction and T cell-mediated APC activity (16–18). Adoptive
transfer of MBP-pulsed transformed T cells (expressing high lev-
els of MHC II, CD80, and CD86) resulted in reduced severity of
EAE in naïve rats (17), whereas mouse CD4+ T cells, which have
acquired MHCII/peptide complexes were susceptible to apopto-
sis and hyporesponsive to the antigen pulsed on mature dendritic
cells (18). These observations suggest that T cells may present
peptide–MHC complexes in a tolerogenic manner.

It is likely that the nature of the cell that has acquired anti-
gen/MHC would determine the consequence of trogocytosis. In
particular, double-negative Tregs have been shown to acquire
alloantigen in vivo, allowing them to specifically kill syngeneic
CD8+ T cells that can interact with the alloantigen (19). The
outcome of trogocytosis by T helper versus regulatory T cells (fol-
lowing coculture with antigen-pulsed A20 cells) was different, with
T helper cells able to drive activation of naive CD4+ T cells and
Treg displaying an enhanced suppressive activity (9).

A few reports suggest a cross-regulation between a receptor
and its ligand, which could involve intercellular transfer of either
molecule. The analysis of ICOS-Tg mice revealed unexpectedly
a phenotype resembling ICOS-deficient mice, i.e., reduced titers
of IgG1 and IgE in serum and attenuation of germinal center
formation. The defect of ICOS-Tg mice in antibody produc-
tion was not due to an intrinsic defect of T or B lymphocytes
but rather to a defect in the in vivo environment. It was fur-
ther shown that APCs displayed reduced ICOSL expression (at
the protein but not the mRNA level), suggesting a negative feed-
back regulation by ICOSL downregulation in response to ICOS
expression (20). Similarly, Kuka et al. studied mice deficient in
either CD27 or CD70 and found that CD27 and CD70 cell-surface
expression was reciprocally regulated. When CD27 was blocked,
CD70 transcripts increased more than 300-fold, indicating that
the interaction of CD27 with CD70 inhibits CD70 transcription
(21). Our own studies revealed a distinct mechanism of regu-
lation, as we found that thymus-derived Tregs and activated T
cells inhibited CD70 expression on DCs at the protein level, by
a mechanism that involves transfer of intact CD27 from the T
cell to the DCs (Dhainaut et al., submitted). Collectively, these
observations highlight a reciprocal regulation of a unique lig-
and/receptor pair, which may provide rapid fine-tuning of ongoing
T cell responses.

Frontiers in Immunology | T Cell Biology March 2014 | Volume 5 | Article 112 | 2

http://www.frontiersin.org/T_Cell_Biology
http://www.frontiersin.org/T_Cell_Biology/archive


Dhainaut and Moser Intercellular transfer between APC and T cells

HUMAN STUDIES
A few reports suggest that a similar acquisition of membrane mol-
ecules may occur in humans. Human T cells cultured with DCs
acquired CD80, and the level of “expression”was related to the level
of CD80 expression on APCs and was enhanced upon TCR engage-
ment (by anti-CD3 mAb or alloMHC recognition). The transfer
of CD80 to T cells was mediated by its receptor, as blockade with
soluble fusion proteins (sCD28, sCTLA-4, and sCD80) prevented
its acquisition, and resulted in T cells able to provide costimu-
latory signals (22). Another report confirmed these observations
and showed that T cells could acquire HLA-DR and B7 molecules
from DCs during an alloresponse and then acted as APCs to rest-
ing autologous T cells (23). In addition to CD28/CTLA-4 and their
ligands, other receptor ligand pairs can provide costimulatory sig-
nals to T cells. Baba et al. showed in humans that the intact OX40L
molecule was transferred from APC to T cell, in various cell com-
binations, in a contact dependent manner. The transferred OX40L
was functional and displayed as discrete punctate pattern on the T
cell surface (24).

T cells can also be imprinted by tumor antigen. A high propor-
tion (ranging from 10 to 70%) of melanoma specific T cell clones
were shown to acquire tumor antigens in vitro and this transfer
could be used to identify tumor antigen-specific T cells in patients.
Thus, freshly isolated tumor-infiltrating lymphocytes expressed
melanoma antigens and the tumor antigen imprinting correlated
with antitumor T cell function. Indeed, tumor antigen-imprinted
CTL exhibited superior killing activity, suggesting that the antigen
acquisition may enhance their effector function (25, 26).

MOLECULAR MECHANISM OF ACQUISITION
Martinez-Martin et al. have examined the mechanism of TCR
internalization at the immunological synapse and showed that it
was coupled to the TCR-triggered acquisition of membrane frag-
ments from the antigen-presenting cell (27). They further showed
that two Ras family GTPases, TC21 and RhoG, which colocalize

with the TCR at the immune synapse (28), mediated internal-
ization of the TCR via a clathrin-independent endocytosis. The
authors interpret the process as an incomplete phagocytosis of
the whole APC by the T cell, which results in the removal of
an APC fragment. Whether the TCR and the trogocytosed APC
membrane fragments that include MHC complexes are recycled
or degraded is an important question, as it would have opposite
impact on the immune response. TC21- and RhoG-deficient T
cells showed increased responsiveness to TCR stimulation, sug-
gesting that TCR downregulation (and possibly acquisition of
APC fragments) could be involved in the termination of the
response.

As peptide/MHC complexes, costimulatory, and adhesion mol-
ecules appear to be co-transferred to T cells (5), it is likely that
the mechanism described by Martinez-Martin et al. could be
a common mechanism for membrane exchange at the immune
synapse. The strength of the interaction, which results from sev-
eral ligand/receptor interaction, seems to determine the amount
of membrane fragments transferred. Accordingly, CD28-deficient
T cells exhibited less stable interactions with APCs in cocultures
and absorbed less MHC molecules than CD28 competent T cells
(5), and the acquisition of CD80 was directly correlated to the
strength of signal 1, i.e., the concentration of antigenic peptide
(12). In addition to trogocytosis (which allows rapid transfer of
intact surface molecules by phagocytosis probably at the immune
synapse), other mechanisms exist which involve transfer of var-
ious types of vesicles with a slower kinetics [for review, see (29,
30)]. The respective contribution of both mechanisms remains to
be determined but could be dependent on the nature of the cells,
their state of activation, and the microenvironment.

CONCLUSION
The outcome of the process of membrane exchange remains
elusive but could lead to an enhancement of the resulting
immune response (Figure 1). In particular, T cells which have

CD28
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DC/T cell interac�on Membrane exchange

upon contact disrup�on
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FIGURE 1 | Proposed model for the role of membrane exchange inT cell
activation. The first step involves close interaction between APC and T cell
(left panel) and acquisition of MHC and costimulatory molecules by T cells

upon dissociation (middle panel). The second step involves presentation of
antigen and costimulatory molecules byT cells, leading to sustained activation
(and possibly naïve T cell priming) in the absence of conventional APCs.
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acquired molecules from APCs may gain some capacity of antigen
presentation, thereby (i) multiplying the number of cells pre-
senting the antigen, (ii) prolonging the presentation step in the
absence of DC/T interaction possibly outside lymphoid organs,
i.e., in peripheral tissue; (iii) allowing T cells to move freely and
interact with effector lymphocytes (B cells and CTL). It is of note
that T lymphocytes do probably display a higher lifespan than
dendritic cells. Thus, the membrane exchange would result in
sustained autonomous activation without requirement for pro-
longed T-cell interaction between DC, CD4 T helper, and effector
cell. Collectively, these observations highlight the multiple roles of
the immunological synapse, which appears to trigger membrane-
bound receptor–ligand interactions, cytokine release as well as
membrane exchange.
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