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Natural killer (NK) cells are key components of innate immune responses to tumors and viral
infections. NK cell function is regulated by NK cell receptors that recognize both cellular and
viral ligands, including major histocompatibility complex (MHC), MHC-like, and non-MHC
molecules. These receptors include Ly49s, killer immunoglobulin-like receptors, leukocyte
immunoglobulin-like receptors, and NKG2A/CD94, which bind MHC class I (MHC-I) mole-
cules, and NKG2D, which binds MHC-I paralogs such as the stress-induced proteins MICA
and ULBP. In addition, certain viruses have evolved MHC-like immunoevasins, such as UL18
and m157 from cytomegalovirus, that act as decoy ligands for NK receptors. A growing
number of NK receptor–ligand interaction pairs involving non-MHC molecules have also
been identified, including NKp30–B7-H6, killer cell lectin-like receptor G1–cadherin, and
NKp80–AICL. Here, we describe crystal structures determined to date of NK cell receptors
bound to MHC, MHC-related, and non-MHC ligands. Collectively, these structures reveal
the diverse solutions that NK receptors have developed to recognize these molecules,
thereby enabling the regulation of NK cytolytic activity by both host and viral ligands.
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INTRODUCTION
Natural killer (NK) cells are essential components of the innate
immune response against viral infections and tumors (1–5). They
not only eliminate virally infected or malignantly transformed
cells by means of their cytolytic capabilities, but also produce
cytokines and chemokines such as interferon-γ that modulate
immune responses and help maintain tissue homeostasis. To per-
form these diverse functions, NK cells express a multitude of
activating and inhibitory receptors that act in concert to regu-
late their activities (6, 7). NK receptors belong to two distinct
structural families: the immunoglobulin (Ig) superfamily and the
C-type lectin superfamily. In humans, NK receptors of the Ig
superfamily are encoded in the leukocyte receptor complex (LRC)
on chromosome 19 (7 in mouse) (8) and the NK gene complex
(NKC) on chromosome 12 (6 in mouse) (9). Both superfamilies
include inhibitory and activating receptors. In addition, NK recep-
tors have been shown to recognize both cellular and viral ligands,
including major histocompatibility complex (MHC), MHC-like,
and non-MHC molecules.

The cytolytic activity of NK cells is regulated by positive signal-
ing activating receptors (resulting in target cell lysis) and negative
signaling inhibitory receptors (preventing lysis). It is the dynamic
interplay between these signals that ultimately determines the
outcome of NK cell–target cell encounters (4, 6, 7). The domi-
nant signal received by an NK cell is inhibitory, provided by the
interaction of its receptors with normal levels of MHC class I
(MHC-I) molecules. If MHC-I expression is reduced by infec-
tious or tumorigenic processes, this inhibitory signal is attenuated
and the NK cell undergoes activation. As a consequence, cells with
reduced MHC-I expression become subject to lysis by NK cells

(1–5). The process by which NK receptors direct the cytolytic activ-
ity of NK cells against virally infected or tumor cells that have lost
MHC-I expression is known as “missing-self” recognition.

Several receptor families on primate and rodent NK cells are
responsible for monitoring MHC-I expression on surrounding
cells (2–5, 10–13). These include the killer immunoglobulin-
like receptors (KIRs) in humans, members of the Ly49 fam-
ily (Ly49s) in rodents, NKG2/CD94 receptors, and leukocyte
immunoglobulin-like receptors (LILRs). Although most Ly49s and
KIRs inhibit NK function on binding to MHC-I ligands, some are
activating (6, 7). Furthermore, the activating NK receptor NKG2D
binds paralogs of MHC-I molecules, including MICA and RAE-I
that are selectively upregulated in stressed tissues (14). The inter-
action of activating Ly49s with MHC-like proteins encoded by
mouse cytomegalovirus (MCMV) has demonstrated a direct role
for Ly49 receptors in anti-viral immunity (15–17).

Besides receptors specific for MHC-I or MHC-related lig-
ands, a number of other receptors that recognize non-MHC pro-
teins are involved in regulating NK cell cytotoxic activity (2, 7).
These include CD16 (18), CD69 (19), NKR-P1 (20, 21), NTB-
A (22, 23), 2B4 (22–24), DNAM-1 (25), NKp30 (26), NKp44
(27), NKp46 (28), NKp65 (21, 29), and NKp80 (21, 30, 31),
which contribute to NK cell activation, and the inhibitory recep-
tors, killer cell lectin-like receptor G1 (KLRG1) (32, 33) and
LAIR-1 (34). The biological ligands for most (but not all) of
these receptors have now been identified, including IgG Fc for
CD16, Clr for NKR-P1, CD48 for 2B4, CD155 for DNAM-1, B7-
H6 for NKp30, keratinocyte-associated C-type lectin (KACL) for
NKp65, AICL for NKp80, E-cadherin for KLRG1, and collagen for
LAIR-1 (2, 7).
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FIGURE 1 |Three-dimensional structures of KIR2DL and KIR2DL–HLA-C
complexes. (A) Ribbon diagram of KIR2DL1 (PDB accession code 1NKR). The
D1 domain is cyan; D2 is green. The secondary structural elements are
labeled. (B) Ribbons diagram of KIR2DL2 bound to HLA-Cw3 (1EFX). The α1,
α2, and α3 domains of the HLA-Cw3 heavy chain are yellow; β2m is gray; the
peptide is magenta. (C) Basis for allelic specificity and peptide selectivity of

KIR2D receptors. The dotted lines represent hydrogen bonds formed by
Asn80 of HLA-Cw3 with Lys44 of KIR2DL2, and by Gln71 of HLA-Cw3 with
P8 of the peptide. (D) Interactions of Lys80 of HLA-Cw4 (yellow) with
specificity-determining residues of KIR2DL1 (D1 domain in cyan, D2 domain
in green) in the KIR2DL1–HLA-Cw4 complex (1IM9). The solid line represents
a salt bridge.

Considerable progress has been made over the past few years
in determining crystal structures of representative NK receptors,
both in isolation and bound to MHC, MHC-related, or non-MHC
ligands. These include both Ig-like (e.g., KIRs, LILRs, NKp30)
and C-type lectin-like (e.g., Ly49s, NKG2D, NKG2/CD94, NKp65)
receptors. These structures have revealed the multiplicity of solu-
tions that NK receptors have evolved to recognize MHC, MHC-
like, and non-MHC molecules, which collectively mediate crucial
interactions for regulating the cytolytic activity of NK cells by host
and viral ligands.

MHC-I RECOGNITION BY KIR RECEPTORS
The highly polymorphic KIR receptor family encodes the main
MHC-monitoring molecules on primate NK cells and includes
both inhibitory and activating members. KIRs are transmembrane
glycoproteins containing two (D1 and D2) or three (D0, D1, and
D2) extracellular C2-type Ig-like domains (10, 12). KIRs with two
Ig-like domains are designated KIR2D; KIRs with three Ig-like
domains are designated KIR3D. Whereas KIR2D receptors bind
HLA-C alleles, KIR3D receptors bind HLA-A and HLA-B alleles.
Crystallographic studies of KIR2D molecules, both in free form
(35–39) and bound to HLA-C ligands (40, 41), have provided
a framework for understanding the specificity of KIR2D recep-
tors for HLA-C at the atomic level. In addition, the structure of
KIR3DL1 in complex with HLA-B*5701 has revealed the basis for
HLA recognition by three-domain KIRs (42).

The two N-terminal domains (D1 and D2) of KIR2D recep-
tors are linked by a short hinge segment of three to five amino
acids (Figure 1A). These Ig-like domains are each formed by two

anti-parallel β-sheets, such that a β-sheet of four (in D1) or three
(in D2) anti-parallel strands (ABED and ABE, respectively) juxta-
poses a β-sheet of four anti-parallel strands (CC′ FG). The relative
disposition of D1 and D2 is similar to that found in hematopoi-
etic receptors (43, 44), with the angle between D1 and D2 ranging
from 60° to 80° in different KIRD2 receptors.

In both the KIR2DL2–HLA-Cw3 (40) and KIR2DL1–HLA-
Cw4 (41) complexes, the KIRs engage HLA-C through the α1 and
α2 helices of the α1/α2 platform domain and the C-terminal por-
tion of the MHC-bound peptide, with the D1–D2 axis orthogonal
to the axis of the peptide (Figure 1B). This docking mode roughly
resembles the way T-cell receptors (TCRs) bind MHC, but is com-
pletely distinct from the docking mode of LILR and Ly49 NK
receptors (see below). Each KIR2D binds HLA-C using six loops
from D1 and D2, which contact the α1 and α2 helices of the MHC-I
molecule, respectively.

The structures of the KIR2DL2–HLA-Cw3 and KIR2DL1–
HLA-Cw4 complexes explain the allelic specificity of KIR2DLs
(40, 41). Of 12 HLA-Cw3 residues in contact with KIR2DL2, 11
are invariant in HLA-Cw4 and in all other HLA-C alleles. The only
exception is Asn80, which defines the allelic specificity of KIR2DLs.
Similarly, on the receptor side of the interface, 14 of 16 KIR2DL2
residues that contact HLA-Cw3 are conserved in KIR2DL1. The
two exceptions are at positions 44 and 70. In the KIR2DL2–HLA-
Cw3 structure, KIR2DL2 Lys44 makes a hydrogen bond with HLA-
Cw3 Asn80; this hydrogen bond cannot be formed with KIR2DL1
Met44 (Figure 1C). In the KIR2DL1–HLA-Cw4 structure, the side
chain of HLA-Cw4 Lys80 is situated in a negatively charge pocket
of KIR2DL1 that includes Met44, which contacts HLA-Cw4 Lys80
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(Figure 1D). Replacement of Met44 by lysine, as in KIR2DL2,
would cause charge repulsion with HLA-Cw4 Lys80, resulting in
loss of binding.

KIR2DS4 is an activating receptor that specifically recognizes
HLA-A*11, as well as HLA-C allotypes bearing the C1 and C2
epitopes (39). A comparison of the unbound KIR2DS4 struc-
ture with the KIR2DL2–HLA-Cw3 and KIR2DL1–HLA-Cw4 com-
plexes revealed two features that likely explain the binding speci-
ficity of KIR2DS4. First, a backbone displacement of one of the
predicted HLA-contacting loops (L2) of KIR2DS4, relative to its
position in KIR2DL2, may disrupt the interaction between Lys44
of KIR2DS4 and Asn80 of the HLA-C C1 epitope, resulting in
weaker binding of KIR2DS4 to C1+ allotypes than KIR2DL2 (39).
Conversely, this displacement could increase avidity for C2+ allo-
types by accommodating Lys80 of the C2 epitope. Second, the
Pro71–Val72 motif of KIR2DS4 that confers reactivity with HLA-
A*11 is part of a loop (L3), which in KIR2DL2 contacts HLA-C
using the Gln71–Asp72 motif (40). Replacement of Gln71–Asp72
by Pro71–Val72 in KIR2DS4, which is the result of gene conver-
sion with KIR3DL2, reduces avidity for C1+ allotypes but increases
avidity for HLA-A*11 and C2+ allotypes (39).

The binding of KIR2D receptors to HLA-C molecules displays
preferences for certain peptides (45, 46); however, whether pep-
tide selectivity has a role in NK receptor function is not clear.

Intriguingly, KIR-associated HIV-1 sequence polymorphisms in
chronically infected individuals have been found to increase the
binding of inhibitory KIRs to CD4+ T cells infected with HIV-
1, and to decrease the anti-viral activity of KIR-positive NK
cells (47). Consistent with the observation that the KIR bind-
ing site is centered near C-terminal residues P7 and P8 of the
MHC-bound peptide (40, 41), the KIR–HLA interaction is most
sensitive to substitutions at these two peptide positions. By con-
trast, TCRs, which exhibit much greater peptide specificity than
KIRs, typically focus on the central P5 position of the peptide
(48). Since the peptide positions recognized by KIRs are not
usually directly involved in TCR binding, MHC molecules may
be able to evolve their polymorphic regions to present diverse
microbial (i.e., foreign) peptides for T-cell-mediated immunity,
while at the same time maintaining non-variant regions to bind
self-peptides for KIR recognition and NK-cell-mediated immune
defense.

In the KIR3DL1–HLA-B*5701 complex (42), KIR3DL1 engages
HLA-B*5701 with its D1 and D2 domains situated over the C-
terminal half of the peptide-binding groove in an overall ori-
entation highly similar to that of the KIR2D–HLA-C complexes
(Figure 2A). KIR3DL1 adopts an elongated conformation, which
allows D0 to extend down toward β2-microglobulin (β2m) and
engage a region of the MHC-I molecule that is nearly invariant

FIGURE 2 | Structure of the KIR3DL1–HLA-B*5701 complex. (A) Ribbon
diagram of KIR3DL1 bound to HLA-B*5701 (3VH8). The orientation of the
MHC-I ligand is similar to that of HLA-Cw3 in the KIR2DL2–HLA-Cw3
complex (Figure 1B). The HLA-B*5701 heavy chain is yellow; β2m is gray; the
peptide is magenta. The KIR3DL1 D0 domain is dark blue; D1 is cyan; D2 is
green. The secondary structural elements of KIR3DL1 are labeled.
(B) Contacts between KIR3DL1 and the HLA-B*5701 α2 helix. The D2 domain

mainly interacts with HLA-B*5701 residues 142–151, which display limited
polymorphism among HLA-B alleles. At the center of the D2–HLA-B*5701
interface, KIR3DL1 residues Tyr200 and Phe276 form an aromatic cluster that
converges on the α2 helix. (C) Contacts between KIR3DL1 and the
HLA-B*5701 α1 helix. KIR3DL1 recognizes HLA allotypes that contain the
Bw4 epitope-defining residues 77–83 on the α1 helix, which likely accounts
for the allelic specificity of KIR3DLs.
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across HLA-A and HLA-B allotypes. The D1 domain contacts the
α1 helix and the self-peptide, while the D2 domain contacts the α2
helix. The D2 domain mainly interacts with HLA-B*5701 residues
142–151, which display restricted polymorphism across HLA-B
alleles. At the center of the D2–HLA-B*5701 interface, KIR3DL1
residues Tyr200 and Phe276 form an aromatic cluster that con-
verges on the α2 helix (Figure 2B). Alanine substitution of these
residues abrogated binding to HLA-B*5701, demonstrating the
importance of this central core to HLA recognition.

KIR3DL1 recognizes HLA allotypes that contain the Bw4 epi-
tope, which is defined by residues 77–83 of the α1 helix. In the
structure (42), KIR3DL1 contacts residues 79, 80, and 83 within
the Bw4 epitope through its D1 domain (Figure 2C), which likely
accounts for the allelic specificity of KIR3DLs. The D1 domain
also makes limited contacts with the self-peptide at position P8,
analogous to the interaction of KIR2D receptors with peptides
bound to HLA-C (see above).

Unexpectedly, the extensive polymorphisms found within indi-
vidual KIR3D families are located predominantly at positions not
implicated in HLA binding. This implies that most KIR3D poly-
morphisms, a number of which are subject to positive selection
(49), are unlikely to impact affinity directly, but could poten-
tially affect HLA binding indirectly by altering the clustering or
expression levels of KIR3D receptors on the NK cell surface. In
this way, evolutionary pressures may drive the diversification of
KIR3D sequences at sites remote from the HLA-binding site.

MHC-I RECOGNITION BY LILRs
The human LILR family of immunoreceptors (also referred to as
Ig-like transcripts, or ILTs) is broadly expressed on NK cells, T cells,
monocytes, B cells, and dendritic cells (50). The mouse orthologs
of LILRs are known as paired immunoglobulin receptors (PIRs).
Like KIRs, LILR receptors contain either two or four tandem
extracellular Ig-like domains. LILRA1, LILRA2, LILRA3, LILRB1,
and LILRB2 bind classical MHC-I proteins (HLA-A, -B, and -C),

whereas LILRA4, LILRA5, LILRA6, LILRB3, LILRB4, and LILRB4
do not appear to recognize MHC-I. The inhibitory LILRB1 and
LILRB2 receptors bind multiple MHC-I molecules, both classical
and non-classical (HLA-E, -F, and -G), with comparable kinetics
and affinities (51, 52). By contrast, individual KIR receptors dis-
play allelic specificity, as discussed above. In addition to their role
as MHC-I sensors, LILRs may be involved in immune responses to
viral infections, as suggested by the finding that LIRLB1 is a recep-
tor for UL18 (53). This immunoevasin is an MHC-I homolog
encoded by human cytomegalovirus (HCMV). The crystal struc-
ture of LILRB1 (domains D1 and D2 only) has been solved in free
form (54) and bound to HLA-A2 (55) and UL18 (56). Structures
have also been reported for LILRB2 (D1 and D2) in unbound form
(57) and in complex with HLA-G (58).

Similar to KIR2D (Figure 1A), the two tandem Ig-like domains
of both LILRB1 and LILRB2 form a bent structure characterized
by an acute interdomain angle (Figure 3A). Each domain com-
prises two anti-parallel β-sheets arranged in a topology like that of
KIRs. In the LILRB1–HLA-A2 complex (55), LILRB1 D1D2 binds
the side of HLA-A2, forming two contact surfaces that include
residues from β2m, which is invariant, and the HLA-A2 α3 domain,
which is relatively non-polymorphic. The D1–D2 interdomain
hinge region contacts β2m, while the tip of LILRB1 D1 contacts
the HLA-A2 α3 domain, (Figure 3A). Similar to LILRB1, LILRB2
recognizes β2m and the HLA-G α3 domain using the interdomain
hinge and D1, respectively (58). The docking mode utilized by
LILRB1 and LILRB2, which differs completely from that of KIRs
(Figure 1B), is consistent with MHC-I recognition in a peptide-
independent manner. The focus by LILRs on conserved elements
of MHC-I molecules, both classical and non-classical, accounts
for the broad specificity of these NK receptors for numerous HLA
alleles.

Whereas LILRB1 undergoes an interdomain angle change of
~15° after binding MHC-I, LILRB2 maintains the same inter-
domain angle (55, 58). Overall, however, LILRB2 exhibits greater

FIGURE 3 | Interaction of LILRB1 with MHC-I and a viral MHC-I mimic.
(A) Structure of LILRB1 bound to HLA-A2 (1P7Q). The α1, α2, and α3 domains
of the HLA-A2 heavy chain are yellow; β2m is gray; the peptide is magenta.

The D1 and D2 domains of LILRB1 are colored in cyan and green,
respectively. The secondary structural elements of LILRB1 are labeled.
(B) Structure of LILRB1 bound to the HCMV MHC-I mimic UL18 (3D2U).
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conformational changes than LILRB1 upon complex formation.
In particular, free LILRB2 contains only one 310 helix (residues
52–55) involving binding site residues, whereas bound LILRB2
contains two such helices in the interface with HLA-G (residues
46–50 and 53–57). By contrast, LILRB1 contains two 310 helices
in both free and bound states. Although affinity measurements
indicate that the membrane-distal D1 and D2 domains are mainly
responsible for HLA binding (54, 55), a role for the membrane-
proximal D3 and D4 domains cannot be formally excluded in
the absence of a structure of a four-domain LILR in complex
with ligand. A complete D1–D4 LILR structure is also required
to understand the apparent ability of LILR/PIR receptors to bind
not only MHC-I molecules on opposing cells (trans interaction),
but also ones on the same cell (cis interaction) (59, 60), as discussed
below.

LILR RECOGNITION OF UL18, A VIRAL MHC-I MIMIC
Among the microorganisms that have achieved great suc-
cess in inventing strategies for immune evasion are the
cytomegaloviruses, whose genomes encode proteins that interfere
with both NK cell and T-cell recognition, as well as antigen pro-
cessing and presentation (61–63). These include proteins that are
known, or predicted to be, structural homologs of host MHC-I
molecules. HCMV encodes an MHC-I homolog, UL18, that binds
the inhibitory receptor LILRB1 (64). This interaction is believed to
allow HCMV-infected cells to avoid NK-cell-mediated lysis (65).
UL18 is a heavily glycosylated transmembrane protein that asso-
ciates with β2m, and with endogenous peptides derived from host
cytoplasmic proteins that resemble those bound to HLA alleles
(66). Remarkably, UL18 binds LILRB1 >1000-fold more tightly
than MHC-I proteins, enabling this decoy ligand to compete
effectively with MHC-I for binding to LILRB1 (67).

Despite sharing only ~25% sequence with its MHC-I counter-
parts, the structure of UL18 bound to LILRB1 shows striking sim-
ilarity to the LILRB1–HLA-A2 and LILRB2–HLA-G complexes,
with the tip LILRB1 D1 domain contacting the UL18 α3 domain
and the D1–D2 interdomain hinge contacting β2m (Figure 3B)
(56). Variable residues in the UL18 α1 domain, which were identi-
fied by sequence analysis of laboratory and clinical HCMV strains,
do not contact LILRB1, although domains D3 and D4, which are
not present in the structure, could potentially engage this region of
UL18. Most contacts between LILRB1 and U18 involve the UL18-
specific portion of the UL18/β2m heterodimer (i.e., the heavy
chain), whereas the majority of LILRB1 interactions with HLA-A2
involve the invariant β2m light chain. Additional salt bridges and
better surface complementarity in the LILRB1–UL18 interface
compared with the LILRB1–HLA-A2 interface likely explain the
>1000-fold higher affinity of UL18.

A major difference between UL18 and MHC-I molecules is
the exceptionally high carbohydrate content of UL18, which is
attributable to its 13 potential N-glycosylation sites, compared to
only one N -glycan attached to human MHC-I molecules. In fully
glycosylated UL18 (the protein used for crystallization was min-
imally glycosylated), most of the surface of UL18 was predicted
to be covered by carbohydrate, with the notable exceptions of
the binding site for LILRB1 and the docking interface with β2m
(56). This suggests that UL18 evolved a glycan shield to prevent

neutralization by antibodies, while preserving the binding site for
LILRs. Such a strategy for reducing immunogenicity is analo-
gous to that employed by other viruses with heavily glycosylated
envelope proteins, notably HIV and influenza (68).

NATURAL CYTOTOXICITY RECEPTORS
Natural cytotoxicity receptors (NCRs) were discovered in a search
for receptors that activated NK cells independently of MHC (69).
To date, the NCR family includes NKp30 (NCR3, CD337), NKp44
(NCR2, CD336), and NKp46 (NCR1, CD335). In humans, NKp44
and NKp30 are encoded in the class III region of the MHC locus,
while NKp46 is encoded in the LRC (69). Mice only possess a
functional gene for NKp46. These very potent activating recep-
tors comprise one (NKp30 and NKp44) or two (NKp46) Ig-like
extracellular domains (69, 70). NCRs contain charged residues
in their transmembrane regions for association with immunore-
ceptor tyrosine-based activation motif (ITAM)-bearing signaling
polypeptides: ζ–γ for NKp30 and NKp46; and DAP12 for NKp44
(71). In humans, NCRs play a major role in NK-cell-mediated lysis
of diverse tumor cells, including carcinomas, neuroblastomas, and
leukemias (69, 70). In addition, NCRs have been implicated in
protective responses against various viruses, including influenza
(72), hepatitis C (73), West Nile (74), and Ebola (75).

Despite intensive efforts over many years, ligands for the NRC
family have proven very elusive and, in some cases, controversial.
NKp44 and NKp46 bind influenza and other viral hemagglu-
tinins (HAs) mainly through recognition by the HA of terminal
sialic acid moieties (the cellular receptor for HAs) on N-linked
glycans of these NCRs (72, 76, 77). Although this mechanism
would allow NKp44 and NKp46 to bind a wide variety of viruses,
due to the ability of HAs to bind sialic acid-containing gly-
coproteins in general, this is probably not the full story, since
recognition would not depend on the NCR ectodomain itself,
but only on the fact that NKp44 and NKp46 are glycoproteins
with terminal sialic acids (13). Binding of NKp46 to heparan sul-
fate proteoglycans has also been described (78), but the biological
relevance of this interaction is unclear. Recently, a novel isoform
of the mixed-lineage leukemia-5 protein (MLL5) was identified
as a cellular ligand for NKp44 (79). This MLL5 isoform was
not expressed on cells from healthy individuals, but was detected
on a large panel of tumor and transformed cell lines. Moreover,
MLL5 expression on target cells triggered NKp44-mediated NK
cell cytotoxicity.

NKp30 binds the nuclear factor BAT3 (80) and the tumor cell
surface protein B7-H6 (81). BAT3 (also known as BAG-6) has
been implicated in the induction of apoptosis after endoplasmic
reticulum stress or DNA damage (82). B7-H6 is a member of
the B7-family (81), which includes ligands (B7-1 and B7-2) for
the T-cell co-inhibitory receptor CTLA-4 and the co-stimulatory
receptor CD28 (83). The B7-family also encodes PD-L1 and PD-
L2, which are ligands for the T-cell co-inhibitory receptor PD-1.
B7-H6 is not expressed in normal human tissues, but can be
detected on a variety of human tumor cell lines that includes T
and B lymphomas, melanomas, and carcinomas (81). Importantly,
B7-H6 expression on tumor cells triggered NK cell cytotoxicity
that was mediated specifically by NKp30. These results implicate
B7-H6 as tumor-induced self-protein, analogous to MICA (2),
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FIGURE 4 | Natural cytotoxicity receptors. (A) Structure of NKp44
(1HKF). The β-strands are labeled. The CC′ and FG loops, drawn in red,
define a positively charged surface groove that may serve as a binding
site for anionic ligands. (B) Structure of NKp46 (1P6F). D1 is cyan; D2 is

green. (C) Structure of NKp30 bound to its tumor cell ligand B7-H6
(3PV6). N-linked glycans at B7-H6 residues Asn43 and Asn57 in the
V-like domain and Asn208 in the C-like domain are shown in
ball-and-stick representation.

which alerts NK cells to cellular transformation (81). NKp30 also
recognizes the tegument pp65 protein of HCMV, indicating a role
for this NCR in anti-viral immunity (84). Recently, NKp30 was
shown to be responsible for the recognition and killing of the
opportunistic fungi Cryptococcus and Candida (85). Although the
fungal ligand recognized by NKp30 remains to be identified, possi-
ble candidates include β-1,3 glucans, which are major components
of fungal cell wells and are highly conserved across fungal species.
Thus, NKp30 interacts with multiple ligands, as do the activating
NK receptors NKG2D and DNAM-1 (86, 87).

At present, crystal structures have been determined for NKp30,
NKp44, and NKp46 in unbound form (88–90), and for NKp30
bound to B7-H6 (91). NKp44 comprises a single V-type Ig-like
domain that features a prominent groove formed by two facing
β-hairpin loops (CC′ and FG) projecting from the Ig fold core
(Figure 4A) (88). The solvent accessibility of the groove, and its
electropositive nature, suggest a possible binding site for anionic
ligands, such as sialic acid, although no structure of a complex
has been reported. NKp46 consists of two C2-set Ig-like domains
whose overall fold and disposition are similar to those of the
D1D2 domains of KIRs and LILRs (Figure 4B) (89). This struc-
tural resemblance suggests that similar receptor surfaces may be
involved in ligand binding. The region of NKp46 analogous to
the KIR or LILR ligand-recognition site is located at the inter-
domain hinge and comprises residues from both Ig-like domains.

However, confirmation of this hypothesis awaits structural studies
of NKp46–ligand complexes.

The Ig-like domain of NKp30 exhibits the chain topology found
in C1-set domains (Figure 4C) (90, 91). The closest structural
homolog of NKp30 is PD-L1, a ligand for PD-1. Like PD-1, NKp30
is a member of the CD28 family, which also includes CTLA-4,
ICOS, and B and T lymphocyte attenuator (BTLA) (81). Similar
to other B7-family members, the extracellular portion of B7-H6
consists of a V-like and a C-like domain, with the V-like domain
distal from the membrane (91).

The structure of the NKp30–B7-H6 complex revealed a binding
interface formed by the front β-sheet of the B7-H6 V-like domain
and the front and back β-sheets of the NKp30 C-like domain
(Figure 4C) (91). The overall architecture of the NKp30–B7-
H6 complex differs considerably from those of the PD-1–PD-L1
(or PD-1–PD-L2) (92, 93) and CTLA-4–B7-1 (or CTLA-4–B7-2)
complexes (94, 95), as is evident from superposing these com-
plexes (Figures 5A,B). Relative to NKp30, PD-1 and CTLA-4
bind their ligands at angles of ~90° and ~60°, respectively.
Whereas the PD-1–PD-L2 and CTLA-4–B7-1 interfaces are dom-
inated by strand-to-strand interactions (Figures 5D,E), B7-H6
engages NKp30 in an antibody-like manner, with greater involve-
ment by the loops of the B7-H6 V-like domain (Figure 5C).
Thus, the protruding FG loop of B7-H6, which corresponds to
complementarity-determining region (CDR) 3 of antibodies, fits
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FIGURE 5 | Comparison of the NKp30–B7-H6, PD-1–PD-L1, and
CTLA-4–B7-1 complexes. (A) Overlay of the NKp30–B7-H6 (3PV6) and
PD-1–PD-L1 (3BIK) complexes by superposing NKp30 (cyan) onto PD-1
(brown). B7-H6 is yellow; PD-L1 is violet. (B) Overlay of the NKp30–B7-H6
and CTLA-4–B7-1 (1I8L) complexes by superposing NKp30 (cyan) onto

CTLA-4 (red). B7-H6 is yellow; B7-1 is dark blue. (C–E) Docking modes in
the NKp30–B7-H6, PD-1–PD-L1, and CTLA-4–B7-1 complexes. The three
complexes were overlaid by superposing the IgV domains of B7-H6
(yellow), PD-1-L1 (violet), and B7-1 (dark blue), then translated horizontally
for viewing.

into a deep groove on NKp30, with additional contacts provided
by the BC (CDR1-like) and C′C′′ (CDR2-like) loops of B7-H6.

Besides B7-H6, NKp30 recognizes the tegument pp65 protein
of HCMV (84) and the nuclear factor BAT3 (80). Remarkably, B7-
H6, pp65, and BAT3 appear completely unrelated, both in terms
of three-dimensional structure and origin (B7-H6 is a host surface
protein; pp65 is a viral structural protein; BAT3 is a host nuclear
protein). How NKp30, a relatively small receptor comprising a
single Ig-like ectodomain, can bind such disparate ligands is at
present a mystery.

MHC-I RECOGNITION BY LY49 RECEPTORS
The highly polymorphic Ly49 receptors are the principle MHC-
monitoring molecules on rodent NK cells. In mice, the Ly49 family
includes at least 23 members (Ly49A–W), along with multiple
allelic variants (96, 97). Most Ly49s inhibit NK-cell-mediated

cytolysis upon recognizing one or more H-2D or H-2K alle-
les (96, 98, 99). However, some Ly49s are activating. In gen-
eral, Ly49s recognize MHC-I independently of the bound pep-
tide, although Ly49C and Ly49I display considerable peptide
specificity (100, 101).

Like NKG2D and NKG2/CD94, Ly49 receptors are members of
the C-type lectin-like family of proteins (10, 11). However, none of
these NK receptors have a functional calcium-binding site. Ly49s
are homodimeric type II transmembrane proteins (N-terminus
inside the NK cell), with each chain containing a C-type lectin-
like domain (CTLD), known as the natural killer receptor domain
(NKD). Each NKD of the Ly49 homodimer is linked by a stalk
of ~70 residues to the transmembrane and cytoplasmic domains.
Activating and inhibitory receptors differ with regards to their
cytoplasmic domains: whereas inhibitory Ly49s transduce sig-
nals via immunoreceptor tyrosine-based inhibitory motifs (ITIM),
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FIGURE 6 | Structures of Ly49 NK receptors. (A) Ribbon drawing of
the Ly49A C-type lectin-like domain (1QO3). Secondary structure
elements are labeled. β-strands and loops are cyan; α-helices are red.
(B) Structure of the “closed” Ly49A homodimer. Secondary structure

elements that participate in formation of the dimer interface are
labeled. The α2 helices are juxtaposed. (C) Structure of the “open”
Ly49C homodimer (3C8J). The α2 helices do not make contact across
the dimer interface.

activating Ly49s instead use the associated signaling homodimer
DAP12, which possesses an ITAM (96, 98).

Extensive structural information is available for Ly49 receptors
in MHC-bound and unbound forms. Crystal structures have been
reported for Ly49A NKD in complex with H-2Dd (102), Ly49C
NKD bound to H-2Kb (103, 104), Ly49C NKD (104), Ly49I NKD
(105), Ly49G2 NKD (104), Ly49L NKD (106), Ly49L NKD with
the stalk region (106), and Ly49H bound to the MCMV immu-
noevasin m157 (107). Together, these structures have revealed the
molecular architecture of the MHC-binding site of Ly49 receptors,
the basis for MHC-I engagement in trans and cis, and the means
by which viral immunoevasins target Ly49s.

The Ly49 NKD is composed of two α-helices, designated α1
and α2, and two anti-parallel β-sheets formed by seven β-strands
(Figure 6A). Ly49 receptors exist exclusively as dimers on the NK
cell surface. In the dimers, two NKDs associate through strand β0
to create an extended anti-parallel β-sheet. Ly49 dimers may adopt
two distinct conformations: “closed” and “open,” as exemplified by
Ly49A (Figure 6B) and Ly49C (Figure 6C), respectively. In the
closed dimer, the C-terminal ends of the α2 helices are juxtaposed,
whereas in the open dimer the α2 helices do not contact each other.
As explained below, this variability in Ly49 dimerization geometry
serves to modulate the way NK receptors bind MHC (102–104).

Although Ly49s and other C-type lectin-like NK receptors (e.g.,
NKG2D, NKG2/CD94, NKp65) retain a lectin-like fold, specific
structural features required for lectin activity are absent, enabling
these receptors to recognize proteins as opposed to carbohydrates.
Most notably, C-type lectin-like NK receptors do not contain
bound calcium ions due to missing calcium-coordinating residues.

In the Ly49A–H-2Dd complex (Figure 7A), the Ly49A homod-
imer engages a single H-2Dd molecule using only one of its
subunits, at a site beneath the peptide-binding platform of the
MHC-I ligand (102). This site partially overlaps the binding sites

for CD8 and LILRB1 (Figure 3A). In the Ly49C–H-2Kb complex
(103, 104), by contrast, the Ly49C dimer binds H-2Kb bivalently,
with each subunit making identical contacts with MHC-I at a site
equivalent to Ly49A binding site on H-2Dd (Figure 7B).

The different dimerization geometries of Ly49A and Ly49C
account for the different modes of MHC engagement in the
Ly49A–H-2Dd and Ly49C–H-2Kb complexes. The closed Ly49A
dimer cannot simultaneously bind two MHC ligands, like the
open Ly49C dimer, because this would result in major steric clashes
between MHC molecules, at least in the crystal. However, an NMR
study revealed that Ly49A exists predominantly as an open dimer
in solution that can bind two MHC-I molecules (108). The most
likely interpretation of the combined results from X-ray crystal-
lography and NMR is that Ly49 receptors are present on the NK
cell surface in dynamic equilibrium between an open form, which
permits bivalent MHC binding, and a closed form, which only
allows engagement of one MHC ligand.

As in the case of KIRs (see above), Ly49s display specificity
for different MHC alleles. Thus, whereas the promiscuous Ly49C
receptor recognizes H-2Kb, H-2Kd, H-2Db, H-2Dd, and H-2Dk,
the more specific Ly49A and Ly49C receptors only bind H-2Dd

and H-2Dk (97, 101). Ly49s have developed a two-tiered strat-
egy for recognizing MHC, as deduced from the Ly49A–H-2Dd

and Ly49C–H-2Kb structures (104). Primary recognition is car-
ried out by a central region consisting of strand β3, loop L5, and
strand β4 (residues 232–243). This central region has a conserved
structure across Ly49s and contributes most to the binding ener-
getics. Supplementing these primary interactions are secondary
ones mediated by a region flanking the central region that com-
prises residues 218–231. This region, which exhibits high sequence
variability across the Ly49 family, confers different MHC speci-
ficities. It adopts markedly different conformations in Ly49A
(Figure 7C) and Ly49C (Figure 7D), and separates Ly49s into
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FIGURE 7 | Structures of Ly49–MHC-I complexes. (A) Ribbon diagram of
Ly49A bound to H-2Dd (1QO3). The α1, α2, and α3 domains of the MHC-I
heavy chain are yellow; β2m is gray; the peptide is magenta; the Ly49A dimer
is cyan. In this view, the complex is oriented with the H-2Dd molecule on the
target cell at the bottom; the Ly49A homodimer reaches H-2Dd from an
opposing NK cell at the top, to which it is connected via stalk regions
projecting down to the N-termini of the subunits. (B) Structure of Ly49C in

complex with H-2Kb (3C8K). (C) The Ly49A–H-2Dd interface, highlighting
interactions made by residues 211–231 of Ly49A. (D) The Ly49C–H-2Kb

interface, showing interactions made by the corresponding region of Ly49C.
The side chains of interacting residues are drawn in ball-and-stick
representation, with carbon atoms in cyan (Ly49A or Ly49C), yellow (H-2Dd or
H-2Kb), or gray (β2m), oxygen atoms in red, and nitrogen atoms in blue.
Hydrogen bonds are represented by dotted lines.

ones that recognize both H-2D and H-2K ligands (e.g., Ly49C)
versus ones that only recognize H-2D (e.g., Ly49A) (104).

The finding that MHC recognition by Ly49A is independent
of the sequence of the MHC-bound peptide in both cellular and
binding assays is readily explained by the total absence of direct
contacts between Ly49A and the peptide in the Ly49A–H-2Dd

structure (Figure 7A) (102). By contrast, the remarkable pep-
tide selectivity of Ly49C is difficult to understand in terms of
the Ly49C–H-2Kb complex, in which there is also a complete
lack of contacts between Ly49C and the peptide (Figure 7B)
(103, 104). Although the potential biological role of the pep-
tide selectivity of certain Ly49s (and KIRs) remains obscure, the
description of a functional interaction between Ly49P and H-2Dk

on MCMV-infected cells that confers resistance to the virus sug-
gests an intriguing possibility (17). This interaction requires the

participation of the MCMV gene product m04/gp34 (109). This
virulence factor associates with MHC-I in the endoplasmic retic-
ulum and travels to the cell surface (110). Although the molecular
nature of the Ly49P–H-2Dk interaction on MCMV-infected cells
remains to be defined, one possibility is that m04/gp34 provides
a specific peptide recognized by Ly49P in an H-2Dk-dependent
manner, which would confer on NK cells a degree of speci-
ficity for viral pathogens reminiscent of that of cytotoxic T cells
(11, 17, 109).

TRANS AND CIS INTERACTIONS OF LY49 RECEPTORS WITH
MHC-I
Cell surface receptors mediate cell-to-cell communication by
interacting with ligands expressed on other cells (trans interac-
tions). In addition, some cell surface receptors have been shown
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FIGURE 8 | Interaction of Ly49 receptors with MHC-I in trans and cis.
(A) Trans interaction of an Ly49 receptor with two MHC-I molecules, based
on the structures of Ly49L (3G8L) and the Ly49C–H-2Kb complex (3C8K).
The α1, α2, and α3 domains of the MHC-I heavy chain are cyan; β2m is
green; Ly49 NKD is red; helix α3S of the Ly49 stalk and loop LS connecting
α3S to the NKD are blue; the disulfide bond linking the α3S helices is
magenta. The predicted α1S and α2S helices of the stalk are orange and
yellow, respectively, with the disulfide bond in magenta. The Ly49
homodimer on the NK cell binds two MHC-I molecules on the target cell.

To bind in trans, the stalks must adopt a backfolded conformation, as the
N-termini of the Ly49 monomers point away from the NK cell membrane
(Ly49s are type II transmembrane proteins). (B) Cis interaction of Ly49 with
MHC-I, based on the structure of Ly49L and the Ly49A–H-2Dd complex
(1QO3). The LS loops connecting the α3S helices to the NKDs are drawn
arbitrarily. The Ly49 homodimer binds one MHC-I molecule on the NK cell
itself. In this case, the stalks must assume an extended conformation, as
the N-termini of the Ly49 monomers point toward the NK cell. Reproduced
with permission from Immunity (106).

to bind ligands expressed on the same cell via cis interactions
(60, 111). These include the structurally unrelated NK receptors
Ly49 and LILRs, which interact not only with MHC-I molecules on
other cells in trans, but also with MHC-I molecules on the same
cell in cis (59, 112, 113). Other examples of cell surface recep-
tors that bind ligands in both trans and cis are: siglec-2 (CD22),
a negative regulator of B cell receptor signaling that recognizes
sialic acid modifications of glycoproteins (114–117); herpes virus
entry mediator (HVEM), which is regulated by its ligand BTLA
(118); plexin receptors that bind semaphorins (119); and notch
receptors that bind Delta (120, 121). The emerging theme from
these studies is that cis interactions regulate effector cell function
by modulating (decreasing or increasing) the threshold at which
cellular activation signals produce a biological response (60, 111).

Cis interactions between Ly49 receptors and MHC-I ligands
facilitate NK cell activation (112). This effect is not the result
of inhibitory signaling through constitutive ITIM phosphoryla-
tion of Ly49s. Rather, cis interactions with MHC-I sequester, or
mask, Ly49s to render them physically unavailable for functional
trans interactions (113). In this way, cis interactions lower the
threshold at which NK cell activation exceeds inhibition, consid-
erably increasing the sensitivity of NK cells to diseased cells (60).
Remarkably, in addition to modulating inhibitory function, cis
interactions of Ly49A are necessary for NK cell education (122). As
in the case of Ly49, the interaction of LILRB/PIR-B receptors with
MHC-I in cis is constitutive (59). However, unlike Ly49, the ITIMs
of LILRB/PIR-B receptors are phosphorylated constitutively, such
that cis binding generates tonic inhibitory signals that dampen NK
cell activation.

Trans and cis interactions by Ly49 receptors utilize the same
binding site beneath the peptide-binding platform of MHC-I
(112). Therefore, Ly49s must drastically reorient their NKDs rel-
ative to the NK cell membrane in order to bind MHC-I in trans
versus cis. Most likely, it is the exceptionally long stalk regions
of Ly49s (~70 residues) that provide the requisite flexibility. In
the crystal structure of Ly49L, which includes the C-terminal 40
residues of the stalk region (designated the α3s segment), the stalk
is composed of an α-helix and a 12-residue loop linking the helix to
the NKD (Figure 8A) (106). However, instead of projecting from
the NKD, as is typical for a stalk region, the Ly49L stalk backfolds
onto the NKD. In a modeled Ly49–MHC-I complex (Figure 8A),
the N-termini of the stalk regions point in a completely opposite
direction from the C-termini of the MHC-I molecules. Therefore,
Ly49s likely adopt the backfolded conformation to bind MHC-
I in trans. On the other hand, cis binding requires the stalks
to assume an extended conformation that orients the N-termini
of the NKDs toward the NK cell (Figure 8B). Unlike the trans
interaction, where one Ly49 dimer engages two MHC-I ligands
(Figure 3A), this model precludes cis engagement of both NKDs
by MHC-I, because of the orientation that binding of one MHC-I
ligand would impose on the Ly49 dimer (Figure 3B). In agreement
with the model, biochemical analyses confirmed that trans bind-
ing of MHC-I by Ly49 dimers occurs in a bivalent fashion, whereas
cis binding is monovalent (106). Moreover, Ly49 receptors appear
able to switch between backfolded and extended conformations
(108, 123).

Cis–trans binding may typically require major structural
changes analogous to those of Ly49. However, the stalk regions
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FIGURE 9 | Structure of m157 bound to the stalk region of Ly49H.
(A) Side view of the Ly49H–m157 complex (4JO8), in which two m157
monomers (yellow) engage the Ly49H stalk (cyan). Only part of the
helical stalk region of Ly49H (the α3s segment) was visible in electron

density. The rest of the Ly49H stalk (segments α1s and α2s) and the
NKD were not resolved in the structure. (B) Top view of the
Ly49H–m157 complex, in which the helical stalks of Ly49H lie across
the α1/α2 platform of m157.

of LILRB/PIR-B receptors are much shorter than those of Ly49.
Accordingly, the ligand-binding D1 and D2 domains of LILRB
would need to reverse direction relative to the surface of the NK
cell in order to engage MHC-I in cis. To do so, LILRB would need
to bend back on itself and assume a horseshoe-shaped arrange-
ment of the four Ig domains (D1–D4), as observed for the four
N-terminal Ig-like domains of Drosophila Dscam (124). Such a
large reversal implies considerable flexibility in the segment con-
necting D2 with D3. In the case of PIB-B, which has two additional
membrane-proximal Ig-like domains compared to LILRB, the
D4–D5 or D5–D6 connecting segments might provide additional
flexibility.

LY49 RECOGNITION OF A VIRAL IMMUNOEVASIN
Studies of the susceptibility of different mouse strains to infec-
tion by MCMV were the first to demonstrate direct recognition
of a viral pathogen by NK cells that confers host protection (125).
Resistance to infection in C57BL/6 mice is mediated by a single
genetic locus in the NKC, which contains both inhibitory and
activating Ly49 receptors (126). This locus encodes the activating
receptor Ly49H, which impairs MCMV replication (127–130). By
contrast, BALB/c mice do not restrict MCMV replication because
they lack a gene for Ly49H. Subsequent studies revealed that Ly49H
binds directly to a viral glycoprotein, the MHC-I homolog m157,
which is expressed on MCMV-infected cells (15, 16). It was also
discovered that m157 binds not only to the activating receptor
Ly49H in resistant mouse strains, but also to the inhibitory recep-
tor Ly49I in susceptible ones, which explains why MCMV would
possess a gene that confers a selective disadvantage to its survival
(15, 16, 131).

The crystal structure of m157 showed that this immunoevasin
has an MHC-like fold, although it does not bind peptides or
associate with β2m (132). Surprisingly, m157 binds to the stalk
region of Ly49H, rather than the NKDs, which recognize MHC-
I (107). Although m157 was well resolved in the Ly49H–m157
structure, only the α3s segment of Ly49H could be seen in the
electron density (Figure 9A). The lack of density for the Ly49H
NKD implies considerable flexibility of the NKD in the crystal
lattice. In agreement with the structure, solution binding mea-
surements using Ly49H constructs lacking the NKD or stalk region
showed that binding to m157 was mediated entirely by the α3s stalk

segment, and that the NKD made no appreciable contribution to
the interaction (107).

In the complex, two m157 monomers engage the Ly49H dimer,
such that the helical stalks lie diagonally across the α1/α2 platform
of m157 (Figure 9B). This binding mode is completely distinct
from that used by Ly49A and Ly49C to engage MHC-I, whereby the
NKDs contact MHC-I at a site beneath the α1/α2 peptide-binding
platform (Figures 7A,B). Consequently, m157 does not compete
with MHC-I for binding to the NKD. Central to the Ly49H–m157
interaction are two exposed aromatic residues in the Ly49H α3s
stalk segment (Tyr115 and Trp123) that make extensive contacts
with the immunoevasin. The ability of m157 to target some, but
not all, members of the Ly49 receptor family can be correlated with
sequence differences in the stalk region (107).

As discussed above, Ly49 receptors can adopt two distinct
conformations, backfolded or extended (106). However, the recog-
nition mode observed in the Ly49H–m157 complex only appears
possible with Ly49 in the extended state, the conformation that
recognizes MHC-I in cis (Figure 8B). In the backfolded confor-
mation, by contrast, the Ly49 α3s stalk segment would not be
accessible to m157, due to its intimate association with the NKD
(Figure 8A). For both the Ly49H–m157 and Ly49I–m157 inter-
actions, kinetic and thermodynamic measurements showed that
binding involves a conformational selection mechanism where
only the extended conformation of Ly49 is able to bind a first
m157 ligand, followed by binding of a second m157 (123). The
interaction is characterized by strong positive cooperativity, such
that the second m157 binds the Ly49 homodimer 1,000-fold more
tightly than the first. The rate-limiting step in the overall mecha-
nism is a conformational transition in Ly49 from its backfolded to
extended form.

LIGAND RECOGNITION BY NKG2D
NKG2D is a homodimeric C-type lectin-like NK receptor that is
expressed on NK cells and cytotoxic T cells. It recognizes multiple
structural homologs of MHC-I, including MICA, MICB, ULBP13,
and RAE-1β, which all lack a peptide-binding groove and β2m
(14, 133, 134). ULBP3 and RAE-1β also lack an α3 domain, and
are present on the cell surface as glycophosphatidylinositol-linked
α1/α2 domains. In humans, expression of MICA and MICB is
upregulated in epithelial tumors and stressed cells, compared to

www.frontiersin.org March 2014 | Volume 5 | Article 123 | 11

http://www.frontiersin.org
http://www.frontiersin.org/NK_Cell_Biology/archive


Li and Mariuzza Ligand recognition by NK receptors

FIGURE 10 | Structures of NKG2D and NKG2A/CD94 complexes.
(A) The human NKG2D–MICA complex (1HYR). The two subunits of
the NKG2D homodimer are cyan; MICA is yellow. (B) The mouse
NKG2D–RAE-1β complex (1JSK). (C) The human NKG2D–ULBP3
complex (1KCG). (D) Structure of the MCMV immunoevasin m152

bound to the NKG2D ligand RAE-1γ (4G59). (E) Structure of the
Ig-like HCMV immunoevasin UL16 bound to MICA (2WY3). (F) The
human NKG2A/CD94–HLA-E complex (3CDG). The NKG2A and
CD94 subunits of the NKG2A/CD94 heterodimer are cyan and green,
respectively.

little or no expression in normal tissues (135, 136). In rodents,
RAE-1, MULT-1, and H-60 are upregulated in tumor cells but not
normal cells, similar to MICA and MICB in humans (137, 138).
The differential expression pattern of these MHC-related ligands
indicates that NKG2D is a key receptor for tumor surveillance
by NK cells. In mice, the MCMV-encoded immunoevasins m145,
m152, and m155 are involved in downregulating surface expres-
sion of the NKG2D ligands MULT-1, RAE-1, and H-60, respec-
tively, thereby thwarting an NKG2D-mediated anti-viral response
(63, 139). In humans, the HCMV-encoded immunoevasin UL16
acts as a decoy receptor by binding the NKG2D ligands MICB,
ULBP1, and ULBP2 (140). Crystal structures have been reported
for human and mouse NKG2D in free form (141, 142), for human
NKG2D bound to MICA and ULBP3 (134, 143), and for mouse
NKG2D in complex with RAE-1β (144). In addition, structures
have been determined for m152 in complex with RAE-1γ (139),
and for UL16 bound to MICB (140).

MICA consists of an α1/α2 platform domain, which contains
the α1 and α2 helices that define the peptide-binding groove in
bona fide MHC-I molecules, and a C-type Ig-like α3 domain
(Figure 10A) (145). The NKG2D homodimer binds MICA orthog-
onally to the α1 and α2 helices of the α1/α2 platform (143). This
docking mode roughly resembles that of TCR onto MHC-I, but is
completely distinct from the way Ly49C binds MHC-I (Figure 7B).
Recognition of the asymmetric MICA ligand by the symmetric
NKG2D receptor is mediated by similar sites on the NKG2D sub-
units that contact distinct sites on MICA. In particular, most (7 of
11) contact residues from each NKG2D monomer are shared by
both MICA binding sites.

NKG2D binds ULBP3 and RAE-1β orthogonally to the α1/α2
domain of these MHC-like ligands, in a manner resembling
the NKG2D–MICA complex (Figures 10B,C) (134, 144). Most
notably, a shared subset of NKG2D residues mediates hydrophobic
interactions with all three ligands. However, the binding interfaces
also display significant differences, such that only one salt bridge
and two hydrogen bonds are common to the NKG2D–ULBP3,
NKG2D–RAE-1β, and NKG2D–MICA complexes (134, 143, 144).

These structural studies have demonstrated that NKG2D has a
remarkable ability to recognize MICA, ULBP3, and RAE-1β using
a single binding site, even though these ligands share only ~25%
sequence identity. This ability is explained by a rigid adaptation
recognition mechanism, rather than induced fit (146). Detailed
mutational analysis of NKG2D has shown that the most energet-
ically important residues of the receptor (“hot spots”) interact
with relatively conserved residues of MICA, ULBP3, and RAE-
1β, without significant conformational changes in NKG2D upon
ligand binding (141, 146).

In the MCMV m152–RAE-1γ complex (139), the MHC-I-like
immunoevasin binds the α1 and α2 helices of RAE-1γ in a pincer-
like manner that resembles the interaction of NKG2D with RAE-1β

(Figure 10D). In the HCMV UL16–MICB complex (140), by con-
trast, the Ig-like UL16 protein uses a three-stranded β-sheet to
engage the α1 and α2 helices of MICB, such that residues at the
center of the β-sheet mimic a binding motif employed by the
structurally unrelated C-type lectin-like NKG2D to bind its diverse
ligands (Figure 10E). By competing with NKG2D for ligand bind-
ing, m152 and UL16 prevent NKG2D-mediated NK cell activation
and thus promote viral survival (147–149).
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RECOGNITION OF HLA-E BY NKG2/CD94 RECEPTORS
In addition to NKG2D, which exists as a homodimer on the NK
cell surface, the NKG2D family includes NKG2A, NKG2B, NKG2C,
and NKG2E, all of which form obligate heterodimers with CD94
(150–152). NKG2A and NKG2B contain ITIM motifs in their
cytoplasmic tails and function as inhibitory receptors; NKG2C
and NKG2E associate with the ITAM-containing DAP12 mole-
cule and are activating receptors. The ligand for NKG2/CD94
receptors is the non-classical MHC-I molecule HLA-E, which
binds a restricted set of peptides derived from the leader pep-
tides of classical and non-classical MHC-I proteins (150–152).
Because HLA-E does not express on the cell surface without a
bound peptide, HLA-E expression depends on the production
of other MHC-I molecules. Therefore, recognition of HLA-E by
NKG2/CD94 receptors enables NK cells to monitor the expres-
sion of other HLA class I proteins on cells. This double-check
mechanism ensures that cells are producing MHC-I molecules in
a normal manner.

The crystal structure of NKG2A/CD94 has been determined
in unbound form (153), and in complex with HLA-E bound to a
peptide derived from the leader sequence of HLA-G (154, 155). In
the complex, NKG2A/CD94 straddles the peptide-binding cleft of
HLA-E, with the NKG2A and CD94 subunits mainly interacting
with the α2 and α1 helices of HLA-E, respectively (Figure 10F). No
significant conformational changes in NKG2A/CD94 or HLA-E
occur upon complex formation, indicating a lock-and-key binding
mechanism, as in the case of NKG2D (141, 146).

Most (~70%) of the buried surface area in the NKG2A/CD94–
HLA-E complex is contributed by the invariant CD94 subunit
(154, 155). Thus, CD94 dominates the interaction with HLA-E,
whereas NKG2A is more peripheral to the interface. The peptide
accounts for ~20% of the buried surface area on the HLA-E side
of interface, in which CD94 again dominates the interactions with
peptide, albeit with poor shape and chemical complementarity
(154). CD94 is positioned over the P8 residue of the peptide, with
additional contacts to residue P5. The focus of NKG2A/CD94 on
the C-terminal half of the peptide is notable, since nearly all of
the limited sequence variation among HLA-E-restricted peptides
is concentrated in the C-terminal residues, which are read out
primarily by the invariant CD94 subunit.

In sharp contrast to the dominant role of hydrophobic
interactions in ligand recognition by NKG2D (134, 144), the
NKG2A/CD94–HLA-E interface is mostly electrostatic in nature
(154). The interface is characterized by a large number of polar
interactions, including 19 hydrogen bonds and 8 salt bridges. This
helps explain the fidelity of NKG2A/CD94 for HLA-E compared
to the promiscuity of NKG2D for multiple ligands, as discussed
above.

CADHERIN RECOGNITION BY KLRG1
Killer cell lectin-like receptor G1 is a C-type lectin-like inhibitory
receptor that contains an ITIM motif in its cytoplasmic region
(156, 157). KLRG1 is found on 50–80% of human NK cells, and its
expression is highly upregulated following infection with viruses
or parasites (158–161). The biological ligand for KLRG1 is E-
cadherin (32, 33, 162). E-cadherin, whose extracellular region
comprises five Ig-like domains (EC1–EC5), is localized at the
basolateral membrane of epithelial cells where it establishes tight

binding between neighboring cells in adherens junctions (163).
Besides E-cadherin, KLRG1 recognizes N- and R-cadherins (32),
which are present in analogous structures in other cell types. The
binding of E-cadherin to KLRG1 prevents lysis of E-cadherin-
expressing epithelial cells by KLRG1+ NK cells, thereby prevent-
ing tissue damage (32, 71, 164). In addition, KLRG1 may play
a role in tumor immunosurveillance analogous to missing self-
recognition by inhibitory NK receptors that bind MHC-I (Ly49s
and KIRs) (164, 165). Because the malignancy of epithelial tumors
is frequently associated with down-regulation of E-cadherin,
the KLRG1–E-cadherin system may serve to detect potentially
metastatic tumors with abnormal cadherin expression (71, 164,
166).

In the crystal structure of the complex between KLRG1 and the
EC1 domain of E-cadherin,one KLRG1 CTLD binds one EC1 mol-
ecule (Figure 11A) (167). In this respect, KLRG1 recognition of its
non-MHC ligand is reminiscent of Ly49 recognition of MHC-I,
in which each CTLD monomer contains an entire ligand-binding
site (Figure 7B). By contrast, the binding site of NKG2D for the
MHC-related ligand MICA (143) (Figure 10A), as well as the bind-
ing site of NKG2A/CD94 for HLA-E (154, 155) (Figure 10F), is
formed by two CTLD subunits. E-cadherin docks onto a surface
of KLRG1 that roughly corresponds to the ligand-binding site
of Ly49s and other C-type lectin-like NK receptors (167). This
site is formed by three loops (L3, L4, and L6) and β-strand 4
(Figure 11A), which interact primarily with residues Val3–Ile7
of E-cadherin (Figure 11B). These five residues are absolutely
conserved in E-, N-, and R-cadherins, which enables NK cells bear-
ing a single KLRG1 receptor to monitor expression of multiple
cadherins on target cells, resulting in MHC-independent missing
self-recognition.

The KLRG1–E-cadherin complex buries a total solvent-
accessible surface of only 1140 2. This exceptionally small interface
is at the lower limit of the average value of 1600 (±400) Å2

for stable protein–protein complexes (168), and likely explains
the relatively low affinity of the KLRG1–E-cadherin interaction
(K D= 150 µM), which it is considerably weaker than for any other
NK receptor–ligand pair characterized to date (167). KLRG1 may
compensate for its exceptionally low monomeric affinity for cad-
herins through multipoint attachment to cadherin molecules on
the target cell surface. Additionally, the ability of KLGR1 to form
disulfide-linked dimers (169), or even multimers (170), may fur-
ther increase the avidity of KLRG1–cadherin interactions. In this
way, KLRG1–cadherin recognition could be achieved through the
cooperativity of multiple associations, rather than by relying on
the stability of individual complexes, while still allowing for dis-
sociation of the complexes during transient NK cell–target cell
encounters.

GENETICALLY LINKED C-TYPE LECTIN-LIKE
RECEPTOR–LIGAND PAIRS
The NKC encodes approximately 30 type II transmembrane gly-
coproteins that are members of the C-type lectin-like superfamily
(171). NKC genes are divided into killer cell lectin-like recep-
tor (KLR) genes and C-type lectin receptor (CLEC) genes. KLR
genes code for molecules expressed on NK cells. CLEC genes
code for molecules expressed on other cell types, such as dendritic
(CLEC9A) and myeloid (CLEC2B) cells.
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FIGURE 11 | Cadherin recognition by KLRG1. (A) Structure of
KLRG1 in complex with the membrane-distal D1 domain of
E-cadherin (3FF8). KLRG1 is cyan and E-cadherin is yellow. Secondary
structure elements are labeled. Bound Ca2+ ions are drawn as brown

spheres. (B) The KLRG1–E-cadherin binding interface. The KLRG1
molecular surface is shown in gray with the region contacting
E-cadherin colored cyan. Residues 1–8 of E-cadherin are drawn in
stick format and labeled.

The KLR family includes Ly49, NKG2D, and CD94/NKG2A
receptors that bind MHC-I or MHC-I-like molecules, as discussed
above. The KLR family also includes receptors that recognize
non-MHC ligands. This category includes KLRG1, which binds
E-cadherin (167) (Figure 11A), in addition to receptors that bind
CLEC2 proteins which themselves belong to the C-type lectin-
like superfamily (21). The genes encoding these KLR–CLEC2
receptor–ligand pairs are genetically linked in the NKC. For exam-
ple, in mice, the inhibitory KLR family member receptor Nkrp1d
binds Clrb (172, 173). Down-regulation of Clrb expression by
genotoxic stress or tumorigenesis triggers NK-cell-mediated lysis,
supporting the concept of MHC-independent control of NK cell
function by Nkrp1 receptors (173, 174). In humans, the inhibitory
NK receptor NKR-P1A binds the CLEC2 family member LLT1,
reducing NK-cell-mediated cytotoxicity and interferon-γ secre-
tion (175–177). Viral induction of LLT1 expression in B cells
points to a role for the NKR-P1A–LLT1 interaction in modu-
lating immune responses to pathogens (178). The human acti-
vating NK receptor NKp80 recognizes the CLEC2 family mem-
ber AICL, which is genetically coupled to NKp80 in the NKC
(21, 31). The NKp80–AICL pair promotes cross-talk between
NK cells and monocytes (31). In addition to monocytes, AICL
is expressed on monokine-activated human NK cells that also
express NKp80, which may enable autonomous control of NK
cell responses (179).

Keratinocyte-associated C-type lectin (KACL) is a newly iden-
tified member of the human CLEC2 family (180). Notably, KACL
is expressed almost exclusively in the skin. KACL is a ligand for the
activating receptor NKp65, which is genetically linked to KACL
in the NKC (29). Upon binding KACL on keratinocytes, NKp65
triggers NK-mediated cytotoxicity and proinflammatory cytokine
release. Thus, the NKp65–KACL interaction may contribute to the
immunosurveillance of human skin (21, 29, 181).

The structure of NKp65 bound to KACL has revealed the
basis for genetically coupled recognition in the NKC (182). KACL
forms a homodimer similar to the NKG2D and Ly49 homodimers;
NKp65, contrast, is monomeric (Figure 12A). KACL binds NKp65
bivalently, in a manner resembling the Ly49C–H-2Kb complex
(Figure 12B) (103, 104), except that, in the NKp65–KACL com-
plex, it is the ligand (KACL), instead of the receptor (NKp65)
that is dimeric. This bivalent binding mode is completely different
from those employed by the dimeric NKG2D and Ly49A recep-
tors. Thus, the NKG2D dimer engages one MICA molecule using
a single binding site formed by the association of its two subunits
(Figure 12C), whereas the Ly49A dimer binds a single H-2Dd

ligand using only one subunit (Figure 12D).
In the NKp65–KACL complex (182), two C-type lectin-like

proteins engage each other in a head-to-head orientation utilizing
similar structural elements: NKp65 uses loops L0, L3, L5, and L6
and strands β3 and β4 to contact the analogous loops and strands
of KACL (Figure 12A). A mutational analysis of KACL residues in
contact with NKp65 showed that all hotspot residues of KACL are
conserved or conservatively substituted in AICL and LLT1, and
that these hotspot residues contact residues on NKp65, NKp80,
and NKR-P1A that are themselves conserved (182). Therefore,
the docking mode observed in the NKp65–KACL complex also
applies to other NKC-encoded receptor–ligand pairs, including
NKp80–AICL, NKR-P1A–LLT1, and Nkrp1–Clr.

NKp65 binds KACL with exceptionally high affinity
(K D= 6.7× 10−10 M), compared to other cell–cell recognition
molecules, whose K Ds are generally micromolar (183). Indeed,
the affinity of NKp65 for KACL is 70,000-fold higher than that
of NKR-P1A for LLT1 (184) and 3,000-fold higher than that
of NKp80 for AICL (31). In contrast to NKR-P1A and NKp80,
which exist as disulfide-linked dimers, NKp65 is not disulfide-
linked on the NK cell surface. Likewise, AICL and LLT1 (21, 176,
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FIGURE 12 | Structure of the NKp65–KACL complex and comparison
with other NKC-encoded receptor complexes. (A) Structure of the human
NKp65–KACL complex (4IOP). NKp65 is cyan and the KACL dimer is yellow.
(B) Structure of the Ly49C–H-2Kb complex (3C8K). The Ly49C dimer is cyan,

the H-2Kb heavy chain is yellow, and β2m is gray. (C) Structure of the
NKG2D–MICA complex (1HYR). The NKG2D dimer is cyan and MICA is
yellow. (D) Structure of the Ly49A–H-2Dd complex (1QO3). The Ly49A dimer
is cyan, the H-2Dd is heavy chain is yellow, and β2m is gray.

177, 181), but not KACL (29), form disulfide-linked dimers on
cells. Dimerization of NKp80 and NKR-P1A may compensate
for the low (micromolar) affinities of these receptors, relative to
NKp65, by increasing avidity via bivalent binding of their AICL
and LLT1 ligands, which are themselves dimeric. By contrast, the
high (nanomolar) affinity of the NKp65–KACL interaction may
overcome the need for receptor dimerization by generating com-
plexes of half-life comparable to those of the NKp80–AICL and
NKR-P1A–LLT1 complexes, resulting in efficient signaling.

FUTURE DIRECTIONS
The structural studies described in this review have enabled us
to understand how representative NK receptors recognize cellular

and viral ligands at the atomic level. However, the biophysical
mechanisms by which inhibitory or activating signals are trans-
mitted to the NK cell following ligand engagement remain largely
a mystery. It is also unknown how inhibitory and activating sig-
nals are integrated within the NK cell to ultimately determine the
outcome of NK cell–target cell encounters.

Only recently have structural studies begun to elucidate the
molecular details of the signal transduction process. Crucial
for NK cell triggering is the association of the transmembrane
region of activating NK receptors, such as NKG2D and NKp44,
with ITAM-bearing signaling molecules, such as DAP10 and
DAP12. NMR has been used to determine the structure of the
heterotrimeric assembly formed by the transmembrane regions
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of NKG2C and DAP12 (185). The main contact site comprises
an intricate electrostatic network involving five hydrophilic trans-
membrane residues: two aspartates and two threonines from the
DAP12 dimer that together interact with a lysine from NKG2C.
Such studies of membrane-embedded NK receptors, and their
association with signaling proteins, promise to provide critical
information for linking ligand recognition to NK cell activation or
inhibition.
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