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Vaccination with durable immunity is the main goal and fundamental to control leishma-
niasis. To stimulate the immune response, small numbers of parasites are necessary to
be presented in the mammalian host. Similar to natural course of infection, strategy using
live vaccine is more attractive when compared to other approaches. Live vaccines present
the whole spectrum of antigens to the host immune system in the absence of any adju-
vant. Leishmanization was the first effort for live vaccination and currently used in a few
countries against cutaneous leishmaniasis, in spite of their obstacle and safety. Then, live
attenuated vaccines developed with similar promotion of creating long-term immunity in
the host with lower side effect. Different examples of attenuated strains are generated
through long-term in vitro culturing, culturing under drug pressure, temperature sensitiv-
ity, and chemical mutagenesis, but none is safe enough and their revision to virulent form
is possible. Attenuation through genetic manipulation and disruption of virulence factors or
essential enzymes for intracellular survival are among other approaches that are intensively
under study. Other designs to develop live vaccines for visceral form of leishmaniasis are
utilization of live avirulent microorganisms such as Lactococcus lactis, Salmonella enter-
ica, and Leishmania tarentolae called as vectored vaccine. Apparently, these vaccines are
intrinsically safer and can harbor the candidate antigens in their genome through differ-
ent genetic manipulation and create more potential to control Leishmania parasite as an
intracellular pathogen.

Keywords: Leishmania, visceral leishmaniasis, live vaccine, live attenuated vaccines, live non-attenuated vaccines

INTRODUCTION
Several species of the protozoan genus Leishmania (L) causes a
group of parasitic diseases called Leishmaniasis which generates
different clinical symptoms from cutaneous (CL) to visceral leish-
maniasis (VL). People living in Latin America, the Middle East,
parts of Africa, Asia, and India have been affected by VL (also
named Kala azar) which is a very deadly disease caused mainly
by L. (d) infantum, L. (d) donovani, and L. (d) chagasi species.
Kala azar causes a clinical syndrome identified by repetitive fever,
anemia, hepatosplenomegaly, and a wasting disease accompanied
with muscular atrophy and finally leads to death after all the suf-
ferings. Sand flies that have already bitten infected dogs or humans
transfer parasites to other humans through their bites. These Leish-
mania parasites have numerous survival strategies among which
the intracellular replication is the most famous one and prevents
the parasites from direct contact to the immune system by the
surrounding host cells.

A Th1 type cytokine milieu causes the parasite load to clear
while a Th2 type leads to the host’s susceptibility. Th1 cytokines
can trigger macrophages,which are the major cells to destroy Leish-
mania parasites. To clear intracellular parasites, Th2 cells do not
suffice since they induce a humoral response which has little or no
effect on the parasites. Nowadays, controlling the disease depends
mainly on chemotherapy as prophylactic or therapeutic vaccines
are unavailable. VL chemotherapies have certain disadvantages

such as the lengthy treatment time, costly drugs, and teratogenic
effects. The reason for concern about resistance emergence is the
long half-life of the chemotherapeutics (1–3).

The complex life cycle of Leishmania parasites, which consists
of stages in animal or human and the sand fly vector, makes vaccine
development more challenging (Figure 1A). An ideal antileish-
manial vaccine should be able to solve current problems and
limitations of other existing vaccines. As shown in Figure 1B, it
should be safe, stable, reproducible, less risky, easily administered,
stored and delivered, not reversible to infectious state, and able
to induce long-term immunological memory and humoral and
cellular responses.

In CL form of disease, the life-long protection is generated
against the same disease and this is the fact that promises the fea-
sibility of a vaccine. Deliberate infection with parasites at hidden
body sites where scars ensue is a method that has been exploited in
the leishmanization (LZ) practices of the last century (4). Nations,
particularly in the Middle East, have successfully used the strategy
for mass prevention of CL, but it need to improve due to per-
sistence of monthly adverse effects and local lesions in 2–3% of
cases (5).

In the late 1930s, researchers in Brazil showed that killed para-
sites were efficient when used as therapeutic as well as prophylactic;
afterward first generation vaccines were produced from the whole
killed Leishmania parasites (6). For many years, these vaccines
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Saljoughian et al. Live vaccination against visceral leishmaniasis

FIGURE 1 | Schematic figure of Leishmania interplay and different
factors to consider in vaccine design. (A) Most of Leishmania
parasites such as L. infantum and L. donovani are known to have both
human and animal hosts, so preventive vaccines could be designed for

both. However, there is no identified reservoir animal host for some
species like L. tropica. For these species, specific vaccines for human
are needed. (B) Balance between different factors leads a vaccine to
get approved.

were tested either alone or combined with different adjuvants. So
far, killed parasites had no enough efficacy as a potent vaccine to
prevent disease, although they have demonstrated well-tolerated
safety profiles (7).

First generation vaccines produced from VL Leishmania species
have had no chance to be tested in clinical trials, since most vaccine
studies have concentrated on CL. What have been included for the
progression of Leishmania second generation vaccines are recom-
binant proteins, poly-proteins, DNA vaccines, and combinations
thereof. In experimental infection systems, not only defined single
molecules, but also multi-component vaccines have shown pro-
tection against VL. Coler et al. worked on LEISH-F1+MPL-SE,
which consisted of three recombinant Leishmania poly-protein
(TSA–LmSTI1–LeIF), in association with monophosphoryl lipid
and squalene as adjuvants (MPL-SE) (8). The synthetic RAP-
SODI1 and two other DNA vaccines are in preclinical trials in
Europe; one is being developed based on a viral vector by Paul
Kaye (York University, UK) and another, LEISHDNAVAX2, by
Mologen (Berlin, Germany) using a new technology named min-
imalistic immunogenically defined gene expression (MIDGE) to
deliver selected Leishmania antigens; the latter can be used either
solely or accompaniment to a synthetic adjuvant – double stem
loop immunomodulator (dSLIM).

It is believed that if a candidate vaccine could stimulate immune
system more similar to the natural disease, we will have a more

1http://www.fp7-rapsodi.eu/
2http://www.leishdnavax.org/

efficient immune response. As the success of smallpox, measles,
mumps, and rubella vaccines indicate that live attenuated vac-
cines are the touchstone for protection against their specific caus-
ing pathogen. As shown in Figure 2, different approaches were
used based on whole parasite vaccine ranging from live active
Leishmania vaccine (LZ) to live non-pathogenic vaccines.

Some attenuated strains were also developed through different
approaches such as physical, chemical, and genetically attenuation.
Much interest has been arisen in the development of genetically
attenuated parasite vaccines due to the knowledge obtained in
potential parasite virulence factors and the increased understand-
ing of the antigens participating in immunity acquisition. Target-
ing and deleting genes that encode virulence factor genes essential
for intracellular survival is the major general approach toward
genetic attenuation of Leishmania parasites. Recently, there are
few successful reports about live attenuated Plasmodium through
genetical modification that can elicit long-lasting memory pro-
tection by producing antibodies and cellular immune responses
(9). Interestingly, in recent human clinical trial using Plasmodium
falciparum genetically attenuated parasites (PfGAP) as vaccine on
volunteers showed the first in human proof of concept of this
strategy that could inhibit the expansion of disease by decreasing
the sporozoites (10).

Using BCG as a vaccine against Mycobacterium tuberculosis
infection is a method which is comparable with utilizing non-
pathogenic Leishmania species, such as a lizard parasite L. tar-
entolae, to develop live non-pathogenic parasites as VL vaccines.
Although L. tarentolae can infect mammalian cells and change to
amastigotes, it does not cause any disease or clinical symptoms
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FIGURE 2 | Categorization of vaccine types based on whole Leishmania parasite.

in either mouse or hamster models (11, 12). Furthermore, due
to general feasibility of human vaccination with live Salmonella
and Lactococcus expressing exogenous antigens, they could serve
another means to develop vaccine against leishmaniasis.

In this review, we have limited our scope to all types of live
vaccinations against leishmaniasis and have considered them as
vaccine candidates against leishmaniasis.

LEISHMANIZATION (LIVE ACTIVE VACCINES)
In the past, mothers used to expose their children’s arms to be bit-
ten by sand flies because they knew by experience that this would
protect them from the severe disease in future. LZ was accepted
in Israel and Russia after a method for axenic culture of the para-
sites was established (13). Using LZ was stopped because of HIV
spreading, the use of immunosuppressive drugs, ethical reasons,
uncontrolled permanent skin lesions, parasite persistence, and the
inoculum quality control problems. The only usage of LZ at the
present time is found in one of the endemic country, Uzbekistan,
which is licensed and in Iran its efficacy is in human trials. Scien-
tists are trying to improve the safety of this practice because it is the
only way against Leishmania that has proved efficient in humans.
The severity of primary lesions is reduced and wound healing
is accelerated by including killed parasites in the inoculums and
using adjuvants that improve quick immune responses (14, 15).

LIVE ATTENUATED VACCINES
Different methods such as physical attenuation: long-term vitro
cultures (16), temperature sensitivity (17),γ-attenuation (18), and
chemical attenuation: chemical mutagenesis (19), and parasite cul-
ture under drug pressure (20) were used to develop attenuated
strains.

Instead, using a targeted gene disruption strategy can lead
to a genetic alteration of the Leishmania genome that could
help identifying essential genes for survival and/or virulence (21–
27) (Table 1). Generally speaking, live attenuated organisms are
quite acceptable for vaccination because, first, such vaccines ren-
der native antigen into cells and improve activation of antigen-
presenting cells at the same time by imitating the natural course
of infection, which will lead to an optimal polarization of CD4+T
cells (28); second, the memory repertoire of the immune system

is increased since a collection of complete antigens is delivered (in
comparison with subunit-defined vaccines); and third, they assure
antigen persistency by generating prolonged sub-clinical infec-
tion. Then, generation of antigen-specific effector and memory
cells which react soon after infection may be allowed (29). Sub-
stantial protection in murine models against challenge has been
conferred by attenuated strains, but potential for reversion is pos-
sible for ever, which makes them inappropriate for use in human
vaccination. Actually, risk of subsequent reactivation, especially
in HIV/Leishmania co-infection, is raised by the persistence of
asymptomatic Leishmania infections. In addition, a loss of effec-
tiveness for protective immunity can be resulted from physical
and chemical attenuation, either because a sub-clinical infection
cannot be formed by such strains or because they do not express
critical antigen epitopes anymore (30). Although the experimen-
tal results have been promising so far, there are still some safety
points that need to be considered in relation to the use of genet-
ically attenuated parasites as vaccines. Prolonged immunity after
re-infection induces live attenuated vaccines through maintaining
a low level asymptomatic infection. Since the persistence of antigen
is essential to generate effective memory responses to Leishma-
nia, the establishment of sub-clinical infection is considered quite
valuable. Patients who are immunocompromised (e.g., after HIV
infection) have shown reactivation of Leishmania. This is the rea-
son why it is necessary that the safety of attenuated parasites that
cause a sub-clinical infection should be carefully investigated.

LIVE PHYSICALLY ATTENUATED VACCINES
It was shown by Mitchell et al. that long-term cultured promastig-
otes of L. major and L. tropica isolates could not cause lesions
after cutaneous injection to mice (16). One year later, the effect
of long-term cultivation of L. donovani promastigotes on cultured
mouse and hamster macrophages in vitro was evaluated by Nolan
et al. In a period of 48 days, the number of amastigotes derived
from long-term promastigote cultures decreased only slightly in
mice but rapidly in hamsters (46). In another experiment, 8 weeks
after infection, long-term cultured L. amazonensis promastigotes
induced smaller lesions, produced higher IFN-γ, and made smaller
parasite load compared to the short-term cultured counterparts.
Macrophages infected by long-term cultured parasites expressed
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Table 1 | Live attenuated vaccines against leishmaniasis.

Attenuated vaccine form Species Animal model Result Reference

PHYSICALLY ATTENUATED

Long-term cultured L. major C57BL/6 and

BALB/c

C57BL/: completely resistant; BALB/c: partially

protection, persistent low-grade cutaneous disease

(16)
L. tropica

L. major BALB/c Protection (31)

L. chagasi BALB/c No protection (30)

L. amazonensis C57BL/6 Smaller lesions, ↑ IFN-γ, ↓ parasite load (32)

Temperature sensitivity L. braziliensis BALB/c Protection (17)

Radio-attenuated L. major CBA Resistance to subsequent infection with L. mexicana (33)

Gamma irradiation L. major CBA and BALB/c Protection against homologs and heterologous challenge (18)

CHEMICALLY ATTENUATED

With N -methyl-N ′-nitro-N -

nitrosoguanidine

Avirulent lpg−

deficient L. major

BALB/c ↓ Lesion size, resistance to a subsequent challenge (19)

Culturing in vitro under

gentamicin pressure

L. mexicana and

L. major

BALB/c No lesions, Th1-like responses (20, 34, 35)
↓Th2 responses, modulate the host immune response

Significant protection

Culturing in vitro under

gentamicin pressure

L. infantum Dogs No clinicopathological abnormalities (36–38)
↑ IFN-γ, ↓ IL-10, ↑ IgG2

↑ CD4+ and CD8+T cells

GENETICALLY ATTENUATED

dhfr-ts Null mutant L. major BALB/c Protective (21)

Cysteine proteinase-deficient

mutant

L. mexicana BALB/c, C57BL/6,

CBA/Ca

Immune response modulation, Th1 response (24)

dhfr-ts Null mutant L. major Monkeys No protection (39)

lpg2- L. major BALB/c Protection, no strong Th1 response (26)

Cysteine proteinase-deficient

mutants

L. mexicana Hamsters Delayed disease onset (40)
↓ Smaller lesions

↓ Parasite burden, ↓ IL-10 and TGF-beta, and protection

LiSIR2(±) mutant L. infantum BALB/c ↑ IFN-γ/IL-10 ratio, ↑ NO, protection (27)

Phosphomannomutase-deficient

mutant

L. major BALB/c ↓ IL-10 and IL-13, ↑ CD44hi T cell recruitment (41)
Protection

LdCen1(−/−) mutant L. donovani BALB/c SCID

hamsters

↑ IFN-γ, IL-2, TNF, ↑ IgG2a, ↑ IFN-γ/IL-10 ratio, ↑ NO, Th1

response, long-lasting protection in hamsters

(42)

HSP70-II null mutant L. infantum BALB/c ↑ NO, type 1 responses (43)

Ldp27(−/−) mutant L. donovani BALB/c Long-term protection (44)

cLdCen(−/−) mutant L. donovani Dogs ↑Type 1, ↓Type 2 (45)

↑ Immunogenicity

high level of chemokine CXCL10 mRNA, which might activate
these cells to kill the parasites (32). Nevertheless, there are sev-
eral similar trials which led to ineffectiveness, such as long-term
in vitro culture of L. chagasi that did not create protective immu-
nity (30). Using temperature-sensitive avirulent parasite clones,
the immunized susceptible BALB/c mice were successfully pro-
tected against L. braziliensis (17). Radio-attenuation, first intro-
duced in 1974 by Lemma et al., is another physical approach for
preparation of Leishmania vaccine (47). The resistance of CBA

mice to subsequent infection with L. mexicana is highly increased
by administration of radio-attenuated L. major vaccines (33). In
another experiment, gamma irradiation of L. major elicited a high
degree of protection against homologs and heterologous challenge
in CBA and BALB/c mice (18). Although most of these methods
showed promising protective effects, they were not further used
in research studies of vaccination against Leishmania species, due
to safety issues regarding incomplete inactivation and reversion of
infectivity (Table 2).
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Table 2 | Properties of different types of live vaccines based on whole organisms.

Type of live vaccines Benefits Concerns

Leishmanization Life-long protection No safety (48) and high risk (49)

Live non-attenuated

vaccines

Almost successful and immunity (48, 50) Exacerbate the disease, reversion to virulence, large persistent lesions,

psoriasis, and immunosuppression

Not reproducible (48), no efficacy, and no standardization and quality

control (48, 50)

Risk of HIV transmission

Physically attenuated Cheaper No safety, high risk, incomplete attenuation, no efficacy, not reproducible,

non-specific attenuation (51), and reversion to virulence (51)

Not acceptable for humans (50), risk of DNA damage

Chemically attenuated Cheaper No safety, high risk, incomplete attenuation, no efficacy, not reproducible,

risk of random mutations, non-specific attenuation (51), and reversion to

virulence (51)

Genetically attenuated Safer, more stable (48) Reversion to virulence

Natural course of infection (50) Presence of antibiotic resistance genes (52); storage and delivery

Non-pathogenic

organism

Safer (52), cross-reactivity between species (48),

induce both humoral and cellular response (48)

Not appealing prospect (48)

Possible reversion to virulence or reactivation (52)

Presence of antibiotic resistance genes (52)

Storage and delivery

Lower risk of reversion to the virulent phenotype,

highly immunogenic

Natural course of infection

For some easy administration

LIVE CHEMICALLY ATTENUATED VACCINES
To immunize susceptible BALB/c mice against challenge with
virulent L. major, Kimsey et al. used an avirulent clone of L.
major which was prepared after several in vitro treatments of a
virulent population of L. major with the mutagen, N -methyl-
N ′-nitro-N -nitrosoguanidine (MNNG), and could control lesion
size in the challenge mice model (19). It has been shown that an
avirulent lipophosphoglycan-deficient L. major clone is able to
elicit resistance to a subsequent challenge with virulent L. major
while it is unable to produce cutaneous lesions in susceptible
BALB/c mice (19). Similarly, in another experiment, avirulent
lipophosphoglycan-deficient L. donovani parasites could not gen-
erate visceral infection in hamster model after inoculation through
the intra cardiac route, contrary to virulent L. donovani (53). Dif-
ferent species of Leishmania have been attenuated by culturing
in vitro under gentamicin pressure successfully such as L. mexi-
cana,L. major,L. infantum, and L. donovani. While wild-type (WT)
parasites survived and multiplied, the attenuated strains were able
to invade but they neither could survive within bone marrow-
derived macrophages in vitro nor induce cutaneous lesions in
BALB/c mice after about 12 weeks. High level of protection was
induced in mice against challenge with WT parasites by both atten-
uated lines of L. mexicana and L. major (20). This was accompa-
nied by a CD4+Th1-like response in BALB/c mice that was shown
by the cytokine profile of their WT L. mexicana promastigotes-
stimulated splenocytes (34). Growth of the WT parasites was
excessively controlled in experiments wherein mice were simulta-
neously inoculated (either at the same site or on separate sites) with
attenuated and WT parasites, showing that the attenuated para-
sites have a possible therapeutic role. Comparing dogs infected

with either WT L. infantum or gentamicin-attenuated L. infantum
H-line, no pathological abnormalities were observed in the latter
group, which induced significantly higher IFN-γ and lower IL-10
levels with the highest levels of IgG2 subclass in their sera (37).
Also, proliferation of mononuclear cells is associated with cellular
immunity in immunized dogs (38). However, in addition to the
difficulty of large-scale production of these physically attenuated
vaccines and their delivery to the field in appropriate conditions,
the major drawback is their loss of effectiveness for protective
immunity due to their inability to form sub-clinical infection and
express critical antigen epitopes (30) (Table 2).

LIVE GENETICALLY ATTENUATED VACCINES
Development of transfection technology has acted as a powerful
reverse molecular genetics tool for genetic modifications in the
last two decades. Gene delivery into such unicellular pathogens
as Leishmania has created a great revolution in making genet-
ically defined vaccines through knocking out/in certain genes.
DNA delivery by physical methods is a very efficient and easy sys-
tem; DNA fragments are best transferred into parasites nuclei by
transfection through electroporation (54). A linearized construct
containing antibiotic resistant genes should be integrated into the
genome through homologous recombination (HR) to remove a
gene. This allows a DNA sequence transfer into the locus of inter-
est in the Leishmania genome using two flanking sequences in
both sides of the gene (54).

To generate an absolute knockout, the Leishmania parasite
needs a second construct to bear another antibiotic resistant gene
to replace the second gene alleles. The cell phenotype is altered
by this manipulation and new parasite features are naturally
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transferred to the next generations through inheritance. Con-
trolling the gene in its new genome location is the most crucial
concern in gene targeting because it may affect the normal gene
functionality in both sides of the target. Therefore, gene entrance
location is very important and should be confirmed by molecular
genetics methods although Leishmania genome is relatively easy to
manipulate. Phenotypic changes (e.g., morphology, growth, infec-
tivity) of the manipulated parasite after each transfection are other
critical issues that need to be studied.

In this direction, one of the first experiments to vaccinate mice
against challenge with virulent L. major was done by Titus et al.
(21) using dhfr-ts null mutant of L. major obtained by gene tar-
geting. Although it could not produce protective immunity in
primates and needed further improvement for vaccine applica-
tion (39), it could elicit considerable resistance phenotype after
BALB/c mice challenge with virulent L. major (21). L. mexicana
mutants lacking cysteine proteinase genes generated by targeted
gene disruption were tested on murine and hamster models in
another attempt and could induce delayed disease onset, smaller
lesions, and lower parasite burden in mice and hamsters (24, 40).
Thus, the idea of the feasibility of using genetically attenuated live
Leishmania to achieve protective immunity was supported by such
findings. Uzonna et al. showed that highly susceptible mice could
be protected against virulent challenge without inducing a strong
Th1 response when vaccinated with phosphoglycan-deficient L.
major (26). A much less capacity compared to the WT para-
sites was shown in L. donovani BT1 null mutant for inducing
infection in mice, and those susceptible to infection against L.
donovani challenge attained protective immunity (25). Silvestre
et al. showed that SIR2-deficient (silent information regulatory 2)
L. infantum induced a clear IFN-γ/IL-10 pattern that is associ-
ated with protection patterns (27). In another study, susceptible
BALB/c mice showed protection against infection when vacci-
nated with avirulent L. major phosphomannomutase-deficient
parasites (41). Kedzierski et al. concluded that the factors that
play essential parts in eliciting protection against Leishmania are
increase in the number of T cells, their rapid recruitment to lymph
nodes upon infection, and lower production of IL-13 and IL-10
(which leads to high IFN-γ/IL-10 ratio). It was shown in 2009 that
live attenuated L. donovani parasites by gene disruption of cen-
trin gene (LdCen1−/−) could be live, safe, and induce protection
in susceptible BALB/c mice, immunocompromised severe com-
bined immunodeficiency (SCID) mice and hamsters. Infection
with L. braziliensis, which causes mucocutaneous leishmaniasis,
could be prevented if mice were immunized with LdCen1−/−

(42). It was shown by Fiuza et al. that strong antibody pro-
duction, Type 1 polarization, and Type 2 inhibition could be
induced by LdCen−/− vaccine in dogs, as an important reser-
voir host (45). Dey et al. have shown that L. donovani mutant
of amastigote-specific protein p27 knockout (Ldp27−/−) as live
attenuated parasites are safe, induce protective immunity, and can
provide protection against homologous and heterologous Leish-
mania species (44). Carrion et al. believe that the ability of a
safe genetically modified L. infantum mutant, which lacks both
HSP70-II alleles (∆HSP70-II), provide protection against L. major
infection in BALB/c and can lead to the production of high levels
of NO, type 1 immune responses, and IgG subclass analyses in

mice (43). However, there are some limitations for their extensive
use such as safety constraints due to reversion to virulent form
especially in immunosuppressed individuals and manufacturing
concerns.

LIVE NON-PATHOGENIC VACCINES
Utilization of non-pathogenic species as Salmonella enteric, Lacto-
coccus lactis, and L. tarentolae to develop live attenuated parasites
as VL vaccines is another approach. This approach has shown
enhanced antigen presentation and potent Th1 response simi-
lar to BCG, a successful vaccine against M. tuberculosis infection
(Table 3). These methods can be further refined through the use
of their recombinants expressing antigens of virulent Leishmania
spp. In general, the most promising strategic alternative against VL
can be claimed to be the use of live, non-pathogenic/genetically
engineered strains of these species.

SALMONELLA ENTERICA
Salmonella (S) are intracellular pathogens that upon entrance
to human macrophages induce a viscerotropic immune response
similar to Leishmania. Development of live Salmonella vaccines as
a method for delivering heterologous antigens was discussed for
the first time in 1987 (66). The important advantage of using atten-
uated Salmonella for vaccination against VL is their low produc-
tion cost, storage at room temperature, and their oral, needle-free
application if rehydrated. Since orally administered live attenu-
ated Salmonella spp. that express heterologous antigens are safe
and highly immunogenic, they are promising candidates; they
can elicit prolonged, protective, systemic, and mucosal immune
responses against the heterologous pathogen (67).

In vivo inducible promoters and optimized expression systems
are used to construct novel attenuated Salmonella vaccines that
deliver antigens and show a host protective effect in small rodent
models of VL. Live Salmonella needs more studies to promote their
further application.

Furthermore, for delivery and expression of vaccine antigens
in the host, several attenuated lines of S. typhimurium have been
generated. For more safety, more than one attenuating mutation
can be incorporated in a vaccine. Several derived antigens (tar-
get carbohydrate, protein) or epitopes from different pathogens,
viruses, bacteria, and eukaryotic parasites are expressed by com-
bined Salmonella vaccines in the form of capsules, fimbria, or
flagellum, either within or on the surface of the cell (68). A very
significant resistance was developed against a L. major challenge
infection by the mice that had been orally immunized with gp63-
transformed S. typhimurium (55, 56). S. typhimurium derivatives
(GIDMIF, GIDIL2, GIDIFN, and GIDTNF) expressed cytokines
in vitro under anaerobic conditions. They were stably colonized
in orally immunized BALB/c mice more than 14 days and showed
protective effect which correlated with the induction of inducible
nitric oxide synthase (57).

Lange et al. showed that production of IFN-γ could induce
protection against L. major infection in susceptible BALB/c mice
and were enhanced as a result of using LACK antigens in DNA-
Salmonella primer-booster vaccination compared to that with the
DNA alone (59). In a recent study, Schroeder et al. identified two
novel candidate vaccine antigens (LinJ08.1190 and LinJ23.0410)
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Table 3 | Live non-pathogenic vaccines against leishmaniasis.

Vaccine form Species Animal model Result Reference

SALMONELLA ENTERICA

S. typhimurium aroA-+gp63 (SL3261-gp63) L. major CBA ↑T helper 1 protection (55)

S. typhimurium aroA- aroD-+ +gp63 (GID101) L. major BALB/c ↑Th1 subset of CD4+T cells protection (56)

S. typhimurium aroA- aroD- (BRD509), +MIF,

IL-2, IFN-γ, or TNF-alpha (GIDMIF, GIDIL2,

GIDIFN, and GIDTNF)

L. major BALB/c Limited lesion development (57)
↑ Nitric oxide synthase (iNOS)

↓ Parasite loads, protection

S. typhi delta aroC, delta aroD (CVD 908),

++gp63 (SL3261-gp63)

L. m.

mexicana

F1 (BALB/

cXC57BL/6)

T cell-mediated response (58)
Protection or resolution of the infection

DNA-Salmonella+ +LACK antigens

primer-booster

L. major BALB/c ↑Th1, ↑ IFN-γ, ↑ IgG2a (59)
Protection

S. typhimurium SL3261+ +LinJ08.1190 and

LinJ23.0410

L. major and

L. donovani

BALB/c ↑ Resistance against visceral leishmaniasis (60)

LACTOCOCCUS LACTIS

A2-expressing Lactococcus lactis L. donovani BALB/c ↑ Liver parasitemia (61)

↑ Antibody titers, critical influence on the immune

response

Lactococcus lactis co-expressing LACK and

IL-12

L. major BALB/c ↓ Parasite burden (62)
↑Th1 response (63)

Partially protection

Delay in footpad swelling

LEISHMANIATARENTOLAE

L. tarentolae L. donovani BALB/c ↑ Leishmania-specific TH1 immune response (12)

Protection

Recombinant L. tarentolae expressing A2 gene L. infantum BALB/c Intraperitoneal administration: ↑ IFN-γ, ↓ IL-5, ↑Th1,

protection

(64)

Recombinant L. tarentolae expressing

A2–CPA–CPB−CTE

L. infantum BALB/c ↑ IFN-γ, ↓ IL-10, ↑ NO (65)
↑ IFN-γ/IL-10 ratio

↓ Parasite burden, protection

by reverse vaccinology and utilized them in the construction of live
Salmonella carriers against VL, which reduced visceralization con-
siderably and increased resistancy against L. donovani infection in
susceptible BALB/c mice (60).

LACTOCOCCUS LACTIS
Lactococcus lactis is a Gram-positive, non-pathogenic, non-
colonizing lactic acid bacterium (69), which is industrially impor-
tant and is frequently used in the preparation of fermented foods
and dairies; FDA has given it a generally recognized as safe (GRAS)
status [(70); aminopeptidase enzyme preparation derived from L.
lactis (21CFR184.1985)].

It has been used as a live bacterial delivery vector for more
than 10 years (71) and scientists are being encouraged to use
it as a live vaccine against leishmaniasis. A2-expressing L. lactis
live vaccines have been generated and evaluated by Yam et al.
against L. donovani in BALB/c mice. This A2 anchored to the
cell wall has a critical influence on the immune response; this sub-
cellular location of antigen expression causes the highest reduction
in liver parasitemia, induces the highest level of antigen-specific

antibody titers which is seen at both low- and high-dose L. dono-
vani parasite challenges (61). In another study of this group it was
shown, using LACK- and IL-12-expressing L. lactis, that subcu-
taneous immunization against L. major infection delays footpad
swelling, indicating the necessity for co-administration of L. lac-
tis/sec IL-12 (secreting IL-12) as a Th1-inducing adjuvant (63).
Again in another study, the same group showed that if live L.
lactis secreting both LACK and IL-12 was used, oral immu-
nization was the only regimen that could protect BALB/c mice
partially against L. major infection (62). The L. lactis line gener-
ated in these studies provides an attractive cornerstone for further
research on live-based vaccines against leishmaniasis and other
pathogens.

LEISHMANIA TARENTOLAE
Recently, the use of a non-pathogenic Leishmania vector (L. tar-
entolae) was suggested by Breton et al. (12) as a vaccine candi-
date against leishmaniasis which is known as non-pathogenic for
human since it is not able to generate any manifestation of human
leishmaniasis. Although this parasite is non-pathogenic in either

www.frontiersin.org March 2014 | Volume 5 | Article 134 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Immunotherapies_and_Vaccines/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Saljoughian et al. Live vaccination against visceral leishmaniasis

mouse or hamster models because it lacks any clinical symptoms,
it can infect mammalian cells and transform into amastigotes (72).
Genome sequence analyses have revealed that this parasite is syn-
tonic to the three sequenced pathogenic Leishmania species (L.
major, L. braziliensis, and L. infantum) and that more than 90%
of the approximately 8200 genes are shared by all the species.
Nevertheless, some of the essential genes that are relevant to path-
ogenicity in pathogenic strains or expressed in amastigote form
are absent in L. tarentolae or were in variable copy number. This
supports the idea that some of these genes are possible to be asso-
ciated with reduction of pathogenic capacity in L. tarentolae and
make it an intracellular parasite and its diminished pathogenic
potential to humans. As an example, the amastin family, especially
the delta group as just two copy number in L. tarentolae while
high copy numbers (12–25) are found in the pathogenic species
(73). Why L. tarentolae cannot replicate efficiently in mammalian
macrophages can be explained by the absence of these proteins.
It has been shown in experimental vaccine trials that a single
intra peritoneal immunization of L. tarentolae elicited a protective
immune response against L. donovani in susceptible BALB/c mice;
it was concluded that it was a result of an enhanced antigen presen-
tation and potent Th1 immune response (12). Since L. tarentolae
is a safe vector for use as a vaccine, it can be more effective anti-
Leishmania vaccine by genetic manipulation in order to induce
transgenic L. tarentolae which expresses certain immunodominant
Leishmania antigens.

Effort has also been made to use L. tarentolae as a specific
deliver and expression system for Leishmania antigens in host.
The L. donovani A2 antigen was expressed in L. tarentolae, which
normally lacks this protein (74) and used as a vaccine strain in an
experimental mouse model. The susceptible mice were protected
against L. infantum infection through vaccination following high
levels of IFN-γ were produced (64). In addition, L. tarentolae can
be used as a promising live vaccine vector against intracellular
pathogens. This idea was examined for the first time in an exper-
iment using a recombinant L. tarentolae expressing HIV-1 Gag
protein as a candidate HIV-1 vaccine. It was shown that the vac-
cine induces a strong cell-mediated immunity in BALB/c mice and
decreases HIV-1 replication in an ex vivo condition (75). Also, a
novel live vaccine using recombinant L. tarentolae expressing E7
protein for the protection of mice against HPV-associated tumors
was produced and evaluated (76). It is worth mentioning that
this vaccine showed the best protection and minimum tumor size
among all other groups against TC-1-induced tumors (76).

Our team produced a recombinant L. tarentolae expressing
the A2–CPA–CPB−CTE tri-gene fusion that are three important
vaccine candidate antigens of L. infantum, as a new live vac-
cination strategy against visceral form of leishmaniasis in two-
modalities, namely DNA/live and live/live vaccination in BALB/c
mice. We demonstrated how prime-boost (DNA/live) strategies
using recombinant L. tarentolae-based vaccines elicited promis-
ing immunization against a high-dose virulent L. infantum chal-
lenge (65). We also tested live/live L. tarentolae-A2–CPA–CPB−CTE

prime-boost vaccination regime in hamsters and showed that
it represented an appropriate animal model in the discovery of
potential antigens that could be used in the control of canine VL

(unpublished data). The parasite loads in both visceral organs
were controlled in the vaccinated hamsters reaching a negligible
level by day 56 post challenge, demonstrating its strong vaccine
potential. Five weeks after infection by L. infantum, hamsters that
had received the live vaccine produced higher levels of anti-L.
infantum lysate antibodies than those injected with PBS control.

In another attempt, we tested the efficacy of a novel combi-
nation of established protective parasite antigens expressed by
L. tarentolae together with saliva antigens as a vaccine strategy
against L. major infection. Different DNA/live and live/live prime-
boost vaccination modalities with live recombinant L. tarentolae
stably expressing cysteine proteinases (type I and II, CPA/CPB)
and PpSP15, an immunogenic salivary protein from Phlebotomus
papatasi, a natural vector of L. major, were tested in both suscep-
tible BALB/c and resistant C57BL/6 mice. In both strains of mice,
the strongest protective effect was observed when priming with
PpSP15DNA and boosting with PpSP15 DNA and live recom-
binant L. tarentolae stably expressing cysteine proteinase genes
(accepted in PLoS NTD, 2014).

Regarding vaccine development in dogs, with lack of enough
knowledge about canine leishmaniasis and canine immunity, it is
almost impossible to predict the results obtained from the mouse
and hamster models, if vaccine candidates can work in dogs.
Therefore, it is essential to do more studies on dogs for both new
vaccine candidates and immune response analyses. Whether or not
protection will be achieved, results of such tests would be valuable
for the advancement of knowledge about canine leishmaniasis and
giving a guided direction to future protection strategies. It is worth
to mention that our group is testing the genetically knock in L. tar-
entolae expressing the A2–CPA–CPB−CTE tri-gene fusion as a live
vaccination strategy with different modalities in outbreed dogs.

CONCLUSION
Unlike most other pathogens, Leishmania never clears fully by
immune system and we do not need sterile immunity. The impor-
tant issue for maintenance of immunity is believed to be the
presence of small number of live parasite in the host. Live replicat-
ing parasites or just persistent antigens are believed to be important
for the maintenance of effector memory like T cells but not for
central memory T cells. It has been reported that the quality of
memory cells in the presence and absence of live parasite are
different in CL (77). In the case of VL, persistence of parasite anti-
gen is important for generating antigen-specific effector T cells,
although more depth studies are required to be analyzed in the
case of non-pathogenic and/or genetically attenuated Leishmania
parasite (44). During Leishmania infection, we need a methodical
understanding of how the immunological memory is generated
and maintained, what the sustained long-term protective immune
responses are, and through what mechanisms vaccines stimu-
late protective immunity. An ideal anti-Leishmania vaccine must
maintain constant turnover of Leishmania-specific memory cells
in vaccinated host, otherwise repeated booster injections would be
required (78).

Immune response to Leishmania is very complicated and for
wisely designing vaccines we need to know which T cell deter-
minants act as IFN-γ inducer (CD8+ or CD4+ T cell) and are
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essential for long-term immunity. Long-lasting protective immu-
nity induced by vaccination is a pragmatic goal for control of
parasitic infections. In LZ, the only successful strategy that has
been used to induce resistance to cutaneous leishmaniasis, after
obviation of the infection, individuals are resistant to re-infection.
It is now clear that in mice infected with WT parasites, heteroge-
neous memory CD4+ T cell pool contain two subsets, specified
by their expression of the LN-homing molecule CD62L, one of
them, effector memory T cells, has the characteristics of effector
cells (CD62Llo) and the other one, central memory T cells, act as
a repository of antigen-specific T cells (CD62Lhi) and can extend
upon rechallenge, differentiate into effector T cells, and refill the
effector cell population (79, 80). The latter which expressed CD62L
and lodged to the lymph nodes, expand early after infection with L.
major (81). However, the first population of cells CD62Llo effector
T cells could intercede resistance faster than the CD62Lhi central
memory T cells (80). In other words, at providing immunity to
rechallenge in leishmaniasis central memory CD4+ T cells that
could be maintained without persistent parasites were less effec-
tive. This observation indicates that for immunity maintenance
and providing long-term immunologic memory, persistent para-
sites may well be needed (82). Therefore, on this basis the idea of
using live vaccine either in attenuated or non-pathogenic form is
strengthened.

It is preferred that attenuating process of Leishmania strains
for the production of live vaccine be done selectively (i.e., only in
intracellular form or amastigotes); this will allow the cultivation
of promastigotes in large-scale. Attenuation needs to be optimized
so that the power of live parasite vaccines can be improved, but
it should be noted that reversion of these parasites to the virulent
form restricts their use. In other words, returning back to virulence
is also probable; hence, the need for the production of new safer
live vaccine vectors such as non-pathogenic L. tarentolae harbor-
ing immunogenic antigens that can enhance antigen presentation
and elicit potent immune responses, without any risk of disease
development in humans, becomes obvious. Using L. tarentolae
as non-pathogenic vector is promised because of its safety and
easy adaptation to mammalian system. Also, it has not the ability
to revert to pathogenic form due to its non-pathogenic intrinsic
property (11, 12). But what is certain is that L. tarentolae could not
long survive in the mammalian cell, so it is best to think of some
strategies to prolong its life there. Finally, there are still several
obstacles for utilization of live non-pathogenic Leishmania, such
as lyophilization and storage of this organism, which need special
attention and serious research.
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