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The ability of dendritic cells (DCs) to cross-present tumor antigens has long been a focus of
interest to physicians, as well as basic scientists, that aim to establish efficient cell-based
cancer immune therapy. A prerequisite for exploiting this pathway for therapeutic purposes
is a better understanding of the mechanisms that underlie the induction of tumor-specific
cytotoxic T-lymphocyte (CTL) responses when initiated by DCs via cross-presentation. The
ability of humans DC to perform cross-presentation is of utmost interest, as this cell
type is a main target for cell-based immunotherapy in humans. The outcome of a cross-
presentation event is guided by the nature of the antigen, the form of antigen uptake, and
the subpopulation of DCs that performs presentation. Generally, CD8α+ DCs are consid-
ered to be the most potent cross-presenting DCs.This paradigm, however, only applies to
soluble antigens. During adaptive immune responses, immune complexes form when anti-
bodies interact with their specific epitopes on soluble antigens. Immunoglobulin G (IgG)
immune complexes target Fc-gamma receptors on DCs to shuttle exogenous antigens
efficiently into the cross-presentation pathway. This receptor-mediated cross-presentation
pathway is a well-described route for the induction of strong CD8+ T cell responses. IgG-
mediated cross-presentation is intriguing because it permits the CD8− DCs, which are
commonly considered to be weak cross-presenters, to efficiently cross-present. Engag-
ing multiple DC subtypes for cross-presentation might be a superior strategy to boost
CTL responses in vivo. We here summarize our current understanding of how DCs use
IgG-complexed antigens for the efficient induction of CTL responses. Because of its impor-
tance for human cell therapy, we also review the recent advances in the characterization
of cross-presentation properties of human DC subsets.

Keywords: anti-tumor immune responses, DC subset functions, cell type-specific cross-presentation, IgG-
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INTRODUCTION
The mechanism of cross-presentation allows exogenous antigens
to access the processing and presentation machinery of a cell so
that exogenous antigenic peptides are displayed on MHC class I
molecules for T cell recognition, which consequently leads to the
priming of CD8+ T cell responses. As such, the cross-presentation
pathway is essential for inducing cytotoxic T-lymphocyte (CTL)
responses against viruses as well as intracellular bacteria, which
do not infect the APC (1–4). Additionally, cross-presentation is
thought to be crucial in mounting immune responses against
tumor antigens. Indeed, cross-priming of tumor reactive cytotoxic
CD8+ T cells through cell-based tumor vaccines is a major goal
in cancer immunotherapy (5, 6). Induction, the so called prim-
ing, of tumor-specific CD8+ T cells is an appealing therapeutic
strategy because the generated CTLs not only mediate antigen-
specific killing of the targeted tumor via cell–cell contacts, but also
provide the host with long-lasting memory responses that may
prevent cancer recurrence.

Dendritic cells (DCs) have been proven to be superior in rout-
ing exogenous protein antigen toward cross-presentation; how-
ever, they comprise a heterogeneous cell population, and signifi-
cant differences in the cross-presentation capacity of different DC
subsets have been reported (4). Importantly, cross-presentation

of antigen does not result solely in the priming of CTLs but
can also lead to the induction of cross-tolerance (7). The latter
immunological outcome should by all means be avoided during
cancer therapy. Thus, to take full advantage of the therapeu-
tic potential of antigen cross-presentation by DCs, significant
effort was made to delineate precisely how cross-presentation is
initiated and regulated. By now, many mechanistic details of anti-
gen cross-presentation have been discovered whereas others still
remain enigmatic. In contrast to MHC class II-restricted antigen
presentation, the default pathway for the display of exogenous
antigens for immune recognition and the induction of CD4+ T
cell responses, cross-presentation in vivo is thought to be con-
trolled rather strictly by the type of DCs used as antigen-presenting
cells. In this review, we summarize the current knowledge on
how immune complexes facilitate antigen cross-presentation and
expand the cross-presentation capacity of specific DC subsets. We
also discuss the therapeutic potential of this cross-presentation
pathway.

IgG IMMUNE-COMPLEXED ANTIGENS ENTER THE
CROSS-PRESENTATION PATHWAY THROUGH Fc RECEPTORS
Our immune system has to respond to a variety of different forms
of antigens and thus has developed an array of mechanisms to
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deal with antigenic diversity. Antigens can be small soluble mol-
ecules, which are taken up by fluid phase mechanisms, or larger
particles, such as bacteria, which are phagocytosed. To facilitate
antigen uptake and processing, DCs also use an assortment of
endocytic receptors (Figure 1). Several of these endocytic recep-
tors belong to the C-type lectin family. For example, DEC-205,
the mannose receptor, and Clec9a have been shown to efficiently
shuttle antigen for cross-presentation. Several recent reviews give
detailed insight into the functional differences of these endocytic
receptors, and they are therefore only briefly mentioned here (8–
10). Importantly, monoclonal antibodies against these endocytic
receptors have been employed to target antigen to DCs for cross-
presentation, and using this strategy, encouraging anti-tumor
immunity was initiated in mice (11–13). Thus, strong emphasis
is continuously put on targeting of cross-presenting DCs to elicit
anti-tumor responses, as exhibited in several ongoing clinical trials
(11, 14–16). A so far therapeutically less exploited but remarkably
effective way for DCs to internalize antigen for cross-presentation
is via Fc receptors (Figure 1). Antigens, especially under inflam-
matory conditions, can be found already bound to antigen-specific
antibodies, and these antigen–antibody complexes (referred to as
immune complexes or immune-complexed antigen) can be rec-
ognized by Fc receptors through the Fc region of the antibodies.
Binding of the immune complexes typically triggers crosslink-
ing of the Fc receptors, their internalization together with the
antigen, and shuttling of the immune complexes toward antigen
presentation compartments (17, 18).

Before the crucial role of Fc receptors in antigen cross-
presentation was identified, their value in enhancing antibody-
dependent cellular cytotoxicity (ADCC) by inflammatory cells,
including neutrophils and macrophages, was already recognized
(19). Enhancement of T cell proliferation via antigen-specific anti-
bodies that bind Fc receptors became evident in the mid-1980s
(20–22). Studies using Fcγ receptor knockout mice revealed the
general requirement of Fcγ receptor engagement for the effective-
ness of anti-tumor immune responses in vivo. The finding that

anti-tumor antibodies require the induction of CTL responses
to be effective suggested early on that Fcγ receptors contribute
to anti-tumor immunity in addition to mediating ADCC (23).
Shortly after, it was compellingly demonstrated that endocytosis of
immune complexes via Fcγ receptor allows MHC class I-restricted
antigen presentation and the priming of CTLs (24, 25). The find-
ing that DCs use immunoglobulin G (IgG)-immune complexes
to efficiently prime specific CD8+ CTL responses was shortly
thereafter confirmed in vivo (26). Furthermore, it was shown that
only antigen targeting to FcγR on DCs, but not antigen targeting
to surface immunoglobulins on B cells, induces efficient cross-
presentation, despite the fact that both targeting strategies allow
these cell types to present antigen via MHC class II with equal
efficiency (27).

The therapeutic potential of Fc receptor-mediated antigen
uptake for anti-tumor immunotherapy became evident early
on. Studies with human cells demonstrated that coating human
myeloma cells with monoclonal antibodies promotes cross-
presentation of myeloma-associated antigens by human DCs. The
enhanced cross-presentation of tumor antigen was preventable by
pretreatment of the DCs using Fcγ receptor blocking antibod-
ies (28). Notably, this study did not observe that Fcγ receptor-
mediated antigen uptake induces significant phenotypic matura-
tion of human DCs, as it has been described for murine DCs
(24, 26, 27). The possible absence of maturation induction in
human DCs through immune complexes is important to keep
in mind with regard to a clinical applicability of Fc receptor
targeting. DC maturation in the context of antigen uptake is con-
sidered to be a crucial attribute that must be achieved to induce
efficient CTL responses by cross-presentation receptors because
otherwise cross-tolerance may be induced (7). Overall, although
there is substantial evidence suggesting that cross-presentation of
immune-complexed antigen via Fcγ receptors is a promising tool
to develop DC-based vaccination strategies, there are several fac-
tors, which we will discuss below, that have so far hampered the
applicability.

FIGURE 1 | Dendritic cells use several mechanisms of antigen
uptake for cross-presentation. (A) Several receptors have been shown
to efficiently shuttle exogenous antigen into the cross-presentation
pathway. (B) These receptors are now employed to target DCs in vivo for
cancer immunotherapy using receptor-specific antibodies coupled with

antigen. (C) Immunoglobulins can bind to antigen and form immune
complexes. These immune complexes can then be taken up via Fc
receptors and deliver antigen for cross-presentation. Pinocytosis seems
not to be an effective mechanism for routing antigen toward
cross-presentation.
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CROSS-PRESENTATION OF IMMUNE COMPLEXES AND THE
DIVERSITY OF Fc RECEPTORS
A major difficulty for studying and determining the therapeutic
applicability of cross-presentation of immune complexes is the
complexity of the Fcγ receptor family [Table 1; Ref. (29)]. Several
types of Fc receptors have been found in addition to species-
dependent differences. In mice, four different classes of Fcγ recep-
tors comprising FcγRI, FcγRIIB, FcγRIII, and FcγRIV have been
described. The activating Fc receptors FcγRI, FcγRIII, and FcγRIV
consist of an immunoglobulin binding α-chain and a signal
transducing γ-chain, which carries an immunoreceptor tyrosine-
based activation motif (ITAM). In contrast, FcγRIIB is a single
chain inhibitory receptor with an immunoreceptor tyrosine-based
inhibitory motif (ITIM). The human FcγR system seems to be far
more complex as exemplified by the presence of gene families for
FcγRI and FcγRII, as well as the presence of several allelic forms for
FcγRIIIA, FcγRIIIB, and FcγRIIB. Mouse FcγRIV is most closely
related to human FcγRIIIA whereas mouse FcγRIII is most similar
to human FcγRIIA. FcγRIIIB is unique for the human system, but
both species have the inhibitory function of FcγRIIB in common.

Dendritic cells simultaneously express activating and inhibitory
Fc receptors [reviewed in Ref. (18)]. The conserved expression
of an inhibitory Fc receptor along with activating Fc recep-
tors among species suggests that Fc receptor-mediated cross-
presentation is tightly regulated in vivo. The requirement of
strictly controlling Fc receptor-mediated cross-presentation was
demonstrated by studies that show that antibody-mediated cross-
presentation of self-antigens contributes to autoimmune disease
(34, 35). The authors looked at the development of autoim-
mune diabetes in RIP-OVA mice. In this model, the transfer
of OVA-specific naïve CD8+ T cells induces peripheral toler-
ance. Importantly, the co-administration of anti-OVA IgG leads
to CD8+ T cell-driven diabetes through the activating Fcγ recep-
tors on DCs. The disease pathogenesis in this model was further
augmented in FcγRIIB knockout mice, suggesting a tolerogenic
function of FcγRIIB in vivo. In line with a tolerogenic func-
tion of this receptor, it was shown that DCs from FcγRIIB
knockout mice generate overall stronger immune responses and
that blocking immune complex binding to FcγRIIB promotes
DC maturation, which is considered one of the most impor-
tant factors for efficient priming of CTL responses (36–39). This
suggests that expression of inhibitory FcγRIIB, which restricts
DC maturation under non-inflammatory conditions and thus

probably prevents autoimmunity, may hamper immunotherapeu-
tic approaches against tumors and microbial infections (29, 40).
Hence, it is important to be aware of the expression patterns and
ratios of activating versus inhibitory Fc receptors on murine and
human DCs when studying the effects of immune complexes.

Additionally, IgG subclass composition of immune complexes
has been shown to influence binding affinity resulting in different
binding properties to individual Fc receptors (41). For example,
immune complexes composed of human IgG1 bind with relatively
high affinities to all Fc receptors, whereas IgG2 immune complexes
seem to bind primarily to human FcγRIIA and FcγRIIIA (42).
Furthermore, disparities in the binding affinities of immunoglob-
ulin isotypes for specific Fcγ receptors exist between mice and
humans. Thus, predictions of immune complex functions drawn
from wild-type mouse models might be inadequate. A prominent
example of the failure of previous studies in accurately recapit-
ulating the specificity and diversity of Fcγ receptor interactions
is the outcome of a clinical trial using a CD28-specific superag-
onistic antibody; this led to severe side effects including severe
pain and extreme swelling, as well as one individual suffering
from heart, liver, and kidney failure (43). To address this prob-
lem, an FcγR humanized mouse strain was recently generated
through transgenic expression of the entire human FcγR fam-
ily under the control of their human regulatory elements on a
genetic background lacking all mouse FcγRs (44). The animals
demonstrate normal lymphoid tissue development and gener-
ate normal immune responses. Thus, this mouse strain offers
a greatly improved model to study immune complex-mediated
cross-presentation, although it addresses only the species-specific
differences regarding Fcγ receptors. Humans and mice also dis-
play differences in the expression patterns of Fc receptors for
IgE and IgA, which might contribute to cross-presentation of
immune-complexed antigen in vivo (45–48).

Increasing evidence suggests that allelic isoforms and polymor-
phisms of Fc receptors are shaping immune responses in humans.
FcγRIIA (CD32A), the major phagocytic FcγR in humans, exhibits
a polymorphism in the ligand-binding domain (49). Individ-
uals homozygous for the R allelic form of CD32A (CD32AR
allele) have been described as more susceptible to bacterial
infections and autoimmune diseases compared to individuals
homozygous for the H allelic form of CD32A (CD32AH) and
CD32AR/H heterozygous individuals (50, 51). A binding study
using two-dimensional affinity measurements also demonstrated

Table 1 | Overview of human and murine Fcγ receptors.

Human/mouse IgG receptor CD Function Affinity Structure

Human (30–33) FcγRIIA CD32A Activation Low to medium α-Chain with ITAM

FcγRIIC CD32C Activation Low to medium α-Chain with ITAM

FcγRIIIA CD16A Activation Low to medium α-Chain and γ2-chains with ITAM

FcγRIIIB CD16B Activation Low to medium GPI-linked α-chain

Human and mouse (30–33) FcγRI CD64 Activation High α-Chain and γ2-chains with ITAM

FcγRIIB CD32B Inhibition Low to medium α-Chain with ITIM

Mouse (30–33) FcγRIII CD16 Activation Low to medium α-Chain and γ2-chains with ITAM

FcγRIV Activation Low to medium α-Chain and γ2-chains with ITAM
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that compared to CD32AH, CD32AR has significantly lower affin-
ity toward IgG2, as well as to IgG1 and IgG3, suggesting that the
lower binding of CD32AR to IgGs might be responsible for the
lack of immune complex clearance, which leads to increased sus-
ceptibility to bacterial infections and autoimmune diseases (52).
Genetic variations in Fc receptors have also been linked to cancer
susceptibility (53–55). However, less efficient immune complex
binding might also be reflected in less efficient antigen uptake and
presentation via this receptor, and thus consequences for immune
complexes cross-presentation should be expected. Of note, glyco-
sylations in the IgG–Fc region can also affect Fc receptor-binding
properties as discussed in detail in a recent review (56). How anti-
gen cross-presentation of immune complexes and T cell priming
is altered by differences in IgG subclass composition, IgG–Fc gly-
cosylation, and Fc receptor polymorphisms is currently unknown,
but is important to address. In conclusion, the complexity of inter-
actions of IgG with the Fc receptor system in addition to concerns
about species specificity presents a major hurdle that needs to be
overcome for successful therapeutic applications.

CROSS-PRESENTATION OF IMMUNE COMPLEXES AND THE
DIVERSITY OF DC SUBPOPULATIONS
Whether it would be beneficial to target a specific DC subset that
displays a superior capacity to cross-present antigen for thera-
peutic approaches is currently a field of extensive investigation
(4, 57). We will first focus on what we know so far about the
cross-presentation capacity of DC subsets in general and then dis-
cuss our current understanding of cross-presentation of immune
complexes in regard to DC subsets. DCs are a heterogeneous
cell population, and substantial effort was made to characterize
different subsets in mice and identify their human counterparts
[reviewed in Ref. (58–60)]. In principal, murine and human DCs
can be divided into two major subsets, classical/conventional DCs
(cDCs) and plasmacytoid DCs (pDCs). In mice, cDCs comprise
CD8α+ and CD8α− lineages, which have been found to differ in
their ontogeny and display functional specializations. Since the
expression of surface markers on human and murine DCs is not
conserved, only recently has gene expression profiling allowed for
the identification of human CD141+ DCs as functional equiva-
lents of the mouse CD8α+ DCs, while human CD1c+ DCs appear
to be comparable to mouse CD8- DCs (61, 62).

In mice, the CD8α+ DC subset is considered to be more effi-
cient at antigen cross-presentation than other DC subsets (63–66).
The corresponding human subset, CD141+ DCs, is also potent at
inducing CD8+ T cell responses in vitro, although their superi-
ority to other human DC subsets is uncertain (67–73). Several
groups have now reported that all human DC subsets can effi-
ciently cross-present several forms of antigen [reviewed by Ref.
(57)]. Initially, CD141+ DCs isolated from human blood were
described to better cross-present CMV protein pp65 in compar-
ison to CD1c+ DCs and pDCs from the same donor (67). It is
important to note, however, that cross-presentation in vivo occurs
rather in secondary lymphoid organs. A recent study has overcome
the difficulties in isolating sufficient amounts of human DCs from
lymphoid tissue and characterized in detail the cross-presentation
properties of tonsil-resident DCs (73). An important finding of
this study was that all tonsillar DC subsets (i.e., pDCs and the

two populations of cDCs, CD1c+ DCs and CD141+ DCs) dis-
played comparable capacities to cross-present soluble antigens in
contrast to macrophages, which lacked this ability. Interestingly,
necrotic cells were phagocytosed and cross-presented by CD1c+

DCs and CD141+ DCs with similar efficiency, while pDCs were
poor at taking up necrotic particles, consequently resulting in inef-
ficient cross-presentation. Tonsillar macrophages were found to be
the most efficient at taking up dead cells, but despite this fact they
completely failed to cross-present necrotic cells. Collectively, the
ability to efficiently cross-present in humans seems less restricted
to a specific DC subpopulation than as observed in mice. Along
these lines, it has been shown that the cross-presentation proper-
ties of human DCs depend on the antigen uptake pathway and the
ability of the pathway to route the antigen into an early endoso-
mal compartment rather than on a specific DC subset (74, 75).
CD141+ DCs are superior cross-presenters compared to CD1c+

DCs only when the antigen is delivered via CD205, a receptor
that preferentially targets antigens to late endo/lysosomal com-
partments. If antigen is targeted through CD40, CD1c+ DCs are
as efficient as CD141+ DCs. These findings argue that targeting
one specific DC subset for the design of DC-based vaccines may
not offer the presumed advantage.

The cross-presentation studies discussed above focused pri-
marily on soluble antigen uptake and targeting antigen via several
endocytic receptors. How does cross-presentation of immune
complexes fit into this picture? Targeting DCs through IgG
immune complexes has been proven to be superior to soluble
immune complexes for inducing CD8+ T cell responses and as
anti-tumor vaccines by utilizing murine bone marrow-derived
DCs (76, 77). In addition, circulating specific antibodies have been
shown to enhance systemic cross-priming by delivering immune-
complexed antigen to murine DCs in vivo (78). Notably in mice,
immune-complexed antigen allows the CD8α− DC subset, which
has been proven to be very poor at presenting soluble antigen,
to become potent cross-presenting cells (79). Interestingly, cross-
presentation by CD8α− DCs depends on activating Fcγ receptors.
Lack of the signal transducing γ-chain specifically abolishes pre-
sentation of immune-complexed antigen on MHC class I mole-
cules but not on MHC class II molecules (79). Another remarkable
feature regarding cross-presentation of immune complexes is their
reliance on FcRn, an IgG binding receptor that is primarily located
intracellularly and binds IgG independently from their Fcγ recep-
tor interaction sites (80). How FcRn promotes cross-presentation
of immune complex is discussed later in more detail.

Our knowledge regarding cross-presentation of immune-
complexed antigen by human DC subsets is still very lim-
ited. The effects of Fcγ receptor antigen targeting on the
efficiency of cross-presentation in human DCs were recently
investigated using human cytomegalovirus (HCMV) pp65 as
a protein antigen (81). In line with the data obtained from
murine models, immune-complexed antigen is more efficiently
cross-presented than comparable amounts of soluble antigen by
human DCs. The enhanced cross-presentation capacity observed
was not mediated by increased antigen uptake or induction
of DC maturation through the immune-complexed antigen.
The authors also demonstrated that both of the two major
intracellular cross-presentation pathways (4), the cytosolic and
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the vacuolar/endosomal pathway, are involved in Fcγ receptor-
mediated uptake of immune complexes and their processing.
Notably, monocyte-derived DCs as well as CD141+ DCs required
antigen processing by both intracellular pathways. The finding that
CD141+ DCs, which are the human equivalent to CD8α+ DCs,
use both processing pathways for immune complexes points to
unique features of human DCs. Murine CD8α+ DCs mainly use
the cytosolic pathway to process antigen for cross-presentation,
including the processing of immune complexes (82). Another dif-
ference to murine DCs is that the CD141+ DC subset proved to be
superior to CD1c+ DCs in cross-presenting pp65 immune com-
plexes (81). These findings point to obvious differences between
murine and human DC subsets regarding immune complex-
mediated cross-presentation. Since the human DCs were isolated
from blood (81) and the murine DCs were isolated from the spleen
(79, 80), it is possible that DCs from blood and lymphoid tissue
generally differ in their cross-presentation capacities of immune
complexes,which have similarly been observed for human DC sub-
sets in response to soluble antigen as described above. In any case,
the study by Flinsenberg et al. found that Fcγ receptor targeting
increases cross-presentation of HCMV antigen by human blood
and tonsillar CD141+DCs, which suggest that targeting of this DC
subset with immune complexes might improve DC-based vacci-
nation strategies. Another very important aspect of this study is
the detailed characterization of Fcγ receptor expression on human
DC subsets. Although CD1c+ DCs expressed overall higher lev-
els of FcγRII, CD141+ DCs seem to express higher levels of the
activating FcγRIIA relative to the inhibitory FcγRIIB. Thus, this
study clearly demonstrates that the overall expression level of one
specific Fcγ receptor does not determine the functional outcome,
and that we need to consider the diversity of Fcγ receptor expres-
sion by distinct DC subsets to evaluate the therapeutic potential
of immune complex-mediated cross-presentation.

A further difference between mice and humans seems to be the
cross-presentation capacity of pDCs. Several studies have reported
that murine pDCs do not possess the ability to cross-present (83–
86) or that their capacity is insignificant when compared to cDCs
(87). In contrast to mouse pDCs, human pDCs can efficiently
cross-present antigen and induce CD8+ T cell responses (88–90).
Human pDCs also express FcγRIIA, and this receptor has been
shown to mediate internalization of immunoglobulins bound to
chromatin (91), Coxsackie virus (92), the model antigen KLH (93),
and the tumor antigen NY-ESO-1 (94). In addition, the group of
de Vries described that pDCs can use several receptor-targeted
antigen uptake pathways, including the activating FcγRIIA recep-
tor, to target antibody-coated nanoparticles for cross-presentation.
Although this study did not use classical immune complexes,
together with a vaccination study in which pDCs significantly
prolonged overall survival in melanoma patients (95), it sup-
ports the notion that pDCs are interesting targets for DC-based
immunotherapeutic strategies.

Collectively, we should keep in mind that some of the observed
differences between human and murine DC subsets regarding
cross-presentation of immune complexes most likely stem from
differences in their Fc receptor expression and from different bind-
ing affinities for IgG isotypes. Recently, various published and
publicly available microarray data were compiled, and this mRNA

collection provides an excellent overview of mouse and human Fcγ
receptor expression by DC subsets, monocytes, and macrophages
(18). Overall, the Fcγ receptor expression levels obtained by
mRNA analysis correspond well with the surface expression lev-
els acquired by flow cytometric analysis (FACS) (Table 2). For
the future, it will be important to determine whether the Fcγ
receptor expression of human DC subsets isolated from blood
also matches the expression on tissue-resident DCs from different
organs.

REGULATION OF Fcγ RECEPTOR EXPRESSION IMPACTS
CROSS-PRESENTATION OF IMMUNE COMPLEXES
Efficient cross-presentation for inducing protective immune
responses against tumors or viruses is strongly governed by the
ratio of activating versus inhibitory Fcγ receptors expressed on
DCs. In addition to the DC subset, the maturation/activation state
of DCs likely impacts their Fcγ receptors expression pattern. The
maturation/activation state of DCs is in general strongly influ-
enced by the cytokine milieu of the microenvironment, and a
considerable number of cytokines have been shown to regulate
Fcγ receptor expression in vitro. TGF-β1 down-regulates surface
expression FcγRI and FcγRIII on monocytes (99). IL-4, a cytokine
associated with Th2-type immune responses, increases the expres-
sion of inhibitory FcγRIIB. In contrast, the Th1-cytokine IFN-
γ increases expression of activating Fc receptors on monocytes
(100). Monocytes also have been shown to respond to IFN-γ
and TNF-α treatment with enhanced immune complex binding
via FcγRI, even when saturated with pre-bound monomeric IgG
(101). Cytokine-induced changes in Fcγ receptor expression were
also found using monocyte-derived DCs (96). Immature DCs
generated with GM-CSF and IL-4 from monocytes express high
amounts of inhibitory FcγRIIB, which is down-regulated upon
DC maturation induced by TNF-α. The authors also showed that
blood DCs activated with a cytokine cocktail containing TNF-
α, IL-1β, IL-6, and PGE2 induce more influenza-specific CD8+

T memory cells via targeting of FcγRI and FcγRIIA. Interest-
ingly, crosslinking of inhibitory FcγRIIB only reduced the cross-
presentation ability of immature DCs but not of mature DCs.
Treatment of mature blood DCs with IL-10, or a combination
of IL-10 and IL13, was found to increase expression of FcγRIIA
and FcγRIIB (96). To sum up, although we know that cytokines
can modulate Fcγ receptor expression, and that tumors create
cytokine-rich microenvironments that involve the production of
immunosuppressive as well as inflammatory cytokines to drive
tumor progression (102, 103), our knowledge is very limited
as to how cytokines from the tumor microenvironment affect
cross-presentation of immune complexes by DCs. Thus, regard-
ing anti-tumor therapy, this gap in knowledge might explain
why the long-term therapeutic outcomes of immune complex-
based strategies were not more successful, although efficient
cross-presentation is induced by IgG-complexed antigens. One
explanation could be that the tumor microenvironment pro-
motes the induction of cross-tolerance by keeping the DCs in
an immature state, which is associated with high expression levels
of inhibitory FcγRIIB. Another possible scenario would be that
immune complex-mediated cross-presentation via activating Fcγ
receptors, which is known to result in inflammatory cytokine
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Table 2 | Fcγ receptor expression by murine and human DC subsets.

Human DCs Mouse DCs

Expression Expression

High: +++; low: + High: +++; low: +

DC subset Receptor FACSa mRNAb DC subset Receptor FACS (79, 80, 89) mRNAb

CD141+ (BDCA3+, XCR1+) FcγRI − −/+ CD8+ FcγRI −/+ +

FcγRIIA + −/+ na

FcγRIIB + + FcγRIIB +++ ++

FcγRIIIA − + FcγRIII +++ +

na FcγRIV −/+ +

CD1c+ (BDCA1+, SIRPα+) FcγRI +
c

+ CD8− FcγRI −/+ +

FcγRIIA ++ +++ na

FcγRIIB +++ +++ FcγRIIB ++ ++

FcγRIIIA −/+ + FcγRIII ++ +

na FcγRIV −/+ +

pDCs FcγRI − −/+ pDCs FcγRI − +

FcγRIIA ++ + na

FcγRIIB + + FcγRIIB + ++

FcγRIIIA nd + FcγRIII − +

na FcγRIV − +

Monocyte-derived DCs FcγRI + + Bone marrow-derived DCs FcγRI −/+ ++

FcγRIIA ++ +++ na

FcγRIIB +++ +++ FcγRIIB ++ −/+

FcγRIIIA −/+ + FcγRIII ++ ++

na FcγRIV −/+ ++

Slan DCs (CD16+) FcγRI ++ nd na

FcγRIIA ++

FcγRIIB +

FcγRIIIA +++

aPublished surface expression determined by flow cytometric analysis (FACS) (81, 96–98).
bmRNA data from compiled microarrays (18).
cCD1c+ DCs isolated from blood; tonsillar CD1c+: DC −/+.

nd: not determined.

na: not applicable.

production by the DCs, actually contributes to an inflammatory
tumor microenvironment, which fosters tumor progression by
supporting, for example, angiogenesis. Therefore, future studies
are needed that not only address which activating and inhibitory
Fcγ receptors are expressed by DC subsets, but also define
how their expression patterns are regulated and which cytokines
are induced by DC subsets after immune complex-mediated
activation in vivo.

FcRn – AN INTRACELLULAR RELAY RECEPTOR THAT GUIDES
CROSS-PRESENTATION OF IgG-CONTAINING IMMUNE
COMPLEXES
In general, little is known about the intracellular mechanisms
that are involved in processing of immune-complexed antigen
for cross-presentation. Substantial evidence exists for an impor-
tant role of FcRn in the cross-presentation of IgG-containing

immune complexes. FcRn, which is an MHC class I-like mole-
cule, was initially described only in intestinal epithelial cells of
neonatal rodents, but it has since been shown to be expressed
throughout life in several cell types, including human and rodent
DCs (104–106). If CD8α− DCs do not express FcRn because of
genetic alterations, the cell loses its ability to efficiently cross-
present and fails to elicit CD8+ T cell responses (80). Elegant
studies showed that FcRn regulates the intracellular sorting of
IgG immune complexes in CD8α− DCs. In contrast to CD8α+

DCs where the endosomes are buffered around the neutral pH
of 7.0 that prevents antigen degradation and promotes cross-
presentation, Fcγ receptors in CD8α− DCs traffic antigens into
acidic compartments (pH 6.0). The acidic environment is, by itself,
not favorable for cross-presentation; however, it favors the bind-
ing of IgG to FcRn, and thus the model proposes that FcRn traps
immune-complexed antigen and protects it from degradation
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within an acidic loading compartment. The study also showed that
in parallel to antigen entry into the FcRn-positive compartment,
key components of the phagosome-to-cytosol cross-presentation
machinery are rapidly recruited to the endo/lysosome. Vesicles
that contained IgG-opsonized particles or IgG immune complexes
rapidly acquired greater quantities of vacuolar ATPase (V-ATPase),
gp91phox, and Rab27a than those that resulted from internal-
ization of IgG mutants that cannot interact with FcRn. Con-
sistent with this concept, it was described that the presence of
FcRn also affects the oxidation state as well as the acidification
of vesicles. Inhibitor studies demonstrated that FcRn-mediated
cross-presentation depends on the proteasome as well as Sec61α,
which is indicative for the cytosolic cross-presentation pathway.
Since insulin-regulated amino peptidase (IRAP) enrichment was
not depicted in FcRn-positive IgG immune complex-containing
vesicles, and cathepsin inhibitors did not abrogate IgG immune
complex cross-presentation, the authors concluded that the alter-
native vacuolar pathway was not involved. In summary, this study
suggests that FcRn binding of IgG immune complexes enables a
slower and more controlled antigenic degradation in CD8α− DCs,
thereby permitting this population of DCs to become efficient
cross-presenting cells.

The most compelling evidence for the exceptional importance
of FcRn for cross-presentation of IgG immune complexes and IgG-
opsonized particles is derived from in vivo studies that analyzed
the effects of FcRn-deficiency on chronic intestinal inflammation
and colonic cancer (107, 108). In a chemically induced chronic
colitis model, which is associated with generating high levels
of anti-bacterial antibodies that enter the host as IgG immune
complexes, Baker et al. demonstrated that FcRn-dependent cross-
presentation is carried out by CD8α− DCs in vivo, leading to
greater levels of cytotoxic T cell activation during the course of
colitis. In a recent study, the same group focused on the impact
of FcRn on tumor development, clearly demonstrating the impor-
tance of this molecule for anti-tumor immune surveillance (108).
The authors found that the DC-specific deletion of FcRn leads
to increased tumor burden in experimental models of colon can-
cer and lung metastasis. Strikingly, this study also demonstrated
that colon cancer patients with higher numbers of FcRn-positive
DCs in the adjacent tumor tissue had significantly better prog-
noses, confirming the crucial role of FcRn and demonstrating
the vital role of cross-presentation of IgG immune complexes in
anti-tumor immunity in general. It will now be of utmost impor-
tance to elucidate the details of the intracellular mechanism of
this process to evaluate whether the pathway can be employed for
cancer immunotherapy.

CONCLUSION
Although ample evidence suggests that Fcγ receptor targeting
through immune complexes allows for more efficient cross-
presentation compared to soluble antigen, it still needs to be
proven which advantages it may have over targeting of other
endocytic receptors on DCs, especially in vivo. In this respect,
it is very important to continue developing better murine mod-
els which more accurately reflect the human immune system. The
recently published humanized FcγR mouse strain is here a promis-
ing step in the right direction. For therapeutic manipulations, we

also need to better understand how Fcγ receptor expression by
DCs is regulated. Can we use cytokines and/or TLR ligands to
modulate the ratio of inhibitory versus activating Fcγ receptors
expressed by DC subsets to improve therapeutic strategies? TLR-
2 ligands, for example, have been shown to increase expression
of inhibitory FcγRIIB in macrophages (109), a consequence not
desirable in the context of viral or tumor vaccine development.
Furthermore, how does the size of immune complexes influence
cross-presentation? How does the antibody to antigen ratio in
immune complexes influence cross-presentation? Indeed, it has
been shown that immune complex size and glycosylation on IgG
impact the binding to human Fcγ receptors (110). In summary, it
is fair to conclude that many important questions remain open
and need to be addressed. Irrespectively, cross-presentation of
immune complexes represents an exciting potential pathway to
improve DC-based vaccination strategies for anti-viral as well as
anti-tumor therapy.
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