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The nervous and immune systems have long been considered as compartments that per
form separate and different functions. However, recent clinical, epidemiological, and exper-
imental data have suggested that the pathogenesis of several immune-mediated disorders,
such as multiple sclerosis (MS), might involve factors, hormones, and neural mediators that
link the immune and nervous system. These molecules are members of the same super
family, which allow the mutual and bi-directional neural<immune interaction. More recently,
the discovery of leptin, one of the most abundant adipocyte-derived hormones that con-
trol food intake and metabolism, has suggested that nutritional/metabolic status, acting at
central level, can control immune self-tolerance, since it promotes experimental autoim-
mune encephalomyelitis, an animal model of MS. Here, we summarize the most recent
advances and the key players linking the central nervous system, immune tolerance, and
the metabolic status. Understanding this coordinated interaction may pave the way for
novel therapeutic approaches to increase host defense and suppress immune-mediated
disorders.
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INTRODUCTION

The central nervous system (CNS) has been considered for a
long time, a privileged organ thanks to its inability to start an
immune response against antigens. However, accumulating evi-
dence has shown the presence of a mutual interaction between the
immune system and CNS in physiological as well as in patholog-
ical conditions. Indeed, the CNS displays a well-organized innate
immune reaction to infection and immune cells express on their
surface several receptors for different neurotransmitters, which
allow the brain to modulate the immune system functions and
keep the homeostasis of the whole body in an appropriate man-
ner, by responding to environmental changes (1-6). Moreover,
immune cells can also synthesize and secrete several hormones
with immunomodulatory properties (2, 7, 8) that can reduce
or inhibit any exacerbated inflammatory response; for instance,
the lymphocytes (9) and macrophages (10) produce the endoge-
nous opioid peptides and catecholamines such as norepinephrine
(NE) and epinephrine (E) (11). Furthermore, human lymphocytes
secrete the growth hormone (GH) (12) and monocytes secrete
the brain-derived neurotrophic factor (BDNF), whose expres-
sion is up-regulated by flogistic mediators such as TNF-a and
IL-6 (13, 14). Recently, it has been shown that circulating LPS
is able to induce the transcription of genes encoding for CD14
(its receptor) and toll-like receptor 2, as well as a wide vari-
ety of pro-inflammatory molecules in circum-ventricular organs
(CVOs) (15).

A delayed response to LPS occurs in cells located at the edge of
the CVOs and in microglia throughout the CNS. Pathogens can
then induce the activation of the innate arm of the immune system
in neuronal tissue, without having direct access to it.

IMMUNE-SURVEILLANCE IN THE CONTROL OF CNS

Although the CNS lacks lymphatics, it expresses major histocom-
patibility complex (MHC) molecules and the blood-brain barrier
(BBB), and the blood—cerebrospinal fluid (CSF) are able to ensure
protection of CNS by the diffusion of infectious agents (16).
Conversely, alteration of immunity is often associated with cere-
bral infections. In physiological conditions, the immune system
monitors the integrity of the brain and spinal cord (immune-
surveillance), in order to highlight any inflammatory mediators
resulting from infection and damage. In this context, a key role
in the control of immune-surveillance is played by the resident
microglia and immune cells (16). Indeed microglial cells are able
to activate the adaptive immune system, when required, and these
glia cells are in turn modulated by endogenous mechanisms,
thus confirming the tune control of immune system in the CNS
(17). Microglia secrete neurotrophins, such as nerve growth fac-
tor (NGF), able to sustain neuronal and macroglial survival and
growth. In addition to microglia, peripheral immune cells can
reach the inflammatory site in the CNS, through mechanisms
similar to those observed in peripheral organs. T cells travel into
the CNS through transient interactions with CNS endothelium,
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which expresses cell adhesion molecules, moreover other immune
cells (macrophages and dendritic cells) are located at the interface
between the blood and brain, where they can promote antigen
presentation and a powerful inflammatory response (18). Non-
activated microglia express low levels of HLA-DR in the healthy
human brain and MHC-II molecules (MHC-II, CD80, CD86,
CD40, CD11a) in the rodent brain, thus suggesting their antigen
presentation capability (19-24).

Recent evidence has revealed that T cells can be found in the
CSF of healthy individuals, indicating that these cells can reach
the CNS through the choroid plexus and meninges (25, 26). They
have been characterized as CD4TCD45RA~CD277CD69" acti-
vated central memory T cells (27, 28), which expressed high levels
of CCR7, CXCR3, and L-selectin (29, 30) and are located in brain
areas, which lack of tight junctions in the BBB (31).

In conclusion, the fact that endogenous factors (such as
trauma or immuno-suppressive agents) may cause alteration in
the migratory capacity of immune cells in the CNS, leading to
an uncontrolled proliferation of infectious agents with conse-
quent occurrence of neurological complications, would indicate
a clear and unambiguous key role of immune system in the
“immunosurveillance” of the CNS.

THE NEURAL AND IMMUNE SYSTEM COMMUNICATION

THE AUTONOMIC NERVOUS SYSTEM

The control of inflammation is realized by two major mecha-
nisms: self-controlling immune mechanisms and brain-derived
immunoregulatory output. The CNS regulates immune func-
tion, inflammation, and pathogens responses against host tissues,
through the production of inhibitory cytokines, hormones, and
other soluble molecules able to signal to the brain, which in turn
exerts strong regulatory effects on the immune response (5, 32).
Brain immunoregulatory action is mediated by the autonomic
nervous system, through sympathetic and vagus nerve innerva-
tion. Recent evidence has reported that afferent neurons express
receptors for several pro-inflammatory cytokines, such as tumor
necrosis factor (TNF), IL-1, activating neural reflex circuits that
regulates acute and chronic immune responses (5). A prototypical
example of neural circuit is the inflammatory reflex mediated by
the vagus nerve and the a7 subunit of the nicotinic acetylcholine
receptor (a7 nAChR) expressed on immune cells (33).

Vagus nerve activation determines NE release from splenic
neurons, which through the binding to f2 adrenergic receptor
expressed on splenic T cells, favors choline acetyltransferase stim-
ulation with consequent acetylcholine production (34) (Figure 1).
T cell receptor (TCR)-mediated stimulation of splenic T cells sig-
nificantly enhances their ability to produce acetylcholine, which
binds to a7 nAChR expressed on macrophages resident in the red
pulp and marginal zone of the spleen (35), thus suppressing NF-
kB activity and consequently reducing cytokine synthesis (33, 35)
(Figure 1). Activation of this pathway by electrical stimulation of
the vagus nerve or administration of a7 selective agonists improves
inflammation and survival in different clinical conditions (34).
Moreover, confirming the essential role of T cells for vagus nerve
action in the inhibition of cytokine release, it has been recently
shown that the inflammatory reflex is impaired in nude mice, (34)
and the adoptive transfer of T cells, which secrete enough amount

of acetylcholine, since they express choline acetyltransferase, is able
to revert this phenomenon, recovering the inflammatory reflex in
these mice.

All these data have been confirmed also in humans; indeed
patients with autoimmune disease and non-resolving inflamma-
tion display impaired vagus nerve signaling, which favors the
progression of inflammation (32), whereas vagus nerve stimu-
lation is able to attenuate leukocytes migration into the joints
of synovitis affected patients (36). In line with this evidence, a7
nAChR deficient mice have increased synovial inflammation when
compared to their littermate controls in a model of collagen-
induced arthritis (37, 38). Treatment with a7 nAChR agonists or
electrical vagus nerve stimulation significantly decreases arthritis
in wild-type (WT) mice with collagen-induced arthritis. Finally,
diet can also influence the inflammatory reflex; indeed dietary
consumption of fish oil, significantly enhances the vagus nerve
stimulation, favoring resolution of inflammation (39). On the
other hand, in condition of obesity, where there is an inappropriate
energy deposit and expenditure, leading to low grade inflamma-
tion and metabolic disease, an impaired vagus nerve activity has
been found (40).

THE CATECHOLAMINERGIC PATHWAY

Catecholamines [i.e., epinephrine, NE, dopamine (DA)] can reg-
ulate several functions of the immune system activities, such as
proliferation, cytolytic activity, cytokine and antibody release,
and chemotaxis, by interacting with adrenoreceptors expressed
on lymphoid organs and immune cells. In particular, it has been
demonstrated that NE and beta-adrenergic agonists are able to
inhibit cytotoxic activity and increase lymphocytes proliferation
(41-43). At the same time, high amount of DA was found to sig-
nificantly inhibit the in vitro proliferative response and cytotoxic
activity of T cells (44) (Figure 1). Moreover, it has been recently
reported an enhanced proliferation and an impaired secretion of
interferon-y (IFN-y) in the spleen of mice treated with DA (45).
Recent evidence shows an important role of the hypothalamic—
pituitary—adrenal (HPA) axis also in the bi-directional comunica-
tion between the brain and the immune system. GH and prolactin
(PRL) are known to modulate immune responses (45-48). Indeed,
several authors have shown that human GH significantly antago-
nizes the dexamethasone-induced inhibition of human T cell pro-
liferation (46, 47). Moreover, secretion of PRL sustains antibody
production and cell-mediated immune functions and therefore its
inhibition increases the susceptibility to infectious diseases (47,
49). Glucocorticoids also exert several immunomodulant effects,
such as the enhancement of T cells proliferation and survival (50,
51),and in physiological doses, the shift in cytokine secretion from
a Th1 toward a Th2 phenotype (52, 53).

THE PEPTIDERGIC PATHWAY: NEUROPEPTIDES

Recent evidence suggests a key role of the neuropeptidergic path-
way in the control of immune system (54, 55). Activation of
nociceptors leads to local axon reflexes through the release of
neuropeptides [i.e., calcitonin gene-related peptide (CGRP), sub-
stance P (SP), adrenomedullin, neurokinins A and B, vasoactive
intestinal peptide (VIP), neuropeptide Y (NPY), and gastrin releas-
ing peptide (GRP), etc.], which locally recruit and activate both
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FIGURE 1 | Schematic representation of the CNS-immune system
crosstalk. There are bi-directional circuits linking CNS and immune system.
The CNS can communicate with the immune system to modulate its activity,
through different ways: through the autonomic nervous system (via the
sympathetic and vagus nerve innervation, see the text for deeper details), the
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catecholaminergic pathway, or the neuropeptides and hormones release. In
this context, leptin modulates immune system, by increasing the activation of
T cells and decreasing Treg cells functions, thus representing a key player in
the susceptibility to immune-mediated disorders (2R, B2 receptor; a7
nAChR, a7 subunit of the nicotinic acetylcholine receptor).

innate and adaptive immune cells. More specifically, it has been
shown that these mediators sustain chemotaxis and activation of
neutrophils, macrophages, lymphocytes, and mast cells, increase
the presenting capability of antigen presenting cells (APCs) and
stimulate signaling to vascular endothelial cells, enhancing the
recruitment of inflammatory leukocytes (55, 56) (Figure 1).
Another possible way of communication between immune
cells and nociceptor neurons is also mediated by cytokine release.
Indeed, sensory neurons display several cytokine receptors such
as IL-1P receptor (IL-1BR) and TNF-a receptor (TNF-aR), which
are able to recognize factors secreted by immune cells (i.e., IL-
18, TNF-a, NGF). They also express danger-associated molecular
pattern (DAMP) receptors, toll-like receptors (TLRs), pathogen-
associated molecular patterns (PAMPs), which recognize exoge-
nous environmental signals (i.e., heat, acidity, chemicals, bac-
teria, viruses) or endogenous danger signals (i.e., ATP con-
centration, uric acid, hydroxynonenals) (56, 57), enhancing T
cell functions (proliferation, cytokine secretion, and adhesion

molecules expression) and thus representing a relevant player in
CNS-immune system crosstalk in normal and pathophysiolog-
ical conditions (58-61). In activated macrophages, VIP inhibits
the expression of pro-inflammatory cytokines and chemokines
(62—64), sustaining the differentiation of CD4™ T cells in Th2
cells and promoting their proliferation and/or survival (64, 65).
Among the other neuropeptides, several functions of the cellu-
lar immune system have been shown to be regulated by NPY,
SP, and related-agouti protein (AgRP) (66). NPY is a neuropep-
tide that increases food intake and storage of energy as fat but it
is also able to modulate lymphocytes proliferation, NK activity,
and interleukin-2 (IL-2) and TNF-a release (67). SP stimulates
lymphocyte migration, proliferation, and IgA secretion and pro-
motes phagocytosis and chemotaxis in innate immune cells, dur-
ing inflammation (68). On the other hand, AgRP is co-expressed
with NPY and works by increasing appetite and decreasing metab-
olism and energy expenditure. Hypothalamic AgRP neurons are
mandatory for feeding and survival (69, 70) and they mediate
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effects of the histone deacetylase, Sirt1, on energy metabolism (71,
72). Recently, it has been shown that these neurons are involved
in the regulation of adaptive immune responses. Indeed, knock-
down of Sirtl in Agrp neurons induce a pro-inflammatory state,
characterized by a decrease in regulatory T cell functions with
consequent increase of effector T cell activity, which determines
an increased autoimmune disease susceptibility (73). This finding
together with a recent paper by Luquet’s group (74) confirms the
notion that the sympathetic nervous system may play a central role
in mediating the effect of impaired function of AgRP neurons on
immune system activity.

CYTOKINES-RELATED PATHWAY

It is becoming well accepted that products of the immune sys-
tem (cytokines) can signal the brain that infection has occurred.
This cytokine-to-brain communication can result in marked alter-
ations in brain function and behavior. In general, cytokines may
traffic to the CNS at sites where the BBB is absent (75, 76), by
carrier-mediated transport mechanisms, or by generating central
mediators altering the permeability of the BBB to other substances
(5, 77). Cytokines may also act directly on the CNS, by stim-
ulating peripheral afferent neurons (5, 78). Indeed, peripherally
generated cytokines can stimulate vagus nerve, which represents
another very important pathway through which signals reach the
brain (79). Several cytokines such as IL-1, IL-2, IL-6, IFN-y, and
TNF-a can regulate the activation of the HPA axis and are also
influenced by glucocorticoid secretion (52, 80). IL-1 is one of the
most studied cytokines linking immunological activation with the
brain functions (81-83). Indeed, IL-1 has been shown to influence
hypothalamic neurosecretory activity by stimulating CRH release
by hypothalamic CRH neurons, and to enhance the turnover of NE
in the hypothalamus (84, 85). IL-1 is also produced by several type
of cells resident in the CNS, including astrocytes and microglia
(86, 87) and IL-1 receptors have been identified in different brain
areas, such as hippocampus and the dorsal raphe nucleus (88, 89).
Furthermore, mRNA for IL-1a and TNF-a has been demonstrated
in anterior pituitary cells (90, 91), which secrete IL-6 as well (91).
IL-1 has been shown to be pivotal for the recruitment of leuko-
cytes across the BBB. Indeed, recent studies have demonstrated
that intracerebroventricular injection of IL-1B as well as IFN-y
and TNF-a induce neutrophils and leukocytes infiltration into the
brain tissue (92), in a mouse model of experimental autoimmune
encephalomyelitis (EAE) (93), by increasing the production of P-
selectin on brain endothelial cells (94). In addition, also receptors
for IL-2 were found in specific brain areas such as the hippocam-
pal formation (95, 96) and it has been recently shown that that
IL-2 deficiency results in altered septal and hippocampal structure,
associated with changes in neurotrophins production (97).

LEPTIN: AT THE CROSSROAD BETWEEN CNS AND IMMUNE
SYSTEM FUNCTION

Leptin, the product of the obese (0b) gene, has been recently recog-
nized as one of the most studied molecule linking CNS, nutrition,
metabolism, and immune homeostasis (98). Leptin is mainly pro-
duced by the adipose tissue in proportion to the body fat mass
and also by tissues such as the stomach, skeletal muscle, and pla-
centa (98). At central level, this hormone regulates food intake,

bone mass homeostasis, autonomic nervous system outflow, and
the secretion of HPA hormones (98). Originally, leptin has been
identified as the hormone responsible for the regulation of the
balance between food intake and energy expenditure, being able
to signal to the brain any changes in stored energy. However
recent evidence has indicated that leptin is much more than a
“fat-o-stat” sensor (99-101); indeed, leptin-deficient (ob/ob) and
leptin-receptor-deficient (db/db) mice are not only strongly obese,
but they also display several alterations, due to the effects of leptin
on reproduction (102), hematopoiesis (103), angiogenesis (104),
metabolism of bone (105), lipids and glucose (98) and, more
importantly, innate and adaptive immunity (106, 107).

LEPTIN AND IMMUNE SYSTEM REGULATION

Leptin has a well-established role in the modulation and regu-
lation of innate immunity. Leptin increases phagocytic activity
(108) and cytokine secretion (i.e., TNF-a, IL-6, and IL-12) (109,
110) in monocytes and macrophages, up-regulating the expres-
sion of activation markers, such as CD25 [a-chain of IL-2 receptor
(IL-2R)], CD71 (transferring receptor), CD69, and CD38. More-
over, leptin can stimulate neutrophils chemotaxis and the oxidative
burst (111, 112) and sustain proliferation, development, differ-
entiation, activation, and lytic activity of NK cells, through the
increase in perforin and IL-2 secretion (113). On the other hand,
leptin exerts its effects also on adaptive immunity. Indeed, lep-
tin modulates proliferation and cytokine production by both
human naive (CD45RA) and memory (CD45RO) CD4" T. On
naive T cells leptin promotes the proliferation and IL-2 secre-
tion, whereas, on memory T cells, it promotes the switch toward
T helper (Th)l-cell phenotype by increasing the secretion of
pro-inflammatory cytokines such as IFN-y and TNF-a (99). Lep-
tin also supports immune cells migration to inflammatory sites,
through the induction of IFN-y production and the expression
of adhesion molecules, such as intercellular adhesion molecule-
1 (ICAM-1, CD54) and very late antigen-2 (VLA-2, CD49b) on
CD4™" T cells.

Recent evidence indicates that leptin inhibits thymic T cells
apoptosis, thus supporting their generation, maturation, and sur-
vival (114). Indeed, DTH responses and thymic atrophy have
been shown to be decreased after acute caloric deprivation and
serum leptin reduction; these conditions were restored by lep-
tin treatment (114). Moreover, leptin can negatively modulate the
expansion of human natural Foxp3*CD4+CD25M8" regulatory
T cells (nTregs) (115) (Figure 1), a cellular subset, which sup-
press autoreactive response mediated by CD4725™ T (Teffs) cells.
Treg cells produce leptin and express high levels of leptin receptor
(ObR) (114). In vitro neutralization with anti-leptin monoclonal
antibody (mAb) plus anti-CD3/CD28 stimulation causes Treg
cells proliferation (115). This mechanism is mainly due to the
down-regulation of the cyclin-dependent kinase inhibitor p27P!
and the phosphorylation of the extracellular-related kinases 1/2
(ERK1/2), pivotal molecular pathways in the Treg cells activation
and anergy (115). Moreover, an increased Treg cells proliferation
has been observed in leptin- and ObR-deficient mice. Recently,
it has been shown that leptin can potentiate the mTOR path-
way activation, thus inhibiting rapamycin-induced proliferation of
Tregs. In physiological circumstances, Tregs secreted leptin, which
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in turn activated mTOR pathway, a condition which sustains their
state of hyporesponsiveness and anergy. Accordingly, Tregs from
db/db mice had a reduced mTOR activity and enhanced prolif-
eration compared with that of WT Tregs (116). Experiments by
the same group have shown that leptin activates mTOR path-
way also in Teffs, thus causing a defined cellular, biochemical,
and transcriptional modification that determines the outcome of
their responses, both in vitro and in vivo. Indeed, the blockade
of leptin/leptin receptor signaling, induced by genetic means or
by starvation, leads to impaired mTOR activity, which in turn
inhibits the proliferation of Teffs (100). Taking together, these
data suggest that the leptin-mTOR axis sets the threshold for the
responsiveness of Treg and Teff cells, confirming that this pathway
might integrate cellular energy status with metabolic-related sig-
naling in Treg/Teff that use this information to control immune
tolerance.

LEPTIN AND AUTOIMMUNITY

Recent evidence indicates that leptin promotes pro-inflammatory
cytokine secretion, thus enhancing immune responses in autoim-
mune disorders. In several autoimmune diseases, such as rheuma-
toid arthritis (RA), high serum leptin levels have been found, while,
on the contrary, fasting, which associates with a marked decrease
in serum leptin amount and a shift toward Th2-type cytokine
secretion, improves clinical disease activity in RA patients (117).
In line with these findings, another suggestion on the involvement
of leptin signaling in the modulation of antigen-induced arthritis
comes from studies showing that leptin-or leptin receptor (LepR)-
deficiency protects mice from the development of autoimmune
arthritis, after immunization with methylated bovine serum albu-
min (BSA) into knee joints, as these genetic conditions associate
with decreased antigen-specific T cell proliferative responses (118).
Recently, it has been reported that Th17 cell frequency is reduced
in ob/ob mice and that the administration of leptin to ob/ob
mice restore Th17 cell numbers to values comparable to those
found in WT animals. Leptin promotes Th17 responses in nor-
mal human CD4™" T cells and in (NZB x NZW) F1 lupus-prone
mice, by inducing RORY transcription, whereas, on the contrary,
its neutralization in those autoimmune-prone mice inhibits Th17
responses (119).

Leptin deficiency has been also associated with protection
toward other inflammatory disease such as the experimen-
tally induced glomerulonephritis, which is an immune-complex-
mediated disorder (120). More specifically, studies from Lord’s
group have shown that the renal protection observed in ob/ob
mice has to be ascribed to a reduced glomerular-crescent for-
mation and to an impaired macrophage recruitment in the site
of inflammation (120). The reduced T cell proliferative profile
and the altered humoral responses to sheep IgG, further support
the authors’s hypothesis of consistent defects in innate and adap-
tive immune responses that can be considered crucial factors at
the base of the protection to glomerulonephritis development in
leptin-deficient mice.

Leptin has also been linked to spontaneous autoimmune
disease such as Type 1 Diabetes (T1D) in the non-obese dia-
betic (NOD) mice. Indeed, this cytokine-like hormone acceler-
ates the disease onset and progression by stimulating destruction

of pancreatic B-cells by autoreactive T cells, which are further
sustained to produce IFN-y by leptin treatment (121).

Another indication for the important role of leptin in autoim-
munity is the sexual dimorphism of serum leptin levels; indeed
women display serum leptin levels two to three times higher than
those observed in age- and BMI-matched men, and moreover, they
are more prone to develop autoimmune diseases such as multiple
sclerosis (MS), RA, or systemic lupus erythematosus, thus sug-
gesting that leptin could favor the predisposition of females to this
kind of disorders (122, 123).

Recent clinical studies on autoimmune disease patients demon-
strate that high serum leptin levels may play a causal role in the
disease progression, as previously mentioned, but at the same
time might be utilized as a diagnostic marker for novel clinical
application (122).

ROLE OF LEPTIN IN THE PATHOGENESIS OF MULTIPLE SCLEROSIS
Multiple sclerosis is an autoimmune disorder of the CNS, in which
T cells specifically recognize myelin antigens and induce tissue
damage, leading to lesion evolvement in the CNS with subsequent
demyelination and axonal injury (124). Clinically, this disorder
may present as relapsing-remitting type of MS (RRMS) (85%) or
it may convert over time to a secondary chronic progressive type
of MS (SP-MS). About 15% of cases present with a primary pro-
gressive disease course (PP-MS) and only few patients display a
progressive relapsing MS disease course (PR-MS) with fast pro-
gression of the disease (125). In Europe and North America, the
incidence is about 6/100,000/year and the prevalence 1/1000. For
the pathogenesis of MS, both genetic (HLA II genes) and envi-
ronmental factors (i.e., vitamin D levels, smoking) contribute to
disease susceptibility (126, 127). The autoimmune process involves
both the gray and white matter, thus explaining the cognition alter-
ations often found in MS patients. The destruction patterns in the
MS plaque can include CD4* T cells, which play a key role in the
immune cascade activation, leading to tissue damage, cytotoxic
attack mediated by CD8™ T cells and macrophages, as well as a
humoral-mediated destruction of the myelin structure through
the local production of antibodies with consequent complement
activation (128).

The most studied model of MS in animals is EAE, in which
autoimmune attack toward CNS is induced in susceptible strains
of mice, through immunization with self-antigens derived from
basic myelin protein. Autoreactive T cells traffic to the brain and
to the spinal cord and damage the myelin structure of CNS, result-
ing in a chronic or relapsing-remitting paralysis (depending on
the antigen used for immunization and the strain of mice). In the
inflammatory lesions, and increased secretion of Thl cytokines
has been detected, whereas Th2 cytokines typically associate with
recovery and protection from EAE (129).

Recent findings have shown that the immunomodulatory
effects of leptin are involved in the induction and progression
of EAE, a mouse model of MS (129, 130). The ob/ob mice do not
develop EAE, a condition associated with increased IL-4 produc-
tion and a decrease in IFN-y secretion by T cells upon antigen-
specific stimulation. On the contrary exogenous leptin treatment
renders ob/ob mice susceptible to EAE development, by increasing
pro-inflammatory cytokine production (129).
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Leptin neutralization in EAE-affected WT mice inhibits T cell
functions, significantly delays disease progression with the final
effect of improvement of the clinical symptoms (131).

In addition, high leptin levels have been reported also in active
inflammatory lesions of the CNS of MS patients (132) and in the
sera of MS patients treated with IFN-f before the relapses (133).
In humans, it has been also shown that leptin production was sig-
nificantly increased in both serum and CSF of naive-to-therapy
RRMS patients and its levels inversely correlated with frequency
of Treg cells (134).

Recently the adipose tissue, through leptin production, has been
shown to play a pivotal role in the survival of autoantigen-specific
CD4™" T cells in vivo, through the activation of mTOR pathway
and the induction of Bcl-2 (direct mechanism) and through the
reduction of a series of cytokines, whose production is important
for autoreactive cell survival (IL-6, IL-15, IL-21, and GM-CSF)
(indirect mechanism) (135). Recently, it has been demonstrated
that Tregs proliferation is impaired in RRMS patients because
of altered IL-2 secretion and IL-2R-signal transducer and acti-
vator of transcription 5 (STAT5) signaling. These results suggest
the presence of an altered metabolic control accounting for the
progressive loss of Treg cells in autoimmune disease (136). The
expression of LepR has been found to be significantly higher in
CD8™ T cells and monocytes from MS patients in relapse phase
than those observed in patients in remission (or in healthy con-
trols). Moreover, relapsing patients display high levels of phospho-
signal transducer and activator of transcription-3 (P-STAT-3) and
low expression of suppressor of cytokine signaling-3 (SOCS-3)
and exogenous leptin treatment sustains STAT3 phosphorylation
only in the monocytes from relapsing patients, suggesting that
LepR might play a role in the modulation of clinical relapses dur-
ing MS (137). A recent report has shown that obesity and high
leptin levels at age of 18 associate with a greater than twofold
increased risk of MS development (138). Comparable epidemio-
logical evidence has suggested that subjects whose BMI exceeded
27 kg/m?, had a twofold increased risk to develop MS in a cohort
of Swedish population (139). In addition, Hedstrém et al. have
also shown that a possible interactions between BMI and MS
could be associated to HLA genotype (DRB1*15 and absence of
A*02) (140). The authors hypothesized that one possible explaina-
tion for this association is the lower levels of 25-hydroxy vitamin
D discovered in obese patients compared to non-obese subjects,
since 25-hydroxyvitamin D levels have been shown to be protec-
tive from MS development (126). The finding of an interaction
between obesity and HLA genotype with regard to MS supports
the hypothesis that the Th1-promoting effects of obesity increase
the risk of developing MS, in particular among subjects with a
genetic susceptibility to the disease. In this context, prevention
of obesity in adolescents may therefore play a role in reduc-
ing the risk to develop MS, above all in subjects with a genetic
susceptibility.

Importantly, a dycothomous role of leptin on the CNS has
recently emerged. While leptin can participate in the immune-
mediated attack to myelin, new evidence suggests that leptin may
have differential effects on myelination and neural cell survival,
acting as a neurotrophic factor (141, 142). Indeed, the brain weight
of ob/ob and db/db mice is significantly reduced and these mice

express synaptic and glial proteins with immature characteristics.
They also display elevated expression of growth-associated pro-
tein in the neocortex and hippocampus, and decreased expression
of syntaxin-1, synaptosomal-associated protein-25, and synapto-
brevin (141, 142). Leptin deficiency also associates with a decreased
expression of myelin basic protein (MBP) and/or proteolipid pro-
tein (PLP) in the neocortex, hippocampus. By contrast, recom-
binant leptin administration is able to revert this phenotype,
by increasing brain weight, restoring a proper proteic asset, and
sustaining the overall locomotor activity of these animals, thus
suggesting that leptin requirement is essential for the physiological
development of the nervous system.

ROLE OF CENTRAL LEPTIN SIGNALING IN THE CONTROL OF
IMMUNE SYSTEM

Despite the studies previously mentioned focused mainly on the
role of leptin in the modulation of peripheral immune cells func-
tions (106, 110, 112), only recently it has become increasingly
evident that the leptin signaling at the central level (CNYS) is itself
able to directly modulate immune system.

Recent papers have suggested that leptin deficiency reduced
renal macrophage infiltration in a model of unilateral ureteral
obstruction (UOQ) (143). Interestingly, central leptin admin-
istration in ob/ob mice was able to revert this condition. The
authors also showed that co-treatment with a melanocortin-3
receptor (MC3R)/melanocortin-4 receptor (MC4R) antagonist,
blunted leptin effects, thus suggesting that leptin increases renal
macrophage infiltration through the activation of the central
melanocortin system (143).

In addition, intracerebroventricular leptin injection was suffi-
cient to prevent the alteration of B-cell development in the bone
marrow of fasted mice (characterized by altered balance between
immature and mature B-cells), thus providing again the in vivo
evidence for the role of central leptin signaling in B-cell develop-
ment (144). Other studies have shown that leptin-deficient mice
showed an increased susceptibility to sepsis and mortality, due
to an impaired recruitment and function of neutrophils. On the
contrary, the treatment with leptin exclusively at the intracerebral
level, improved the survival, and the risk of infection of these mice,
again suggesting the importance of the central leptin signaling in
the modulation of immune functions (145).

CONCLUDING REMARKS
It is becoming increasingly evident that there is a dense and intri-
cate relationship between the immune and nervous system (146).
This type of interaction is explicated through the production of
molecules (cytokines, hormones, and peptides) from the CNS and
through the activation of afferent and efferent neurological path-
ways in lymphoid organs, with both immuno-suppressive and
immuno-stimulating effects. On the other hand, also the cytokines
themselves are able to communicate with the CNS and ensure the
passage of specific signals and information from the periphery to
the brain. In this context, leptin represents a key factor linking
immune system, metabolism, and CNS functions.

The comprehensive and extensive understanding of the mech-
anisms underlying the interaction between the CNS and immune
systems, may allow the modulation of certain brain functions as
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a possible clinic therapeutic approaches for immune-mediated
diseases.

Recent reports have shown that caloric restriction (CR) (asso-
ciates with a fall in plasma leptin levels) can significantly increase
the overall survival in several experimental animal models of
autoimmune diseases (147). More specifically, CR has anti-
inflammatory, antioxidant, and neuroprotective effects that could
be instrumental for an improvement of clinical outcomes in MS,
since this regimen is able to impair pathological proliferation of
autoreactive cells and pro-inflammatory cytokine production in
EAE (147).

Although several evidence has suggested that diet may alter the
course and progression of autoimmune diseases (i.e., the case of
MS), only few randomized studies of dietary alterations in MS
have been conducted so far, and none of them seem to include CR
regimen.

The future goal of the research will be to assess how and
whether CR might actually be a useful therapeutical approach
for MS. A careful monitoring of patients could in fact ensure
beneficial effects in terms of reduction of inflammation and at
the same time could determine the improvement of other clini-
cal parameters such as insulin sensitivity, low-density lipoprotein,
cholesterol, blood pressure, which would be crucial for the disease
amelioration.
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