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The development of a compelling murine model of dengue virus (DENV) infection has been
challenging, because DENV clinical isolates do not readily replicate or cause pathology
in immunocompetent mice. However, research using immunocompromised mice and/or
mouse-adapted viruses allows investigation of questions that may be impossible to address
in human studies. In this review, we discuss the potential strengths and limitations of exist-
ing mouse models of dengue disease. Human studies are descriptive by nature; moreover,
the strain, time, and sequence of infection are often unknown. In contrast, in mice, the
conditions of infection are well defined and a large number of experimental parameters
can be varied at will. Therefore, mouse models offer an opportunity to experimentally test
hypotheses that are based on epidemiological observations. In particular, gain-of-function
or loss-of-function models can be established to assess how different components of the
immune system (either alone or in combination) contribute to protection or pathogenesis
during secondary infections or after vaccination. In addition, mouse models have been used
for pre-clinical testing of anti-viral drugs or for vaccine development studies. Conclusions
based on mouse experiments must be extrapolated to DENV-infection in humans with cau-
tion due to the inherent limitations of animal models. However, research in mouse models
is a useful complement to in vitro and epidemiological data, and may delineate new areas
that deserve attention during future human studies.
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INTRODUCTION
Dengue virus (DENV) is the etiologic agent of the self-limited
febrile illness dengue fever (DF), as well as the potentially lethal
severe dengue disease (previously referred to as dengue hemor-
rhagic fever and dengue shock syndrome, DHF/DSS). Infection
with DENV is often asymptomatic in humans (1). Sympto-
matic infections are characterized by: fever, retro-orbital headache,
muscle, joint and bone pain, nausea, vomiting, abdominal pain,
mucosal bleeding, and low platelet count. In the most severe
form of the disease, severe bleeding, organ dysfunction, vascular
permeability, and shock can occur (2, 3).

The four serotypes of DENV are the most prevalent mosquito-
borne viruses that affect humans (4). In tropical and sub-tropical
regions, it is estimated that 2.5–3.6 billion people are at risk of
infection in over 100 countries (2, 5, 6). The development of an
adequate mouse model for dengue infection has been challenging,
mainly because DENV clinical isolates fail to replicate or cause
pathology in wildtype (WT) mice. A reliable mouse model of
DENV-infection would be an excellent complement to in vitro
data and epidemiological studies, allowing for testing of hypothe-
ses based on human observations, and providing insights into
mechanisms of pathogenesis and immunity to DENV.

EXISTING ANIMAL MODELS OF DENV-INFECTION
Developing a relevant animal model for DENV-infection has been
a long-standing challenge. The lack of an adequate animal model
for DENV-infection is often mentioned as a major hurdle to a

better understanding of DENV pathogenesis in humans. Numer-
ous efforts to overcome this difficulty have resulted in many animal
models. Though not perfect, these models have been useful to
complement in vitro and human studies.

NON-HUMAN PRIMATE MODELS OF DENV-INFECTION
Non-human primate (NHP) models of DENV-infection exist, and
have been recently reviewed (7). Viremia and humoral immune
responses can be detected in NHP after DENV-infection, but usu-
ally no clinical signs of disease are observed (8–12). One study
reported hemorrhage after infection with DENV (13). Due to the
absence of signs of disease, it is difficult to study DENV-induced
pathology in NHP, but NHP can be used for testing immunogenic-
ity, safety, and/or protective efficacy of dengue vaccine candidates
by measuring induction of anti-DENV antibodies and magnitude
and duration of viremia after vaccination or challenge (14–23).
Thus, in the context of vaccination, the antibody and viremia
data from NHP models have been used to provide correlates of
protection from infection but not from pathogenesis.

WILDTYPE MOUSE MODELS OF DENV-INFECTION
In many WT mouse models, intravenous (i.v.) or intraperitoneal
(i.p.) DENV-infection results in neurological abnormalities but
not the usual clinical signs observed in humans (24–27). Involve-
ment of the central nervous system during DENV-infection in
humans has generally been considered unusual (28, 29), although
recent studies [reviewed in Ref. (3)] suggest that it is a frequent
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complication (30–33). Central nervous system involvement is now
considered criteria for severe dengue in the World Health Organi-
zation (WHO) case classification (2, 3). Intracranial (i.c.) inocula-
tion of DENV in WT mice also results in neurological symptoms
and death (34–37), however this inoculation route does not accu-
rately mimic natural infection, which occurs when DENV-infected
mosquitoes feed on a human. In C57BL/6 mice, a high inoculum of
the non-mouse-adapted DENV2 strain 16681 resulted in systemic
hemorrhage after intradermal (i.d.) infection (38) and abnormal
liver function after i.v. infection (39). It is still a matter of debate
which experimental route of infection (i.d. or i.v.) is the most
relevant. While neither perfectly mimics the bite of an infected
mosquito, i.d. and i.v. routes of infection are often used in labora-
tories when mosquito-mediated infection may not be possible. In
another immunocompetent mouse model, presence of DENV was
transiently detected in the serum of ICR, ddY, and Balb/c mice after
i.p. injection of DENV-infected K562 cells (40). Collectively, the
absence of overt signs of disease in WT mice after DENV-infection
has been a major drawback of WT models to date.

MICE DEFICIENT IN IFN-α/β AND -γ RECEPTORS (AG129) TO STUDY
DENV-INFECTION
In humans, DENV inhibits IFN signaling to establish infection,
whereas DENV is unable to do so in mouse cells (41–43). Specifi-
cally, DENV NS5 can bind to and degrade human STAT2 (44), but
not mouse STAT2 (41) and the DENV NS2B3 proteolytic complex
can degrade human STING but not its mouse homologue (42, 43).
The extreme sensitivity of DENV to type I IFN is highlighted by a
recent study demonstrating effective viral clearance in mice defi-
cient in both IRF-3 and IRF-7, which mount a weak and delayed
type I IFN response during DENV-infection (45). Another study
has demonstrated in mice that type II IFN efficiently limits DENV
spread (46). Taken together, the high sensitivity of DENV to IFN
and the fact that DENV inhibits IFN signaling in humans but not
in mice could possibly explain why DENV clinical isolates do not
easily replicate in WT mice.

In contrast to WT mice, mice deficient in IFN-α/β and -γ recep-
tors on 129/Sv genetic background (AG129) support robust levels
of DENV replication (47), and have thus widely been used as a
mouse model of DENV-infection. Intraperitoneal infection with
a mouse-adapted DENV-strain was lethal in AG129 mice, regard-
less of their age (47). While i.p. may not accurately mimic the
natural route of infection, similar results were obtained in subse-
quent studies using i.v. inoculation. In those studies, i.v. infection
of AG129 mice with a mouse-adapted DENV serotype 2 strain
(DENV2) resulted in non-paralytic lethal dengue disease with
signs of vascular permeability and TNF release (48, 49). This
model has been used to demonstrate that passive transfer of sub-
protective levels of anti-DENV antibodies before infection can
turn a mild illness into a lethal disease recapitulating many signs
of severe dengue disease, including viremia, cytokine storm, low
platelet counts, elevated hematocrit, increased vascular perme-
ability, and intestinal hemorrhage (50, 51). AG129 mice were also
used to demonstrate the therapeutic efficacy of anti-DENV anti-
bodies lacking the ability to bind the Fcγ receptor (52). Recently,
i.p. infection with a non-mouse-adapted DENV2 strain (D2Y98P)
was shown to cause cytokine storm, organ damage, and vascular

leakage in AG129 mice (53, 54). If infected with lower doses of
DENV2, AG129 mice do not develop severe dengue-like lethal
disease, but instead neurological symptoms appear and result in
paralysis later on (46, 51).

MICE DEFICIENT IN IFN-α/β RECEPTORS (IFNAR−/−) TO STUDY
DENV-INFECTION
In contrast to AG129 mice lacking both IFN-α/β and -γ receptors,
mice lacking IFN-α/β receptor only (IFNAR−/−) do not develop
paralysis after i.v. infection with DENV2 (mouse-adapted) because
IFN-γ and CD8+ T cells prevent DENV-induced pathology in
the central nervous system (46, 55). Instead of paralysis, these
mice develop a severe dengue-like disease when infected with
sufficiently high DENV2 challenge doses (46) or in the presence
of sub-neutralizing (and enhancing) anti-DENV antibodies (51).
IFNAR−/− mice have also been used to demonstrate that both
CD4+ and CD8+ T cells play a protective role in the context of
primary DENV2 infection (mouse-adapted strain, i.v. infection)
and peptide vaccination (56, 57).

Recently, IFNAR−/− mice have been crossed with transgenic
mice expressing human HLA molecules in order study anti-
DENV-T cell responses restricted by human HLA (58). Obser-
vations made in those mice confirmed the role of NS3 and NS5
as major targets of the T cell response in humans (59), identified
several novel human DENV-T cell epitopes, and highlighted the
dominance of HLA-B∗0702 restricted responses (58).

Sustained DENV replication and severe dengue disease mani-
festations in IFNAR−/− and AG129 mice are a clear advantage to
study DENV pathogenesis in vivo,but the absence of intact IFN sig-
naling is a limitation that must be taken into account when inter-
preting data. In particular, immune responses to DENV are altered
in IFNAR−/− and AG129 mice compared to WT mice, as IFN is a
key component of the immune system. Therefore, findings made
in IFNAR−/− and AG129 mice may not accurately reflect what
would happen in a fully immunocompetent environment. It would
be desirable to validate the findings made in IFN-deficient mice
with another model, or with data from epidemiological studies.

“HUMANIZED” MICE TO STUDY DENV-INFECTION
Another approach aimed at modeling DENV-infection in mice has
been to graft human tumor cells into severe combined immunode-
ficient (SCID) mice lacking T and B cells. As SCID mice are unable
to reject the graft, the transplanted human tumor cells provide a
permissive environment for DENV replication. DENV replication
was observed after transplantation of human hepatocarcinoma
hepG2 (60) or human leukemia K562 cells (61). Viremia and some
signs of disease (mild hemorrhage, thrombocytopenia, and ele-
vated TNF levels) were detected in one study (60), but ultimately
mice succumbed to paralysis. As DENV replication is restricted to
the transplanted transformed human cells, extrapolation of results
to human disease may be difficult.

Human CD34+ hematopoietic stem cells have also been used
to reconstitute irradiated NOD/SCID (62) or NOD/SCID/IL-2Rγ-
null (63–65) mice. Graft-rejection is minimized in NOD/SCID/IL-
2Rγ-null mice due to dramatic defects in both adaptive and innate
immune systems. Therefore in irradiated NOD/SCID/IL-2Rγ-null
mice, the efficiency of reconstitution by human CD34+ cells is
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maximized. In the resulting “humanized” chimeras (hu-NSG),
human cells of the adaptive and innate immune systems develop
with various degrees of reconstitution depending on the animal,
the organ, and the laboratory (62, 66, 67). Fever, rash, viremia,
erythema, and thrombocytopenia have been observed in human-
ized mice after DENV-infection (62, 63, 65), and human cells were
infected in the bone marrow, spleen, and blood (62). Production
of anti-DENV IgM and cytokines was also observed in those mice
(64, 65, 68). Similar to NOD/SCID/IL-2Rγ-null mice, immun-
odeficient RAG2−/−/γc−/− mice can also be reconstituted with
human hematopoietic stem cells (67). DENV-infection of human-
ized RAG2−/−/γc−/− resulted in viremia, fever, and production of
human IgM and IgG (69). Recently, NOD/SCID/IL-2Rγ-null mice
have been co-transplanted with cord blood hematopoietic stem
cells and human fetal thymus and liver tissues, which resulted in
higher immune responses to DENV-infection (neutralizing IgM
and IFN-γ production) (70). In another study, NOD/SCID mice
were grafted with human fetal liver and thymus prior to recon-
stitution with human CD34+ hematopoietic stem cells (71). In
those mice, infection with DENV resulted in viremia, infection
of human leukocytes, cytokine production, and production of
DENV-specific IgM. Also, viral RNA levels were reduced by admin-
istration of an adenosine nucleoside inhibitor of DENV, either
simultaneously or after infection (71). Based on those results, the
authors suggest that “humanized” mice could be used to test the
efficacy of anti-viral drugs or, potentially, the protective efficacy of
vaccine candidates.

While using mice reconstituted with human cells offers the
possibility to study DENV-infection of human cells in vivo, this
approach is labor-intensive and important variations are observed
in the degree of reconstitution of the recipients (62, 66, 67). In
addition, cellular and molecular interactions between the grafted
human cells and the murine environment may be absent or altered
compared to the interactions that would take place in a natural
environment. Therefore, transferred human cells may not func-
tion in the murine environment as they would in their natural
(human) environment. Overall, few signs of severe dengue dis-
ease are observed in “humanized” mice, and some aspects of both
adaptive and innate responses are not fully functional (67). Cel-
lular immune responses are usually observed after viral infection,
but isotype class-switch does not readily occur in these mice (67).

Various mouse models of DENV-infection exist, each one with
specific strengths and limitations. While improvement of the cur-
rent models would be desirable, these models have been used to
test anti-viral drugs and vaccine candidates, or to provide insights
into mechanisms of DENV pathogenesis. As pathogenesis and
immune responses after DENV-infection probably differ between
mice and humans, extrapolation of findings made in mice to
DENV-infection in human should be done with caution. This lim-
itation has to be kept in mind when reviewing any data generated
in animal models.

USE OF MOUSE MODELS FOR DRUG AND VACCINE
DEVELOPMENT
Efforts to develop efficient therapeutics and vaccines against
DENV are still ongoing. Studies using mouse models of DENV-
infection could be used for drug development, or provide valuable

information on safety, immunogenicity, and efficacy of vaccine
candidates before they reach the clinical testing stage.

ANTI-VIRAL TESTING IN MOUSE MODELS OF DENV-INFECTION
Several anti-viral drug candidates have been tested in WT mice
after i.c. infection, or in AG129 mice. The alpha-glucosidase
inhibitor castanospermine (a natural alkaloid) can inhibit DENV-
infection by preventing correct folding of viral structural proteins
(72) and prevent mortality after i.c. DENV challenge in WT mice
(73). Contrary to WT mice, in which DENV is lethal only after i.c.
challenge, AG129 mice support DENV replication and show signs
of severe dengue disease following i.p. or i.v. infection with cer-
tain DENV-strains (48–54). Therefore, this model has been widely
used to test the ability of anti-viral drugs to limit DENV replica-
tion and dissemination, and/or prevent signs of disease. Mortality,
viral load, and signs of disease can all be used as readouts for
the drug efficacy. Iminosugars have anti-viral properties, as they
prevent correct protein folding by inhibiting glycoprotein pro-
cessing enzymes α-glucosidases I and II (74). In AG129 mice,
various iminosugars have been shown to reduce viremia, pre-
vent cytokine storm, and/or limit mortality after DENV-infection
(75–80). One study showed that co-administration of ribavirin
enhanced the anti-viral activity of the iminosugar (76). Further-
more, an adenosine nucleoside could limit viremia and reduce
mortality in DENV-infected AG129 mice, presumably by blocking
viral RNA synthesis (81, 82). Another compound, which inhib-
ited RNA translation, reduced peak viremia in AG129 mice (83).
Other DENV inhibitors targeting the NS3 helicase (84) or the
capsid protein (85) have also successfully reduced viremia and
organ viral titers in AG129 mice. In recent years, AG129 mice have
increasingly become the standard mouse model for in vivo testing
of anti-viral candidates that impact viral replication through type
I and II IFN-independent pathways.

MOUSE MODELS TO TEST SAFETY OF DENV-VACCINE CANDIDATES
A successful vaccine should induce protective immunity in the
host without causing pathology. This is particularly true for live-
attenuated vaccines, which are often derived from more virulent
parental strains. Mouse models in which DENV can replicate
and cause disease can be used to assess the safety of vaccine
candidates. Duration and magnitude of viremia, morbidity, and
(potentially) mortality after vaccination can be used as readouts to
assess the degree of attenuation of vaccine candidates compared to
the parental, non-attenuated strain. The degree of attenuation of
live DENV-vaccine candidates has been tested in suckling mouse
brains (86) and in SCID mice transplanted with human liver cells
(18, 87, 88). The WHO has suggested that the AG129 mouse model
may be adequate to test the safety of live-attenuated DENV-vaccine
candidates, as the potential to cause disease (compared to the
parental, non-attenuated strain) can be evaluated in those mice
(89). However, the authors point out the difficulty of interpreting
the results, as AG129 mice lack both type I and II IFN receptors.
In addition, the risk of inducing antibody-dependent enhance-
ment after vaccination can readily be assessed in AG129 mice, as
viral titers and morbidity have been shown to increase when sub-
neutralizing amounts of anti-DENV antibodies are administered
prior to infection (50–52, 90).
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MOUSE MODELS TO TEST IMMUNOGENICITY AND EFFICACY OF
DENV-VACCINE CANDIDATES
Immunogenicity and efficacy of DENV-vaccine candidates have
also been tested in both AG129 and WT mice. The effect of immu-
nization on subsequent challenge can easily be observed in AG129
mice, as the appropriate DENV-strain will replicate to measur-
able levels and cause pathology in those mice. A protective vaccine
should reduce viral titers and pathology, as well as increase mean
survival time after lethal challenge. Live-attenuated monovalent
and tetravalent vaccine candidates induced neutralizing antibodies
in AG129 mice, and protected from lethal DENV challenge (23, 91,
92). One study reported induction of DENV-specific CD8+ T cells
after vaccination of IFNAR−/−mice (23). Recently, immunization
with a non-propagating alphavirus replicon particle expressing a
truncated version of the DENV envelope protein induced both
cellular and humoral immunity, and was able to protect AG129
mice form lethal i.v. DENV challenge (90). The limitation of using
AG129 mice is that vaccine-induced responses may be altered rel-
ative to immunocompetent mice or humans, as both type I and II
IFN may regulate vaccine-induced immune responses.

Immune responses after vaccination with non-replicating
DENV-vaccine candidates have also been investigated in WT mice,
and neutralizing antibody responses were elicited after immuniza-
tion with subunit vaccines containing portions of the DENV enve-
lope protein (20, 93, 94) or after DNA priming and protein boost-
ing with various combination of envelope and non-structural
proteins (95, 96). Many studies used i.c. lethal DENV challenge
to test the protective efficacy of DENV-vaccine candidates in WT
mice (20, 34, 35, 37, 97–99). In those studies, the readout for pro-
tection was reduction of morbidity and/or increased survival after
i.c. lethal challenge.

In general, testing the efficacy of DENV-vaccination in WT
mice is difficult, as DENV challenge will not result in measurable
viral titers or pathology in WT mice, with the exception of viral
replication in the central nervous system after i.c. challenge (as
mentioned above). One way to circumvent this problem is to use
an adoptive transfer system: since many vaccines are immunogenic
in WT mice, WT animals can be vaccinated and, subsequently, T
cells, B cells, or serum can be transferred (alone or in combination)
into naïve AG129 recipients prior to challenge. The protective or
potentially enhancing effect of immune T cells, B cells, or serum
can be assessed by monitoring changes in viral load or pathol-
ogy in the AG129 recipient, where DENV readily replicates and
causes disease. Thus, in this adoptive transfer system, the AG129
mice serve as a highly stringent challenge assay. This approach has
been recently used to assess the relative contribution of T cells
and antibodies after vaccination, revealing that not only antibod-
ies, but also T cells could efficiently contribute to protection after
vaccination (90).

MOUSE STUDIES TO COMPLEMENT HUMAN STUDIES
In vitro experiments cannot fully reflect the complexity of the
whole organism, and human studies are descriptive by nature. In
human studies, key parameters such as viral strain, dose, sequence
of infection, and/or interval between infections are often unclear
or cannot be easily manipulated. Therefore, research in mouse
models is an ideal complement as it uses whole organisms, and

allows for variation of many experimental parameters. Care must
be taken while extrapolating conclusions based on experiments
carried out in mice to dengue disease in humans, as there is some
artificial component in all the models described so far.

MOUSE MODELS TO CONFIRM OBSERVATIONS MADE IN HUMAN
STUDIES
Research in mouse models can be useful to verify hypotheses
that have been based on epidemiological observations, or to gain
insights into the mechanistic aspects of phenomena that have been
observed in humans. For example, the hypothesis that antibody
from a previous infection with a heterotypic virus (or acquired
from an immune mother) can increase severity of disease upon
re-infection (antibody-dependent enhancement, ADE) has been
postulated a long time ago (100, 101). Increased infection of
target cells in the presence of sub-neutralizing amounts of anti-
body is readily observed in vitro (102–106). In monkeys, viremia
increases after transfer of antibodies, but no signs of disease are
observed (107, 108). Recently, the AG129 mouse model was used
to demonstrate that passive transfer of sub-neutralizing amounts
of anti-DENV antibodies could turn a mild illness into a lethal
disease upon DENV-infection (50, 51). The antibody-induced
severe dengue disease displayed many signs observed during severe
dengue disease in humans: elevated viral RNA titers in multiple
organs, cytokine storm, low platelet counts, elevated hematocrit,
increased vascular permeability, intestinal hemorrhage, and ulti-
mately death. Those studies also formally confirmed the involve-
ment of the Fcγ-receptor during ADE in vivo, and a subse-
quent study demonstrated the therapeutic potential of anti-DENV
antibodies that no longer bind to the Fc-γ receptor (52).

Another example is the association between high viremia and
disease severity. In humans, viremia is higher and persists longer
during severe dengue compared to DF (109–113). This has also
been observed in mice, where disease severity has been shown to
correlate with higher viremia. Mouse models have been used to
explore various experimental scenarios in which viral or host fac-
tors influence virus levels and, consequently, severity of disease.
In the single-deficient IFNAR−/− mice, severity of disease corre-
lated with the amount of virus inoculated i.v. (46). The same study
showed that, at equal viral doses, the presence of intact IFN-γ sig-
naling reduced systemic viral spread and severity of disease. Other
mouse model studies examining mechanisms of anti-viral innate
immunity revealed an essential role for MAVS (55) and IRF-3/7
(45) in the initial induction of type I IFN response and control of
viral replication, and for STAT1 and STAT2 in the late induction
of type I IFN response and control of viral replication (114). In
various studies using IFN-α/β and -γ receptor deficient mice, the
presence of sub-neutralizing levels of antibodies increased viremia
and resulted in severe dengue-like disease (50–52). CD8-depletion
before infection resulted in increased viral loads in another murine
study (56). Many studies have also shown that virulence factors
influence the outcome of the infection. One study showed that
two mutations in the envelope protein of DENV were sufficient to
delay virus clearance from serum, increase systemic viral loads, and
induce severe dengue disease in mice (49). Similarly, a single amino
acid change in the non-structural protein NS4B of a non-virulent
DENV-strain caused increased RNA synthesis, increased viremia,
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and decreased survival time in AG129 mice (54). Therefore, while
the observation that higher viremia correlates with disease severity
has been widely made in humans, studies in mice have confirmed
and extended those observations by demonstrating how particu-
lar host- and virus-associated factors impact viremia and disease
severity; those factors include specific elements of innate and adap-
tive immune responses, presence of sub-neutralizing antibodies,
size of the initial virus inoculum, and virulence of the infecting
viral strain.

MOUSE MODELS TO EXPLORE THE ROLE OF DIFFERENT COMPONENTS
OF THE IMMUNE SYSTEM
Human studies have suggested that the immune system can be
involved in both protection and immunopathology during DENV-
infection. For example, studies have shown that passively trans-
ferred anti-DENV maternal antibodies can initially protect infants
against disease (115–118), but later on, as titers decrease, sub-
protective levels of antibody favor the development of severe
disease (115, 116, 118). T cells have also been suspected to increase
disease severity: cross-reactive T cells raised during a primary
infection have been suggested to dominate the response during
a secondary, heterotypic infection, resulting in delayed viral clear-
ance (119), altered cytokine production profile (120), or excessive
cytokine release (121). However, another study showed that while
cross-reactive T cells did dominate the response during secondary
heterotypic infections, they did not show any sign of impair-
ment (122). On the contrary, results of this study supported an
HLA-linked protective role for CD8+ T cells.

Based on these observations, it is clear that a better understand-
ing of the relative contribution of the cellular and the humoral
arms of the immune system to protection and/or immunopatho-
genesis during DENV-infection is needed. Tractable, genetically
manipulable mouse models enable the investigation of the role
of different components of the immune system during DENV-
infection, re-infection, or after vaccination. Passive transfer of
serum, adoptive transfer of various T cell subsets, or depletion
experiments should allow for a better understanding of the protec-
tive or potentially pathogenic role of the different components of
the immune system, either alone or in combination. Passive trans-
fer of anti-DENV antibodies can protect mice from intracerebral
lethal challenge (123) or increase mean survival time after i.v. chal-
lenge (51). However, sub-neutralizing levels of antibodies can also
increase the level of infection and/or the severity of disease in mice
(50, 51). One study showed that the same neutralizing antibody
could protect or enhance infection, depending on the amount
transferred prior to infection (51). This is an in vivo confirma-
tion of the observation made in vitro that even antibodies that are
neutralizing can enhance infection when used at sub-neutralizing
concentrations (103). A protective role for T cells during DENV
primary infection was established in mice by showing that CD8-
depletion prior to infection increased viral load in various organs
upon infection (56). Similarly,vaccination with CD8-epitopes (56)
or CD4-epitopes (57) reduced viral load upon DENV-infection,
showing that priming cellular responses before challenge was ben-
eficial for the host. Passive transfer of homotypic or heterotypic
serum or adoptive transfer of homotypic or heterotypic spleno-
cytes before DENV challenge reduced viral load in various organs

(124). Similarly, a protective role for both cross-reactive T cells
and B cells was shown in AG129 mice (125). Recently, the relative
contribution of the humoral and the cellular arms of the immune
system were assessed in mice after vaccination with a protective
DENV-vaccine candidate (90). After vaccination, short-term pro-
tection was mediated by CD8+ T cells. Later on, CD8+ T cells were
or were not required for protection, depending on the immu-
nization schedule. All those studies explored the role of various
components of the immune system in isolation from the other
ones, which would be difficult in human studies.

Despite sustained vaccine development efforts, there is still no
clinically approved vaccine against DENV (126–133). In terms of
dengue vaccine development efforts to date, measuring neutraliz-
ing antibodies by plaque reduction neutralization test (PRNT)
may not accurately predict the protective efficacy of a vaccine
against DENV (133–135). Therefore, a better understanding of the
relative contribution of the different components of the immune
system to protection and/or pathogenesis is crucial to develop bet-
ter correlates of protection as well as a safe and effective DENV
vaccine.

MOUSE MODELS TO SUGGEST AREAS OF INTEREST FOR FUTURE
HUMAN STUDIES
While research in mouse models has confirmed some of the
hypotheses based on human studies, some of the findings made
using mouse models need validation with human data. In this
respect, the value of the mouse model is to point out possible areas
of importance for future human studies. For example, elevated
liver DENV titers and infection of liver sinusoidal endothelial cells
(LSECs) were observed during antibody-induced severe dengue
disease in mice (51). In humans, liver pathology is often observed
after DENV-infection, and the degree of dysfunction may corre-
late with disease severity (136–140). In addition, DENV RNA or
antigen has been found in the liver of patients who succumbed
to DHF/DSS (141–143). Recently, a case of DENV transmission
following a liver transplant has been reported (144). However, the
cellular localization of DENV replication in the liver is still con-
troversial, and possibly deserves more attention in future human
studies.

Similarly, a protective role for T cells during DENV-infection
has been widely shown in mice (56, 57, 90), but human studies have
only recently started to explore more in depth the protective role of
T cells during DENV-infection (122). Studies in mice could sug-
gest which T cell subsets are required to limit viral replication, and
which T cell-mediated mechanisms protect against dengue patho-
genesis during both primary and secondary infections, as well as
explore further the role of sero-specific and cross-reactive T cells in
protection and/or pathogenesis. IFNAR−/− mice crossed to trans-
genic mice expressing human HLA molecules will also be valuable
to explore anti-DENV-T cell responses restricted to human HLA.
Subsequently, human studies will be necessary to verify if the
findings made in mice apply to DENV-infection in humans.

CONCLUSION
While the perfect mouse model of DENV-infection has yet to
be established, existing murine models of DENV-infection have,
within their own limitations, been invaluable tools to complement
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and/or expand observations made in vitro or in epidemiologi-
cal studies. Each model has strengths and weaknesses that must
be taken into consideration when assessing data. Therefore, the
choice of the best-suited model to answer a particular question
is of critical importance. Mouse models have been useful to test
the safety and efficacy of vaccine candidates or potential anti-viral
drugs, verify hypotheses based on human studies, gain insights
into mechanistic aspects of DENV-induced immunity or pathol-
ogy, and suggest areas worth attention in future human studies.
As with any animal model, extrapolation of findings made in mice
to DENV-infection in humans must be done with care. In the
future, refinement and improvement of existing models may over-
come some of the boundaries of today’s models, and expand the
knowledge that murine models can generate about mechanisms
of DENV pathogenesis and immunity.
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