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All mature blood cells derive from hematopoietic stem cells through gradual restriction
of their cell fate potential and acquisition of specialized functions. Lineage specification
and cell commitment require the establishment of specific transcriptional programs involv-
ing the activation of lineage-specific genes and the repression of lineage-inappropriate
genes. This process requires the concerted action of transcription factors (TFs) and epi-
genetic modifying enzymes. Within the hematopoietic system, B lymphopoiesis is one of
the most-studied differentiation programs. Loss of function studies allowed the identifica-
tion of many TFs and epigenetic modifiers required for B cell development. The usage of
systematic analytical techniques such as transcriptome determination, genome-wide map-
ping of TF binding and epigenetic modifications, and mass spectrometry analyses, allowed
to gain a systemic description of the intricate networks that guide B cell development.
However, the precise mechanisms governing the interaction between TFs and chromatin
are still unclear. Generally, chromatin structure can be remodeled by some TFs but in turn
can also regulate (i.e., prevent or promote) the binding of other TFs. This conundrum leads
to the crucial questions of who is on first, when, and how. We review here the current
knowledge about TF networks and epigenetic regulation during hematopoiesis, with an
emphasis on B cell development, and discuss in particular the current models about the
interplay between chromatin and TFs.
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INTRODUCTION

The character of a cell type is defined by its specific transcrip-
tional program, which is regulated by transcription factors (TFs)
that bind DNA cis-regulatory elements (cis-REs) to activate or
repress defined set of genes. Cis-REs refer to loci that regulate
the expression of genes located in the same molecule of DNA.
They are composed of binding sites for TFs that recognize a spe-
cific nucleotide sequence and therefore act as trans-acting factors.
Promoters and enhancers are the two major types of cis-REs in
eukaryotes. At the DNA sequence level, the repertoire of cis-REs
is identical in all cell types. Therefore, the transcriptional pro-
grams specific to each cell lineage must be the consequence of the
repertoire of TFs expressed in a given cell that select genes for tran-
scriptional activation or repression. However, the same TFs can be
equally expressed in different cell types but have distinct binding
profiles, indicating that the interaction between the TFs and their
cognate sequences is not sufficient to explain the action of TFs
and their transcriptional output. Indeed, in addition to the DNA
sequence recognition, TFs occupancy strongly depends on chro-
matin structure and epigenetic modifications which provide an
additional layer of gene regulation and establish heritable cellular
memories.

Chromatin consists of repeating units of nucleosomes, com-
prising histone octamers (containing two copies each of H2A,
H2B, H3, and H4) around which 147 bp of DNA are wrapped
(1). Multiple residues within the tails and the globular domains
of histones can undergo post-translational modifications (PTMs),
including acetylation, methylation, phosphorylation, ubiquitina-
tion, and sumoylation. These PTMs are catalyzed by a variety of
histone-modifying enzymes that have been classified in two major
groups, the writers such as histone acetyl transferases (HATs) and
histone methyltransferases (HMTs) and the erasers such as his-
tone deacetylases (HDACs) and histone demethylases (KDMs) (2)
(Figure 1). Histone modifications act combinatorially to regulate
transcriptional activity; some histone modifications are associated
with transcriptional activation while others are associated with
distinct mechanisms of transcriptional repression. For example,
tri-methylation on lysine 4 of histone H3 (H3K4me3) is mainly
associated with active promoters; in contrast, the mono methy-
lation of the same residue (H3K4mel) is a hallmark of poised
and active enhancers, while H3K27ac marks exclusively active
enhancers and promoters. The best studied repressive histone
modifications are the methylation of lysines 9 and 27 of histone
H3 (H3K9 and H3K27), which are respectively associated with
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FIGURE 1 | Simplified scheme of condensed heterochromatin and
open chromatin features. Heterochromatin is mostly hypo-acetylated,
marked by methylated lysine 9 on histone H3 (H3K9me2/3) which forms a
binding site for heterochromatin protein 1 (HP1), contains methylated DNA,
and results from the action of repressive complexes such as histone
deacetylases (HDACs), H3K9 methyltransferases (H3K9-MT), and DNA
methyltransferases (Dnmts). Chromatin opening is orchestrated by the
concerted action of transcription factors (TFs) and chromatin modifying
enzymes such as histone methyltransferases (HMTs), histone acetyl
transferases (HATs), and SWI/SNF remodeling complexes. Open chromatin
is generally acetylated, harbors active histone marks, and is accessible to
the transcription machinery and RNA polymerase Il (Pol Il). TF binding sites
(TFBSs) are indicated by yellow rectangles and the nucleosomes consisting
of histone octamers are depicted by green cylinders. For simplicity, only a
single histone tail is shown protruding out of each nucleosome and DNA
methylation is not depicted.

heterochromatin and polycomb-group (PcG) proteins-mediated
repression.

DNA methylation provides yet an additional mechanism for
gene regulation. It is an efficient repressive DNA modification
that occurs at the fifth position of cytosine (5-mC), mostly in the
context of CpG dinucleotides (3) and is associated with transcrip-
tional repression through two general mechanisms. First, DNA
methylation can directly inhibit the binding of proteins impor-
tant for transcription initiation, such as TFs and others. Moreover,
methylated DNA can recruit proteins containing a methylated
DBD, which may interfere with transcription by co-recruitment
of repressors such as HDACs [reviewed in Ref. (4)]. Most of the
genome is depleted of CpGs except for CpG islands, which repre-
sent ca. 60% of mammalian promoters and are largely unmethy-
lated (5). DNA methylation is catalyzed by three enzymes: the
maintenance DNA methyltransferase Dnmt1, which ensures that
already methylated residues are faithfully maintained during DNA
replication (6), and the de novo methyltransferases Dnmt3A and
Dnmt3B which can add methyl groups to non-methylated CpG
residues (7). DNA methylation is dynamic and also reversible:
removal of methyl groups can occur through active or passive

mechanisms. The latter is due to the absence of methylation by
Dnmtl of newly synthesized DNA during replication. In con-
trast, active DNA demethylation corresponds to the reaction that
leads to the removal of the methyl group from 5-mC residues
independent of DNA replication. Active DNA demethylation has
been a controversial subject as many mechanisms were proposed
to explain this process and the putative demethylases could not
be identified in a conclusive manner [reviewed in Ref. (8)]. How-
ever, it is now well accepted that the dioxygenases Tetl and Tet2
catalyze DNA demethylation through the conversion of 5-mC to
hydroxymethyl cytosine (5-hmC) (9, 10).

Additional mechanisms involved in epigenetic regulation are
contributed by chromatin remodeling complexes (CRC) and
diverse kinds of non-coding RNAs. Chromatin remodelers are
ATP-dependent complexes that regulate DNA accessibility by
modifying nucleosome positioning and conformation. They can
be divided into four groups: the SWI/SNE, ISWI, CHD, and INO80
families of remodelers [reviewed in Ref. (11, 12)]. In addition,
long or short non-coding RNAs can influence chromatin and gene
expression, for example by mediating inactivation of one chromo-
some (X inactivation by Xist RNA), opening up loci or helping
to define boundaries of chromatin domains [reviewed by Mercer
etal. (13)].

These different mechanisms of histone modifications, DNA
methylation, chromatin remodeling, and non-coding RNAs play a
central role in shaping chromatin structure, which in turn affects
the interaction between TFs and their cognate binding sites. Con-
versely, the binding of TFs triggers a chain of events, often leading
to changes in local chromatin properties. Indeed, TFs can interact
with and recruit many chromatin modifying or remodeling com-
plexes to their target loci. Thus, establishing chromatin structure
requires TF activity and TF activity depends on chromatin struc-
ture. This reciprocal interplay raises a major question: how is the
communication between TFs and chromatin regulated and which
additional cellular signals feed into this complex network during
development and cellular differentiation?

Understanding the mutual and interdependent interactions
between TFs and chromatin features and their impact on gene reg-
ulation in a developmental system requires a biological paradigm
where successive differentiation stages can easily be identified and
isolated. In this regard, hematopoiesis provides a powerful system
to study epigenetic and transcriptional dynamics. B cells derive
from hematopoietic stem cells (HSCs) through a multistep differ-
entiation program. HSCs have both self-renewal and multipotency
capacities. The precise balance of these properties is essential
to maintain the HSC pool size throughout animal life. HSCs
initially give rise to multipotent progenitors (MPPs) that loose
self-renewal capacity but keep the ability to generate early progen-
itors of lymphoid and myeloid lineages. Lymphoid lineage consists
of B, T, and natural killer (NK) cells while myeloid lineage con-
tains macrophages (M), granulocytes (G), erythrocytes (E), and
megakaryocytes (Mk). The exact branching point between lym-
phoid and myeloid lineages as well as the differentiation potential
of progenitor populations is still matter of some debate [reviewed
in Ref. (14)]. The identification of common lymphoid progeni-
tors (CLPs) (15) and common myeloid progenitors (CMPs) (16)
supports the model that lymphoid and myeloid lineages follow
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distinct developmental paths from MPPs. This model was chal-
lenged by the identification of the lymphoid-primed multipotent
progenitors (LMPPs) that loose MKE potential but keep lymphoid
and GM potential (17, 18). Another study showed that the MPP
compartment contains a subpopulation of cells with strong lym-
phoid potential and weak myeloid colony-forming activity (19).
These cells, called early lymphoid progenitors (ELPs) start to
express recombination-activating gene 1 (Ragl) and Rag2 and ini-
tiate the immunoglobulin heavy chain (IgH) rearrangement (19).
ELPs are thought to precede the CLP stage. Recently, it was shown
that the CLP compartment contains two distinct subpopulations:
all lymphoid progenitors (ALPs) and B cell-biased lymphoid prog-
enitors (BLPs) (20). ALPs retain full lymphoid potential, whereas
BLPs behave essentially as B cell progenitors (20). Mature B cells
derive from BLPs through sequential differentiation steps that
can be defined by five major stages that are phenotypically and
functionally distinct: pro-B, pre-BI, large and small pre-B II, and
immature B cells (21) (Figure 2). Early B cell differentiation is
intimately connected to the DNA rearrangement of Ig genes, the
so-called V(D)] recombination, in order to generate functional Ig
molecules. Pro-B cells, first express the pan-B cell marker B220
and this coincides with entry into the B cell lineage. Next, pre-BI
cells express the CD19 gene and complete recombination of the
IgH diversity (Dy) to joining (Ji) segments and the next stage sees
the generation of IgH V(D)]J alleles [reviewed in Ref. (21)]. This
allows expression of the rearranged heavy chain which assembles
with the surrogate light chain to form the pre-B cell receptor (pre-
BCR), a crucial checkpoint in B cell development (22). If cells pass
this functional test they can go on to the next developmental stage,

small pre-BII cells, where the Ig light chain rearranges and allows
for the formation and exposure at the cell surface of a functional
Ig molecule, the BCR. Finally, immature cells can then leave the
bone marrow (BM) and enter the periphery (22).

The generation of immature and mature B cells from early
precursors is a progressive process, every step of which is character-
ized by a specific transcription program involving the activation,
repression, or maintenance of distinct sets of gene expression pat-
terns. This genetic regulation results from the concerted action
of ubiquitous and lineage-specific TFs as well as epigenetic mod-
ifiers. Proper and timely recombination of the Ig loci is essential
for normal progression through B cell development and is highly
dependent on chromatin structure, DNA methylation, and also
expression of various RNAs across the Ig locus. In particular, the
accessibility model, first posited by Frederick Alt and colleagues,
highlighted the importance of “sterile” transcripts which origi-
nate from unrearranged Ig gene segments and make their chro-
matin accessible to the recombination enzymes RAG1 and RAG2
[reviewed in Ref. (23)]. Thus, B cell development presents an extra-
ordinarily complex and dynamic system to study the establishment
and maintenance of transcriptional and epigenetic networks.

KEY TRANSCRIPTION FACTORS ESSENTIAL FOR B CELL
DEVELOPMENT

Loss of function studies using mouse models have identified many
TFs important for distinct stages during B cell development and a
particular emphasis has been put on early B cell specification and
commitment. Prominent among those are E2A, Ebfl, and Pax5,
as well as other TFs acting downstream and upstream to these

PU.1
Ikaros E2A Ebfl
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FIGURE 2 | Scheme for B cell development from HSCs to mature

B cells. Successive stages and alternative lineages are indicated. Key
transcription factors and chromatin regulators are shown according to their
established requirement during the early B cell differentiation process.
HSC, hematopoietic stem cell; MPP. multipotent progenitors; MER
megakaryocyte—erythrocyte progenitors; LMPP, lymphoid-primed
multipotent progenitors; ELP, early lymphoid progenitors; CMP, common
myeloid progenitors, GMP, granulocyte—macrophage progenitors; CLP

Y Y Y
—>—>—>

Hdac1/2
Prc1/2

common lymphoid progenitors; ALP all lymphoid progenitors; BLE B
cell-biased lymphoid progenitor; Pro NK, progenitor natural killer cells; NK,
natural killer cells. When a factor is required at multiple developmental
stages, only the earliest stage has been indicated and only factors
important for the early stages of hematopoietic or B cell development are
depicted. For simplicity, only one model of myeloid versus lymphoid
divergence is illustrated; the alternative routes are not shown here
[reviewed in Ref. (14)].
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factors. Some of these TFs such as Ebfl and Pax5 are restricted
to the B cell lineage while others such as Ikaros, PU.1, E2A, and
FoxO1 are also involved in other lineage fate determination.

The expression of these TFs is temporally regulated; e.g., Ikaros,
PU.1,and E2A are expressed in the very early progenitors including
HSCs and MPPs before the commitment to the lymphoid branch,
Ebfl and FoxO1 are expressed at the CLP stage under the control
of E2A (24) and Pax5 expression is induced by the concerted action
of Ebfl, FoxO1, and E2A in committed pro-B cells. The sequential
expression and activity of these TFs suggests a hierarchy in their
action. Yet, the transcriptional regulation of early B cell develop-
ment is not a simple hierarchical cascade, as many of these TFs
act in a cooperative manner and directly regulate the expression
of other TFs, involving both positive and negative feedback loops
leading to a complex cross-regulatory network (25) (Figure 3).

PU.1

If one considers a hierarchical classification of the TFs involved in
B cell development, PU.1 and Ikaros come on the top of the reg-
ulatory pyramid. PU.1 (encoded by Spi-1I, Sfpi-1) belongs to the
ETS family of TFs, its expression was thought to be restricted to the
hematopoietic lineage, but was recently also detected in adipocytes
(26). Within the hematopoietic system, PU.1 activity is essential
for the development of lymphoid cells as well as macrophages
and neutrophils (27). Disruption of the PU.1 DBD in mouse pre-
vents the commitment of MPPs toward the lymphoid lineage (27).
PU.1 is expressed in HSCs (28), lymphoid, and myeloid progeni-
tors (16) as well as in fully mature and functional cells (29). This
broad expression pattern indicates that PU.1 is not only required
for cell differentiation but also plays a role in the function of the
specialized hematopoietic cells. The expression of PU.1 in many
hematopoietic lineages raised the question about its mechanism of
action and the rules that determine the interaction between this TF
and its binding sites in different cellular and physiological contexts.
Genome-wide mapping of PU.1 binding sites in macrophages and
B cells revealed that PU.1 is enriched at transcription start sites
(TSSs), but the majority of binding sites were found at inter- and
intra-genic sites (30) indicating a role of PU.1 in regulating both
transcription initiation and enhancer function. Interestingly, PU.1
binding at TSSs exhibits a high correlation between macrophages
and B cells; in contrast, binding sites at distal regulatory elements
are highly cell type-specific. Motif analysis of cell type-specific
PU.1 binding sites revealed that PU.1 binds in vicinity of lineage-
specific TFs: B cell-specific PU.1 binding sites are enriched in E2A,
Ebf1, OCT, and NF-kB motifs, while macrophage-specific sites are
enriched in C/EBP and AP-1 motifs (30). These findings strongly
suggest that the cell type-specific function of PU.1 is partly due to
its collaborative interaction with other lineage-specific TFs. The
role of PU.1 in shaping the enhancer repertoire in hematopoi-
etic cells will be further discussed in a later section of this review.
Interestingly, PU.1 action was shown to depend critically on its
expression level and involves a tight dose-dependent control. PU.1
shows low to medium expression level in LT-HSCs and exhibits
varied levels in progenitors and mature cells; e.g., PU.1 is weakly
expressed in erythroid and T cells and shows intermediate levels
in B cells, in contrast, it is highly expressed in macrophages and
neutrophils (31). Importantly, this graded expression has a critical

FIGURE 3 | An early B cell specification module. Schematized network of
interdependent TFs regulating early B cell development. The scheme
depicts TFs that have been implicated in the control of early B cell
specification and/or commitment (for clarity, factors such as Spi-B, OBF1, or
NF-KB, which are important at later stages of B cell development, are not
depicted here). Direct positive regulation between two factors at the
transcriptional level is indicated by the corresponding arrows. Note that the
scheme does not imply biochemical interactions (e.g., complex formation)
between the factors, although they may also take place in some cases.

role in specifying the different lineages: by artificial expression of
PU.1 in PU.1-deficient progenitors, it could be demonstrated that
moderate PU.1 levels promote B cell development, while high PU.1
expression promotes macrophage differentiation and at the same
time blocks B cell development (32).

IKAROS

The zinc finger factor Ikaros (encoded by the izkfl gene) also
plays a critical role during early lymphoid lineage specification.
Ikaros was proposed to promote the differentiation of pluripotent
HSC:s into the lymphocyte pathways: mutational disruption of the
Ikaros DNA-binding domain (DBD) leads to an early block in
lymphopoiesis before the commitment to the lymphoid restricted
stages (33). However, another study showed that Ikaros is dis-
pensable for the transition from HSCs to LMPPs, but is rather
required for the progression of LMPPs into the lymphoid lineages
(34). Recently, Ikaros was found to be required for the induc-
tion of lymphoid lineage priming in HSCs and for the repression
of self-renewal and multipotency genes after HSC differentiation
(35). Ikaros is also involved in later stages of B cell development,
where it promotes heavy-chain gene rearrangements by inducing
expression of the RAG1 and RAG2 genes, as well as by control-
ling accessibility of the variable gene segments and compaction
of the IgH locus (36). Furthermore, Ikaros was recently shown
to be required for the differentiation of large pre-B to small pre-B
cells and for transcription and rearrangement of the IgL locus (37).
Ikaros functions either as a transcriptional activator or repressor by
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recruiting various CRC including SWI/SNF and Mi-2/nucleosome
remodeling and deacetylase (Mi-2/NuRD) to DNA regulatory
elements and to pericentromeric heterochromatin (38-42).

E2A

E2A (encoded by tcf3 with two splice variants, E12 and E47) is
a helix-loop-helix TF essential for B cell differentiation (43, 44).
E2A-null mutant mice fail to generate LMPPs and lack B cells (43).
E2A acts synergistically with PU.1 and is required for Ebfl and
FoxO1 expression at the CLP stage (45, 46). Genome-wide map-
ping experiments in B cell progenitors (Ebfl '~ and Rag2~/~)
showed that E2A binds both TSSs and putative enhancers (24) and
is required to induce H3K4mel deposition at enhancer elements
in concert with PU.1 (30).

EARLY B CELL FACTOR 1

Early B cell factor 1 (Ebf1) belongs to the EBF/COE family of TFs
(47). EBF/COE family members contain an N-terminal DBD with
an atypical zinc knuckle domain (H-X3-C-X2-C-X5-C), a TF
immunoglobulin (TIG/IPT) domain, a helix-loop-helix—loop-
helix (HLHLH) domain and a carboxy-terminal transactivation
domain (48). The HLHLH domain was found to be important
for the dimerization of EBF1 (48). EBF1 is essential for B cell
specification (49) and commitment (50). Ebfl acts in concert
with E2A, FoxOl, and other TFs to regulate the expression of
many genes required for B cell development including TFs such
FoxO1 and Pax5 (51); the latter in turn binds to Ebfl enhancers
and increases its expression, thereby leading to a positive feedback
loop between these two factors (24, 52, 53). Ebfl can also act as a
repressor; indeed, it was shown that Ebfl prevents Id2- and 1d3-
mediated inhibition of the E47 isoform of E2A by downregulating
the expression of their mRNA (54).

Pax5

Pax5 acts downstream of Ebfl, its expression is under the control
of a cohort of TFs including PU.1, Ebfl, FoxO1, IRF4, and IRF8
(55). Pax5 is essential for B cell commitment (56) and mainte-
nance of B cell identity through activation of B cell-specific genes
and repression of lineage-inappropriate genes (57). Deletion of
Pax5 in mature B cells leads to the de-differentiation to lymphoid
progenitors, which can differentiate into functional T cells (58).
The role of Pax5 in regulating gene expression will be discussed in
more detail in a later section.

Fox01

The forkhead TF FoxOl plays an important role during B cell
development. FoxO1 was found to be critical at several stages of B
cell differentiation (59). Early deletion of FoxO1 causes a substan-
tial block at the pro-B cell stage due to a failure to express the IL-7
receptor-alpha chain. FoxO1 inactivation in late pro-B cells results
in an arrest at the pre-B cell stage due to impaired expression of
Ragl and Rag2 (59), which are direct targets of FoxO1 (60). In
addition, deletion of FoxO1 in peripheral B cells leads to reduced
number of lymph node B cells due to down regulation of L-selectin
and defect in class-switch recombination (59).

c-Myb AND Runx1
B cell development also depends on many other TFs such as for
example c-Myb and Runxl. Deletion of c-Myb in mice leads

to a block at the pre—pro-B cell stage which is accompanied
with impaired expression of the alpha-chain of the IL-7 recep-
tor and Ebfl (61). Deletion of Runx1 also causes a developmental
block at the pro-B cell stage accompanied by reduced expression
of E2A, Ebfl, and Pax5. Furthermore, Runxl directly binds the
Ebfl promoter and this binding is critical for EbfI activation;
indeed, Runx1-deficient pro-B cells were shown to harbor exces-
sive amounts of the repressive histone mark H3K27me3 in the
Ebf1 proximal promoter. Interestingly, retroviral transduction of
EDbf1, but not Pax5, into Runx1-deficient progenitors restores B
cell development (62). It was also shown that Runxl controls
the expression of PU.1 via direct interaction with its upstream
regulatory element (URE) (63).

As discussed above, many of the TFs critical for early B cell
development directly regulate each other’s expression, positively
or negatively, by binding to cis-REs in their corresponding genes.
This inter-dependent network forms a B specification module,
which has EBF1 at its center, which in concert with Ikaros, E2A,
IRF4/8, and FoxOl, positively activates expression of Pax5, thus
locking B cell development (Figure 3).

EPIGENETIC REGULATORS INVOLVED IN HEMATOPOIESIS
AND B CELL DEVELOPMENT

In addition to the TFs, many epigenetic regulators are crucial
for hematopoiesis and/or B cell development. Among those, PcG
proteins play an important role in this system. Mammalian cells
contain two major PcG complexes, PRC1 and PRC2. PRC2 con-
tains SUZ12, EED, and EZH1 or EZH2. EZH proteins are HMTs
that catalyze the di- and tri-methylation of histone H3K27 (64).
PRCI1 contains RING1, CBX, PHC, and BMI1 or MEL18 [reviewed
in Ref. (65)]. PRCI recognizes and binds H3K27me3 via its sub-
unit CBX, while RING1 mono-ubiquitylates histone H2A at lysine
119 (H2AK119ubl) (61, 62). The H2AK119ub1 mark is thought
to play a role in inhibiting RNA polymerase II (pol II) elonga-
tion (66). The H3K27me3 mark is associated with the silencing of
many key developmental regulatory genes, such as Hox homeotic
genes and many others [reviewed in Ref. (67)].

Many PcG deficiencies correlate with defective development
and/or activation of lymphocytes. For example, inactivation of
Bmil or mel-18 causes a severe block in B cell development that
leads to B cell lymphopenia (68, 69). By contrast, deficiency in
Cbx2 does not affect lymphocyte development but alters splenic
B cell response to lipopolysaccharide (LPS) (70). Conditional
knockout studies targeting members of the polycomb machinery
highlighted the critical role of these enzymatic complexes in the
hematopoietic system. Bmil is the most studied PRC1 subunit in
hematopoiesis. Depletion of Bmil leads to impaired self-renewal
capacity of HSCs due to the de-repression of two major cell cycle
regulators: Ink4a (p16) and Arf (p19) (71). Bmil directly binds
and repress the promoters of these genes and the deletion of
both Ink4a and Arf genes restores the self-renewal capacity of
Bmil~'= HSCs (72). Moreover, Bmil~'~ mice have a BM microen-
vironment that is severely defective in supporting hematopoiesis.
In this case however, the deletion of both Ink4a and Arf genes
did not significantly restore the impaired BM microenvironment
(72). Bmil is also involved in the repression of Ebfl and Pax5
in HSCs and MPPs. Depletion of Bmil causes aberrant expres-
sion of these two genes, leading to premature lymphoid lineage
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specification (73). Another PRC1 subunit, Ring1b, was also found
to be critical for adult hematopoiesis. Mice deficient for Ringlb in
hematopoietic cells develop a hypocellular BM that unexpectedly
contains an enlarged, hyperproliferating compartment of imma-
ture cells, with an intact differentiation potential. These defects are
associated with differential upregulation of cyclin D2 and Ink4a
(74). Controlled expression of PRC2 components is also impor-
tant for hematopoiesis. Several studies have highlighted the role of
Ezh1 and Ezh2 in embryonic and adult HSCs. Loss of Ezh2 severely
impairs fetal HSC self-renewal without affecting the function of
adult stem cells present in the BM (75). In addition, EZH2 was
also found to have a crucial role in early B cell development and
in rearrangement of the IgH gene (66).

Early B cell development also requires HDACs activity (76). Tar-
geted deletion of the major class I HDACs, HDACI and 2 showed
that B cell development requires the presence of at least one of
these two enzymes. When both enzymes are deleted, B cell devel-
opment is dramatically impaired at the large pre-BII stage with
a strong cell cycle block in the G1 phase accompanied by the
induction of apoptosis. In contrast, elimination of HDACI1 and
HDAC?2 in mature resting B cells is not deleterious; however, when
these cells are induced to proliferate cell cycle block and apoptosis
ensue. These data indicate that the role of HDACI and 2 during
early B cell development is at least partially linked to cell cycle
control (76). The potential role of HDACs in controlling other
processes in B cells and other hematopoietic lineages remains to
be elucidated.

The activity of DNA methyltransferases is also crucial for
hematopoiesis. Conditional deletion of the maintenance DNA
methyltransferase Dnmt1 in HSCs leads to impaired self-renewal
capacity and prevents HSCs from giving rise to hematopoietic
progenitors (77). Based on the initial studies, loss of the de novo
DNA methyltransferases, Dnmt3a or Dnmt3b alone was thought
to have no impact on HSC function (78); by contrast, loss of
both together was reported to abolish self-renewal without affect-
ing differentiation capacity (78). However, a more recent study
reported that Dnmt3a-null HSCs exhibit upregulation of multi-
potency genes and downregulation of differentiation factors. The
progeny of Dnmt3a-deficient HSCs exhibit global hypomethyla-
tion and impaired repression of HSC-specific genes. These data
highlighted the important role of Dnmt3a in the repression of
HSC genes in order to enable proper cell differentiation (79).

V(D)]J recombination of immunoglobulin genes is thought to
be regulated by changes in the accessibility of target sites, such as
modulation of methylation. In vitro experiments showed that spe-
cific methylation within the heptamer of recombination signal
sequences markedly reduces V(D)J cleavage without inhibiting
RAG1/RAG2-DNA complex formation (80). Recent investiga-
tions of the IgH locus recombination showed that the diversity
(Du) and joining (Jy) gene segments are methylated prior to
recombination, in contrast the DJy product is demethylated. D]y
junctional demethylation is restricted to B cells and requires the
Ep enhancer, located within the intronic region of the IgH locus
(81). However, it is unclear whether the demethylation is required
for DJy junction or whether it is simply the consequence of the
DNA recombination. Earlier experiments had shown that loss of
methylation of the kappa light chain locus is not sufficient to

activate recombination in cultured pre B cells lacking Dnmt1 (82).
Cd19-cre mediated deletion of the de novo DNA methyltransferase
Dnmt3a and Dnmt3b, failed to identify a critical role for these
enzymes in B cell development (83). Cd19-cre is expected to
induce the deletion of targeted genes from pre B cells onward
(84). Thus, this study, strongly suggest that Dnmt3a and b are
dispensable to the progression from pre B cells to mature B cells.
Overall, these studies suggest that the maintenance DNA methyl-
transferase Dnmt1 is required at all the stages of hematopoiesis,
whereas the de novo DNA methyltransferases Dnmt3a and 3b are
required only at the very early stages and become dispensable at
later stages. However, additional studies will be needed to fully test
these assumptions.

INTERPLAY BETWEEN CHROMATIN LANDSCAPE AND TF
ACTIVITY DURING B CELL DEVELOPMENT

The progression of MPPs toward specialized cells is thought to be
accompanied by extensive epigenetic reprograming. In the recent
years, genome-wide technologies have been used to map histone
modifications and TF binding sites (TFBSs) in various B cell pop-
ulations and to describe the epigenetic changes accompanying B
cell development. Recent studies in different systems indicated
that the chromatin of cis-REs is in a pre-active state in stem cells
and/or early progenitors before the transcriptional initiation, lead-
ing to the concept of “gene priming” (85). The priming is thought
to be driven by a specific class of TFs called “pioneer TFs,” that
are able to induce the early chromatin changes during the gene
activation process (86). Pioneer TFs are thought to mark certain
loci for downstream activation during development. Cis-RE book-
marking by pioneer TFs was first described in the mouse liver
where FoxA and Gata factors were found to bind the liver-specific
enhancer of the albl gene in the precursor gut endoderm prior
to its activation in nascent liver (87, 88). The appellation “pio-
neer TF” must meet the following criteria, although these have not
always been unambiguously demonstrated in every case: (i) bind-
ing to the regulatory region prior to transcription activation, (ii)
binding prior to the arrival of other factors, (iii) binding to their
target sites in condensed chromatin, and (iv) being able to induce
chromatin modifications and/or remodeling in order to render the
locus accessible for downstream TFs [reviewed in Ref. (86)]. It is
important to mention that in the majority of cases, it is difficult
to establish unequivocally the exact binding chronology of a set of
TFs at a given locus (see Figure 4).

Several studies have described primed enhancers (sometimes
also called poised enhancers) in the hematopoietic system (85, 89).
Primed enhancers refer to distal regulatory elements that harbor
H3K4mel mark but lack acetylation marks such as H3K27ac and
H3K9ac; their associated genes are therefore not transcribed. In
contrast, active enhancers harbor both H3K4mel mark and acety-
lation marks and their associated genes are transcribed. According
to the current priming models, once a cell has reached terminal dif-
ferentiation, its enhancer repertoire is completely established and
maintained by cooperatively acting lineage-specific TFs. Inducible
or regulated TFs that are activated by extracellular stimuli operate
within this predetermined framework, landing close to where mas-
ter regulators are already bound (Figure 5). However, this model
was recently challenged by the identification of a novel class of
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FIGURE 4 | Simplified scheme of stepwise enhancer activation
based on the pioneering model. A pioneer TF is exemplified by the ETS
factor PU.1; the transcription start site (TSS) is indicated by a red or
green arrow and the enhancer element is schematized by four
nucleosomes. For simplicity, the nucleosomes covering the rest of the
DNA including the promoter region are not indicated. (A) The pioneer TF
recognizes and binds its cognate site in condensed chromatin.
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(B) Recruitment of histone methyltransferases (HMTs) and chromatin
remodeling complexes (CRC) which prime the enhancer for subsequent
activation. At this step, the enhancer now harbors H3K4me1 mark but
still lacks acetylation marks. (C) Subsequent collaborative binding of
downstream TFs accompanied by histone acetyl transferases (HATs) that
catalyze histone acetylation, leading to enhancer activation and gene
transcription.
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FIGURE 5 | Stimuli-dependent activation of different classes of
enhancers in terminally differentiated cells. (A) In differentiated cells,
the majority of stimuli-dependent enhancers are primed, i.e., already
bound by pioneer TFs and marked by H3K4me1, but inactive. After
stimulation, downstream inducible TFs bind to their cognate sites to
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activate target enhancers and gene transcription. (B) Latent enhancers are
special class of enhancers, that are unbound by pioneer TFs and unmarked
by H3K4me1 in unstimulated cells. At this stage, their chromatin structure
is not well characterized. TF binding, active chromatin marking, and gene
activation occur after the stimulation.

enhancers in macrophages. These cis-REs have been called “latent
enhancers” and are not bound by TFs and also lack H3K4mel and
acetylation marks under basal or uninduced conditions. However,

they acquire all these features in response to stimulation (90)
(see Figure 5). These data suggest that the priming may not be
absolutely required for all enhancer elements; however, it cannot
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be excluded that upon the stimulation the priming occurs before
the activation of target enhancers.

UNDERSTANDING THE ORDER OF EVENTS

In an effort to investigate how the enhancer repertoire is estab-
lished and maintained during myeloid and B cell development,
Mercer et al. have generated long-term cultures of hematopoietic
progenitors by enforcing the expression of the E-protein antag-
onist I1d2, which inhibits E2A activity by preventing its binding
to DNA. These progenitors, called 1d2-HPC, can be differenti-
ated in vitro into myeloid and B cell lineages by switching off Id2
expression, therefore effectively restoring E2A activity. Using this
system, H3K4mel mark was mapped in Id2-HPC cells as well as in
myeloid and B cells generated in vitro from these artificial precur-
sors. Interestingly, it was found that a substantial fraction of the
lymphoid and myeloid enhancers were pre-marked by H3K4mel
(i.e., primed) already in MPPs. Thus, multilineage priming of
enhancer elements in hematopoietic progenitors precedes com-
mitment to the lymphoid and myeloid cell lineages (85). Motif
analysis showed that PU.1 and Runx motifs were over-represented
in H3K4mel enriched loci in Id2-HPC cells, while enhancers of
genes activated after B cell differentiation were enriched in E2A
and Ebfl motifs, in addition to PU.1 motif (85). These find-
ing clearly demonstrate a relationship between cell type-specific
binding of TFs and the pattern of H3K4mel enhancer mark.
They also indicate a potential role of PU.1 and Runx factors in
priming enhancers in hematopoietic progenitors for subsequent
downstream activation.

The correlation between PU.1 binding and presence of
H3K4mel mark was also reported in other hematopoietic lin-
eages, including B cells (30) and macrophages (89). However, it
was unclear whether the H3K4mel modification serves as abeacon
to recruit PU.1 and other TFs, or whether these TFs can initi-
ate the deposition of H3K4mel in hematopoietic progenitors. By
expressing a tamoxifen-inducible PU.1/ER fusion protein in PU.1-
deficient myeloid progenitors (91), Heinz et al. demonstrated that
PU.1 binding can induce H3K4mel deposition at some loci; yet,
many loci were found to lack H3K4mel despite the binding of
PU.1, suggesting that additional factors may be required to write
this mark (30). In addition, PU.1 was found to bind to loci that
were already marked by H3K4mel; in this case PU.1 was found to
be able to initiate nucleosome remodeling (30).

An earlier study has shown that the intronic enhancer of the
Pax5 gene is bound and regulated by PU.1, IRF4, IRF8, and NF-KB
(55). Interestingly, the chromatin at this enhancer harbors active
marks already in progenitors and is bound by PU.1 and IRF fac-
tors before Pax5 transcription takes place in committed pro-B
cells (55). It was also shown that the concerted action of PU.1
and Runx! primes the activation of both promoter and enhancer
elements of the c-fims gene in myeloid cell (92, 93). All together,
these data clearly indicate the pioneering and priming abilities
of the master hematopoietic regulator PU.1. This is consistent
with its expression during early hematopoietic cell differentiation
from HSCs onward and its dynamic collaborative binding with
various TFs.

E2A was also found to alter the H3K4mel pattern at enhancer
elements in B cell progenitors, however it is unclear whether E2A

can directly induce de novo H3K4 mono-methylation or only
modulate the positioning of nucleosomes already pre-marked by
H3K4mel via nucleosome remodeling mechanisms (24).

Other downstream TFs such as Ebfl and Pax5 were also found
to regulate chromatin structure at cis-REs. For example, Ebf1 plays
arole in the demethylation of the Cd79a promoter in B cell prog-
enitors (94). Ebfl is also crucially required for the remodeling and
activation of chromatin in the Pax5 promoter region (55). Pax5
regulates chromatin structure by recruiting chromatin-modifying
and remodeling complexes to the Pax5 regulated loci (57). Inter-
estingly, Pax5 fulfills both activation and repression functions; it
induces active chromatin at promoters and enhancers of activated
target genes, while eliminating active chromatin at the regulatory
elements of repressed target genes. Pax5 rapidly induces H3K4
methylation and H3K9 acetylation at enhancers and promoters
of activated target genes. Pax5 activation function involves direct
interaction with the chromatin-remodeling SWI/SNF-like BAF
complex, the histone acetyltransferase CBP, and the PTIP protein,
which is known to recruit the MLL-containing H3K4 methyltrans-
ferase complex to chromatin (95). The repressing activity of Pax5 is
mediated by its ability to recruit the NCoR1 co-repressor complex
with its associated HDAC3 enzyme, which is likely responsible for
histone deacetylation at some Pax5 repressed loci (57). Pax5 was
also found to interact with members of the co-repressor Groucho
family, thus leading to repression of target genes (96). An intrigu-
ing question is how TFs such as Ikaros and Pax5, having both
activation and repression abilities, can distinguish which set of
genes must be repressed or activated.

FoxO TFs were also described to have pioneering capacity
[reviewed in Ref. (97)] and FoxO1 was found to be able to bind
to its cognate sites in condensed chromatin. This binding stably
perturbs core histone by de-condensing linker histone-compacted
chromatin (98), possibly because the FoxO DBD shares structural
similarities with the globular domain of the linker histones H1
and H5 (99, 100). Furthermore, the amino-terminal and carboxy-
terminal regions of FoxO1 mediate histone H3 and H4 binding
(98). By functioning as pioneer factors, FoxO TFs might open
condensed regions and allow the binding of other TFs.

Overall, these studies demonstrated that chromatin structure
in hematopoietic progenitors and committed cells can act as a
beacon for binding of some TFs. Conversely, TFs such as PU.1,
E2A, Ebf1, and many others, can modulate chromatin features at
cis-REs to create or enhance a chromatin environment favorable
for the binding of additional TFs. The priming and activation of
cis-REs requires the collaborative and/or cooperative action of sev-
eral TFs. For example, in B cells, the pioneer TF PU.1 co-occupies
enhancers with E2A, Ebf1, and Oct2, while in macrophages it binds
together with AP-1 and C/EBP (30). However, the synergy between
pioneer and downstream TFs is not simply hierarchical but also
involves cross-regulatory interactions. For example, at certain loci,
PU.1 binding in B cells depends on E2A and Ebf1 (30) in spite of
the fact that these two factors were not clearly identified as pio-
neer TFs. What regulates whether PU.1 binds by itself or requires
other factors is not known, but is likely to involve the precise
binding site and/or the local chromatin structure. It is also not
established whether the pioneer TFs identified so far are a special
class of factors with unique properties, or whether most factors can
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act as pioneers in the right context. Thus, the term “pioneer TF”
does not have an absolute meaning, but should rather be viewed
as a useful descriptor for properties identified in specific cases.
Indeed, a downstream TF can act as a pioneer for an upstream
TF, and vice versa, in a context- and locus-dependent manner.
Therefore, many TFs involved in the priming of cis-RE can fall
into the category of pioneer TFs. However, as mentioned above,
it is often difficult to unambiguously monitor the precise chrono-
logical binding order of a set of TFs and corresponding epigenetic
modifications under in vivo conditions. Thus, instead of using the
term pioneer when the evidence is scarce, it may be better to rather
speak about collaborative action of TFs at a given locus.

CONCLUDING REMARKS

In summary, the questions of who is on first, the chromatin or
the TF, when, and why/how are still largely unanswered. In some
physiological situations, specific chromatin features must precede
and are required for TF binding, while in other situations the TF
binding initiates a series of epigenetic events eventually required
for the recruitment of downstream TFs. The extensive efforts that
were made to investigate transcriptional and epigenetic regula-
tion of B cells and other hematopoietic lineages identified several
mechanisms of cross-regulation between TFs, chromatin modi-
fiers, and the pre-existing chromatin landscape. The interactions
between the actors cited above are very likely to be controlled
by environmental, spatial, and temporal signals that remain to be
defined. Also, many additional factors — TFs, chromatin modifiers,
non-coding RNAs. . . — remain to be tested for their potential role
in the hematopoietic system or in B cells. However, achieving a
deeper understanding of the mechanisms involved will require
the ability to examine single cells in real-time to understand how
the interplay between chromatin and TFs is orchestrated and
unambiguously determine causal relationships. Also, the ability
to genetically manipulate the system, not only at the level of the
TFs or other trans-acting factors, but also of the cis-REs, e.g., by
using the newly developed CRISPR/Cas9 (clustered regularly inter-
spaced short palindromic repeats) system (101) will be invaluable
to further our understanding.
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