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Affinity maturation of the antibody response is a fundamental process in adaptive immu-
nity during which B-cells activated by infection or vaccination undergo rapid proliferation
accompanied by the acquisition of point mutations in their rearranged immunoglobulin (Ig)
genes and selection for increased affinity for the eliciting antigen. The rate of somatic hyper-
mutation at any position within an Ig gene is known to depend strongly on the local DNA
sequence, and |lg genes have region-specific codon biases that influence the local muta-
tion rate within the gene resulting in increased differential mutability in the regions that
encode the antigen-binding domains. We have isolated a set of clonally related natural Ig
heavy chain-light chain pairs from an experimentally infected influenza patient, inferred the
unmutated ancestral rearrangements and the maturation intermediates, and synthesized
all the antibodies using recombinant methods. The lineage exhibits a remarkably uniform
rate of improvement of the effective affinity to influenza hemagglutinin (HA) over evolu-
tionary time, increasing 1000-fold overall from the unmutated ancestor to the best of the
observed antibodies. Furthermore, analysis of selection reveals that selection and muta-
tion bias were concordant even at the level of maturation to a single antigen. Substantial
improvement in affinity to HA occurred along mutationally preferred paths in sequence
space and was thus strongly facilitated by the underlying local codon biases.
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INTRODUCTION

immune protection, conferring greater neutralization capacity (3)

B-cells that respond to infection or vaccination are induced by
signaling through their B-cell receptors to proliferate and differen-
tiate into plasmacytes and memory cells. Short-lived plasmacytes
secrete antibody and provide immediate protection from the elicit-
ing agent; memory cells and long-lived plasmacytes persist clonally
for very long times, providing protection against recurring chal-
lenges from the same or closely related agents (1). Cells that go
on to find persistent clones are subject to affinity maturation in
their post-exposure development. During affinity maturation, the
affinity of the B-cell receptor for antigens on the eliciting agent
is substantially increased, resulting in a more potent response on
recall (2).

Affinity maturation proceeds through somatic hypermuta-
tion, the introduction of point mutations into the rearranged
immunoglobulin (Ig) genes that encode the B-cell receptor. Those
B-cells that thereby acquire an increased affinity for the antigen
gain a proliferative advantage and come to dominate the acti-
vated B-cell population. Affinity maturation is crucial for humoral

and opsonization efficiency (4), and is generally correlated with
higher vaccine efficacy (5). In fact, lack of effective affinity matu-
ration has been directly implicated in adverse outcomes for at least
one vaccine (6).

The rate of somatic hypermutation at a given position with
an Ig variable region is significantly influenced by the local DNA
sequence — both the nucleotide at that position and sequence of
nucleotides containing it (7). Codon usage in Ig V-gene segments
is strongly biased, with zones of high mutability largely over-
lapping with the complementarity-determining regions (CDR),
which encode the antibody’s antigen-binding residues (8, 9). Thus,
somatic mutation drives Ig genes along statistically favored paths
through the genotype space. Some combinations of substitutions
will therefore be visited much more rapidly than others involv-
ing the same number of changes. Each Ig gene segment has been
involved in the response to a huge number of antigens over the
course of its evolutionary history and has experienced selection
pressure to enhance its role as a template for affinity maturation.
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Technology for the isolation of native heavy-chain/light-chain
pairs and their subsequent recombinant synthesis have recently
been developed (10, 11) and refined (12), making it feasible to
determine the biophysical properties of large numbers of mono-
clonal antibodies (mAb). We have complemented this technology
with the development of computational tools that substantially
improve our ability to infer the unmutated common ancestor
of a set of clonally related antibodies, and the corresponding
maturation intermediates (13).

We have now applied these methods to the detailed study of the
maturation pathways of a B-cell clone whose antibody genes were
isolated from a human experimental influenza infection study,
providing an elucidation of the interplay of mutational constraints
and selection on antigen-binding affinity. One of our aims in this
study is to examine the influence that this differential mutabil-
ity has on a specific instance of affinity maturation to a given
antigen: the immune response to influenza hemagglutinin (HA)
in a human subject. This question clearly goes beyond the issue
of codon bias as a statistical regularity to inquire about influ-
ence of codon bias in a specific case. The relationship between
these two questions is analogous to the phenomenon of HCDR3
length in autoimmune disease. There one has the statistical obser-
vation that B-cells with long HCDR3 are counter-selected during
development (14), yet the role of long HCDR3 for individual
autoantibodies is rarely understood. In our case, we know that the
mutation frequency is higher on average in regions that encode
amino acids that are more likely, on average, to contact epitopes.
In this study, we examine the interplay of differential mutation
frequency and selection in the evolution of a single antibody
lineage.

Specifically, we demonstrate that intraclonal affinity matura-
tion proceeded by stepwise accumulation of affinity-enhancing
mutations and that mutation and selection interacted synergisti-
cally. These insights and others gained by application of the tools
we have developed promise to facilitate the effective harnessing of
affinity maturation for vaccine engineering.

RESULTS
ISOLATION AND IDENTIFICATION OF ANTI-INFLUENZA
HEMAGGLUTININ A B-CELL CLONE CL2569
Human subjects were experimentally infected intranasally with
influenza virus (15). Eighty-six natural heavy-chain/light-chain
gene pairs were isolated from one subject (subject EI13) on day 4
after exposure. Among these, we found three clonally related sets.
Two of the clones contained two antibodies each; the other con-
tained five. The members of this five-member clone, designated
CL2569, all bind HA in the K4 = 1-20 nM range. Four of these
antibodies are of the IgM isotype while the other is IgA1. The light
chain in each antibody is Ig kappa. The remainder of this study
describes our analysis of CL2569.

The antibodies are highly diversified. The heavy chains have
a mean (£SD) pairwise difference of 28.0 + 5.4 nucleotides (nt)
and 16.7 & 3.6 amino acids (aa); the light chains have an average
pairwise difference of 18.0 £ 2.5 nt and 8.2 £ 1.5 aa.

We inferred the unmutated ancestor (UA) and intermediates
along the affinity maturation pathways by computing the Bayesian
posterior probability mass function on nucleotide states at each

position of the heavy and light chains conditioned by the data
and the maximum-likelihood phylogram as described in the com-
panion study (13). The mutations acquired along each branch
were enumerated and classified according to the IMGT classifica-
tion (16) (Table 1). The UA and all intermediates for both heavy
and light chains were synthesized using the same recombinant
technology used to synthesize the observed antibodies.

The probable error profile for the heavy-chain UA is shown in
Figure 1. Briefly, the sum of the probable errors over all positions
is 3.2. There are five nucleotide positions where the marginal pos-
terior probability of the modal nucleotide is <0.8, all of which
occur in CDR3. Importantly, at these somewhat lower-confidence
positions, the inferred modal CDR3 is identical to all five observed
sequences. The summed probable errors for each of the inferred
intermediates is less than that of the inferred UA and decreases
as one gets closer to the observed sequences. The kappa chain UA
is known with high confidence. The sum of the probable errors
is 0.33.

THE DISSOCIATION CONSTANT DECREASES EXPONENTIALLY WITH
UNIFORM RATE OVER THE DURATION OF THE PROCESS

The dissociation constant Ky for binding to HA of the Brisbane
strain of influenza virus was measured using ELISA on solutions
of monoclonal antibody prepared at known concentrations. Ky

Table 1| Classification of mutations in CL2569 heavy- and light-chain

histories.
Heavy chains Light chains
Non Synon Non Synon
FR 40 20 14 7
CDR 17 n n

FR, framework region; CDR, complementarity-determining region,; Non, non-
synonymous, Synon, synonymous.
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0.2 7
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FIGURE 1 | The profile of the probable error in the modal heavy
chain UA.
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was estimated by non-linear curve fitting simultaneously on all
data for each plate. The UA binds to HA very weakly but mea-
surably, K4 =2.6 wuM. Throughout the evolutionary process, K
declines uniformly and exponentially (R? = 0.92), falling 50-74%
(95% confidence interval) for each 1% increase in evolutionary
distance (Figure 2). The affinities of the observed antibodies are
approximately three orders of magnitude higher than that of the
ancestor, an improvement that occurs over a total evolutionary
distance of 6-9% nucleotide differences.

INTERACTION BETWEEN SELECTION AND MUTABILITY

To gage the force of selection in molecular evolution, deviations
in the ratio of the number of synonymous mutations to the num-
ber of non-synonymous mutations from that expected under the
null hypothesis of selection-free evolution are often used for sta-
tistical testing (17). For antibody somatic evolution, mutations are
further classified by region, occurring in the CDR or framework
regions (FR) and various combinations specific deviations from
expected values within these classifications used in statistical tests
[see, e.g., Ref. (18)]. Crucially, the distribution expected under the
no selection null hypothesis for Ig somatic evolution is not trivially

A —— 05
. 02
a i4 .
il
ol
— i2
o3
— i3
— 04
B
3]
2
1
04

0.01 0.03 0.05
evolutionary distance

FIGURE 2 | (A) Maximum-likelihood clonal tree showing observed (o),
intermediate (i), and ancestral (a) sequences. The tree was inferred using
both heavy and light chains. (B) Regression analysis of log,, Ky vs.
evolutionary distance.

computed. Because the codon bias has been adapted for Ig plastic-
ity, empirical estimation of the distributions under the null cannot
be avoided.

The model we use to estimate parameters and perform tests is
straightforwardly derived using likelihood-based methods in sta-
tistics. We nevertheless describe the model in some detail below so
that the argument may be essentially self-contained.

In order to explore the interplay of selection and mutability,
we use a non-linear regression model and multiple independent
categorical distributions! in which every gene position along each
branch of the clonal tree can either be unmutated, mutated syn-
onymously, or mutated non-synonymously. That is, there are three
possible classifications for each nucleotide, and the “mutation
type” variable takes one of the two values: T € {S, N}. For the
ith nucleotide in gene g, the variable ngi is an indicator for the
mutation type. For example, if the nucleotide in question has
been mutated non-synonymously along the branch leading up

to g from its parent sequence a(g), we have xg = land xgsi =0.1If
the nucleotide is not mutated at all, we have xgl\i’

The relevant likelihood function is the product of independent
categorical distributions, whose log (we work with the log of the

likelihood function for convenience) is

logL = Z |:2T: xg]; log Pg(g)i + (1 - xgi) log (1 - P;(g)i>i|

gi
(1)
where PaT(g)i is the probability that the ith nucleotide in the parent

_ S _
_Oandxgi_o.

of gene ¢ would have mutation type T. The dot in place of an index
indicates summation over that index, for example, 1 — P* (@)i is the

probability that the nucleotide in question is not mutated. It is the
dependency of these probabilities on the covariates that we model.

The covariates are themselves properties of the specific
nucleotide expressed in terms of probabilities. There is first the
probability that a given nucleotide mutates at all. This probability
is the product of the sequence-specific mutation rate |1, and the
effective evolutionary time t along the relevant branch. Then, we
have the probability c£ that a mutation occurring at the position
and gene in question will have type T (that s, conditional on there
being a mutation at all). This probability depends on the codon in
which the nucleotide is found and its position within the codon.
But it also depends on the local sequence (19); these influences
have to be estimated for the nucleotide at each position of the
gene. Finally, there is the impact of selection. Once a mutation has
occurred, it must survive to fixation in order to be observed.

The covariates we will consider for predicting the survival of
mutations at the ith position of gene a are the type T of the
mutation, the region R (i) € {FR,CDR} that contains position 7,
and the mutability |L,;. Note that the dependence of the survival
probability on mutability is over and above the role of the mutabil-
ity in inducing the mutation initially. Indeed, it is the dependence
of survival on mutability that is of primary concern for this study.
The dependence of survival probability on region is given by the

Such a product distribution is similar to a multinomial distribution, but has
different probabilities at each site.
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terms ylg. The ratios of these terms give the relative survival prob-
abilities. Because they are introduced as multiplicative rather than

additive effects, they are subject, without loss of generality, to the

T . Syn_§S
multiplicative constraint yF};{nyCySRygﬁ)“yggrﬁ =1

Combiningall the component probabilities then gives the prob-
ability that gene g has acquired an observed mutation of type T at
position 7 and has survived. It is given by

Pl = a9 (Vho + Priveco)- (2)

The local sequence specificity of j,; and cg; are estimated using
external data as described in the supplementary information.

For each hypothesis being tested, we impose the specific con-
straints on the model parameters in Eq. 2 that correspond to
the hypothesis, estimate the remaining parameters by maximizing
the likelihood. We then test hypotheses using the likelihood ratio
test (20) where applicable, and compare models using the Akaike
information criterion (AIC). The AIC is a penalized likelihood,
appropriate for model selection where the likelihood ratio test is
inapplicable because the respective models are not nested (21).

Local mutability is strongly informative. We compare two mod-
els: in the first (Model 0), the mutability is constant over positions
w;=p; for all positions i and j. In the second (Model 1), the
mutability is determined by the local sequence ;= m; where m;
is the mutability for the local sequence context at position 7, esti-
mated from an independent dataset (see Materials and Methods
section). For this test, assume that selection is based on the covari-
ateregion X type,and allow ylg to vary subject to the multiplicative
constraint above, whereas =0 for both T. The models are not
nested, so we use AIC and relative likelihood for the comparison.
The model with empirical mutability is substantially better sup-
ported by the data than is the constant-mutability model (relative
likelihood = 3 x 108).

Region x type is informative in selection. If region and type are
used to classify each potential mutation into one of the four classes
that are then used to model the selection process, the predictive
power of the model is increased. On comparing the selection-free
null model with empirical local mutability (Model 1) with the
alternative model in which yg are fit to the data (Model 2: =0,
Wi = my;), we reject the null model (likelihood ratio test, p = 0.014).

Mutability x type is informative in selection. In addition to the
mutability that is used to predict the generation of mutations,
we may use mutability as a covariate for predicting selection.
The resulting model has both linear and quadratic terms in the
mutability. On comparing the null model that recognizes type,
but not region (Model 3: y}?R = YEDR) Br=0 and ;= m;), with
the alternative model in which B are fit to the data (Model 4:
ng = ygDR Wi = m;), we reject the null model (likelihood ratio
test, p=0.010).

Mutability x type is slightly more informative than region x
type in selection. Both region x type and mutability x type have
been shown to be predictive. To determine which covariate is more
effective as a predictor, we perform a model comparison by AIC;
comparing the region x type model (Model 2) with the mutabil-
ity x type model (Model 4). Both have four degrees of freedom,

so by AIC, the comparison favors the mutability x type model
(relative likelihood = 1.35).

This result is illustrated in Figure 3, which shows the dis-
tribution of relative mutabilities in relation to region and the
distribution of observed non-synonymous mutations over both
gene position and evolutionary time.

The AIC-optimal model uses both mutability x type and
region x type to predict mutations. Given the covariates to which
we have access, the largest model has w; = m;, and both ylg and Br
are free to vary. This model (Model 5) has the minimum AIC of all
models, and all those models that are nested within it are rejected
by likelihood ratio tests (p < 0.05). The coefficients of the optimal
model are shown in Table 2.

The selection observed is predominantly purifying. Having
determined that selection is measurably occurring, we investigate
the nature of the selection by examining the coefficients of the
model fit (Table 2). In both CDR and FR, the coefficients for non-
synonymous mutations are significantly smaller than those for
synonymous mutations, consistent with a scenario in which dele-
terious mutations were introduced in cells that did not survive
selection.

Mutability x type is more informative than mutability alone.
We have shown that mutability x type is informative. An infor-
mative test, the meaning of which will be elaborated on in the
discussion, is whether the contribution of mutability to the sur-
vival of a mutation depends on the mutation type. For this com-
parison, we take the null model (Model 6) to have Brr = Bcpr
and yER = ygDR, and the alternative model (Model 4) with Br
free to vary. The null model is rejected (likelihood ratio test,
p=8x1073).

It is crucial here to understand that this last test is a test of
whether type (synonymous vs. non-synonymous) interacts in the
statistical sense with mutability (the evolved biases in the target-
ing of somatic hypermutation) to influence the probability that
a mutation survives to fixation. It is taken as given that type
alone does influence a mutation’s survival probability. It is fur-
ther taken as given that mutability alone influences whether a
mutation occurs in the first place or not. This test is a test of
whether mutability is informative regarding the probability that a
mutation survives selection. Selection cannot act on synonymous
mutations, so evidence that mutability is correlated with selective
survival must come from examination of the interaction term
between mutability and type. This interaction term is equivalent
to Brr — PBcpr. The rejected null hypothesis is that this quantity
is zero.

DISCUSSION

In this study, by inference and expression of the UA and inferred
intermediate antibodies of a single clone, we have directly demon-
strated the stepwise maturation of antibodies. Such stepwise mat-
uration has been assumed on theoretical grounds (22), but the
technology to observe it has not been utilized before now.

The antibodies of clone CL2569 bind influenza HA and are
highly mutated. For these reasons, they almost certainly rep-
resent a secondary response. In fact, the most likely scenario
for the ontogeny of this lineage is that it was formed via
affinity maturation during an earlier infection or vaccination
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Table 2 | Maximume-likelihood estimates for the coefficients in the
optimal model.

Model Mutability ypi" yohn vNe"  yNS%  Bsyn  Bnon AIC
0 Constant (1) (1) (M (1) (0) 0 640.0
1 Empirical (1) (1) (1) (1) (0) (0) 589.2
2 Empirical 075 212 067 (094) (00  (0) 5846
3 Empirical 118 (1.18) (0.85) (0.85) (0)  (0)  589.2
4 Empirical 225 (2.25) (0.44) (0.44) -258 166 584.0
5 Empirical 158 323 034 (058) —-214 138 579.0
6 Empirical 129 (129) (0.78) (0.78) 9.63  (9.63) 589.0

Parentheses indicate that the parameter is invariant at the indicated value in the
model considered.

and was subsequently activated into differentiation to plasma-
cytes by the experimental infection without undergoing fur-
ther affinity maturation. The subject was infected with the
H3N2 A/Wisconsin/67/2005 strain of influenza virus; preliminary

binding assays were done on HA from several strains including
the infecting strain, H1 A/Brisbane/59/2007, and several others.
Although the maturation patterns were similar across several of
the strains, the affinities measured against H1 A/Brisbane/59/2007
were generally higher (15). The infection study was performed in
2008, so previous infection in the subject with influenza strains
circulating in 2007 is consistent with this observed reactivity to
H1 A/Brisbane/59/2007.

The recovered mAb in this clonal lineage were mostly IgM with
asingle member that was IgA1,and all the members had a degree of
somatic hypermutation consistent with one or more prior rounds
of antigen-driven germinal center maturation. Recent work by
Pape et al. (23) has shown that in mice IgM-memory B-cells and
class-switched memory B-cells have different circulation kinet-
ics, such that IgM-memory B-cells persist after class-switched
memory B-cells have disappeared from circulation. Furthermore,
upon restimulation with antigen, IgM-memory B-cells were less
likely to produce a secondary response in the presence of antigen-
specific plasma antibody. Thus, it is interesting that the members
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of this clonal lineage bind to various previously circulating strains
including the older H3 A/Johannesburg/33/1994 strain, that the
antibodies were predominantly IgM, were hypermutated, and did
not significantly contribute to the plasma antibody pool 4 weeks
after experimental infection (15). All these findings suggest that
this lineage is an example of such an IgM-memory B-cell clone
isolated from an influenza-infected human subject.

Like other Darwinian processes, affinity maturation arises in
the interplay between the generation of diversity and the subse-
quent selection of fitter variants. Affinity maturation, however, is
a somatic process; properties of the germline gene segments that
facilitate efficient maturation are preserved for the next germline
generation (8). Thus, mutation and selection in affinity matura-
tion are very strongly intertwined with mutations that are more
likely on average to confer advantage, produced more frequently
than those that are more likely on average to confer disadvantage.
This circumstance has a practical consequence, complicating the
analysis of selective pressure. We have overcome that problem by
estimating the relevant characteristics of somatic hypermutation
from a collection of human heavy chain genes rearranged out of
frame and insusceptible to selection.

SELECTION AND MUTABILITY SYNERGIZE DURING AFFINITY
MATURATION TO HA

The local codon bias that is present in Ig V-gene segments and
increases mutability in the CDR creates a strongly non-uniform
probability distribution over the links between Ig genes in the
genotype space (Figure 4). Each of the Ig genes at the nodes of
this space has an effective affinity for the antigen HA associated
with it, which presumably determines the relative fitness of B-
cells expressing the antibody encoded by that gene. Because of
the mutational bias, from any starting node there are preferred
nodes, which are visited with greater probability and in less time
on average, than others. The question addressed here is whether
the sequences more likely to be visited during somatic hypermuta-
tion because of this bias are also more likely to encode antibodies
that confer a selective advantage.

Figure 4 is a simple cartoon intended to illustrate the idea. The
grid represents the genotype space (although the topology is not at
all realistic). The dark arrows indicate the directions of preferred
mutations. We consider the node 1 to be the starting node. The
other nodes 2—4 are each six mutations away from node 1, but they
differ in the number of non-preferred mutations that are required
to reach them. In the real system, we can estimate the mutation
rate for each link, and in particular can estimate the mutation
rates over the links connecting the nodes actually occupied during
affinity maturation. We also have measured the affinity at each of
these nodes, and know that they represent increases over time. So
the question is, “are the visited nodes largely close to the preferred
paths (as are nodes 2 and 3 in Figure 4), or randomly placed with
respect to the preferred paths (illustrated by node 4)?”

We expect that such correlation between mutational prefer-
ence and selective advantage holds on average over the history
of antigens encountered by the gene segment in question. It is
hypothesized that this is the reason why such local codon bias
exists in the first place. The question addressed here is whether
such a correlation exists, not on average, but in this particular
instance, for this one specific antigen.

©
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FIGURE 4 | Simplified illustration of genotype space with preferred
directions. Each node is a DNA sequence, and neighbors differ by one
nucleotide. The dark arrows show preferred directions, meaning the
mutation along the direction of the arrow occurs at a higher rate than
mutations along the regular paths. The nodes labeled 2, 3, and 4 are all six
steps from node 1, but differ in the number of non-preferred steps that
must be taken to arrive there from 1.

The mutability is defined at each nucleotide position as the
probability of a mutation at that position conditional on there
being exactly one mutation in the gene, and no selection on the
gene product. In the presence of selection, the probability that
a mutation will be fixed is the product of the probability that
the mutation occurs at all and the probability that, once it has
occurred, it is preserved through selection. The hypothesis we are
testing is that the second of these probabilities, the probability
of preservation, is itself functionally depending on the mutability.
The order of the causality would be that the mutabilities have been
adjusted, largely through codon usage, to make evolution toward
the potentially advantageous genes more rapidly and more reliably.

We address the question in Figure 5, which shows the empir-
ical cumulative distribution plots of synonymous and non-
synonymous mutations as a function of mutability, compared
to three theoretical models: zero order (mutability has no influ-
ence, even on the probability of having a mutation in the first
place), first order (mutability has the influence expected under
selection-free conditions), and second-order (probability of selec-
tion is directly proportional to mutability). The plots show that
the synonymous mutations are consistent, as expected, with the
first-order model. Indeed, this plot should be regarded as a test of
the accuracy of the estimated mutability, which appears to be ade-
quate, although the mutabilities of the higher-mutability positions
may be somewhat over-estimated. In contrast, the observed non-
synonymous mutations fall between the first- and second-order
curves, consistent with synergy between local codon bias and
selection. Figure 5 is merely suggestive; the direct test of the rele-
vant hypothesis (Model 4 vs. Model 6) provides stronger evidence.
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FIGURE 5 | Cumulative distribution function (CDF) of mutability
among observed mutations (black), and corresponding to three
models: order 0 (no effect of mutability at all, blue), order 1
(consistent with selection random with respect to mutability,
magenta), second order (selection proportional to mutability, red).
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Note that the observed CDF for synonymous mutations is
approximately consistent with the order one model, and falls between
the order zero and order one curves in any case. The CDF for
non-synonymous mutations falls between the order one and order two
curves.

This test says that the influence of mutability on the survival of
a mutation depends on the type of mutation, whether synony-
mous or non-synonymous. If the mutation is non-synonymous,
the mutability has greater positive predictive power than that of
synonymous type.

CONCLUSION

Strikingly, despite the fact that the dissociation constant changed
by three orders of magnitude from the common ancestor to the
observed mature antibodies, the distribution of mutations is heav-
ily biased toward those with high intrinsic mutability, suggesting
that selection worked in synergy with local codon bias in the mat-
uration of CL2569. This analysis suggests that affinity maturation
is strongly constrained to occur by mutational diffusion along
preferred paths in genotype space, with selection acting nega-
tively on genotypes in this network that fail to confer enhanced
antigen-binding affinity. There is no evidence for selection pulling
the evolving clone substantially out of the mutationally preferred
paths.

There are many highly effective vaccines that work through
the induction of a potent humoral response, but there are many
devastating infectious diseases for which no effective vaccine is
yet available in spite of intense research efforts, including malaria,
hepatitis C,and HIV-1. The agents of these diseases do not typically
elicit protective natural immunity, so new approaches to vaccine
development may be indicated. One such approach is predicated
on the observation that the efficiency of immunogen stimula-
tion of germinal center naive and intermediate B-cell antibodies
is determined by immunogen affinity for B-cell precursor B-cell
receptor (24-26). Design of immunogens with high-affinity bind-
ing for antibody UAs and their intermediates is now possible with
the computational methods described in this study (27). It is our
hope that the emerging understanding of the intertwined mech-
anisms of diversification and selection in affinity maturation will
open new avenues for vaccine engineering.

MATERIALS AND METHODS

STATISTICAL AND COMPUTATIONAL

All analyses and computational manipulations were performed
using software developed in the Kepler laboratory.

ELISA data analysis

The data from the ELISA dilution series were fit to a Hill function
with Hill coefficient = 1 and additive background (28). The maxi-
mum value of the optical density and the value of the background
optical density were taken to be equal over all wells on a given
plate.

Inference of unobserved antibodies: ancestral rearrangement and
maturation intermediates

We compute the posterior probability mass function on the
nucleotides at each position of the unmutated common ances-
tor given the set of clonally related observed Ig genes of CL2569,
as described in detail in Ref. (13).

Inference of somatic hypermutation sequence specificity

We searched NCBI Genbank for rearranged human Ig heavy-chain
variable-region genes and retrieved and validated 34,546 genes. We
eliminated genes with possible clonal relatives in the set by ran-
domly eliminating all but one of each sequence within groups
likely to be clonally related. Two antibodies were considered likely
to be related if they shared the same inferred IGHV and IGH]J
genes (without regard to allele) and shared at least 75% nucleotide
identity in CDR32. From these, we selected those that were likely to
have been rearranged out of frame as evidenced by the number of

2This is admittedly a crude estimation procedure, but sequence set is small enough
that we expect few if any errors from its use. Furthermore, we are unconcerned about
falsely excluding unrelated sequences, which is the only likely error to be made by
this method. Finally, the proper statistical procedure for testing clonal relatedness is
sufficiently complex (Thomas B. Kepler, in preparation) that to put aside the space
in a paper that does not require its full power would be distracting.
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nucleotides between the intact invariant cysteine in VH FR 3 and
the intact invariant tryptophan in JH being other than a multiple
of three.

By counting frame-shift mutations in the VH-encoded part of
the gene, which have resulted from somatic mutations or sequenc-
ing error, we estimate the likely number of genes that would have
frame-shift mutations in CDR3 to be about 195 genes. That is
about 11% of our candidate non-productively rearranged genes
are likely to have been rearranged in-frame and to have acquired
their frame-shift mutations subsequently.

To ameliorate the impact this contamination could have on the
downstream analysis, we removed all genes inferred to have been
rearranged to a VH1 family member. The reason for this filter-
ing step is that the positions of pentanucleotides in the remaining
sequences will be significantly de-correlated from the positions of
the corresponding pentanucleotides in the target sequences, which
are rearranged to a VH1 family member.

After this filtering step, 1707 sequences remained, containing
9961 nucleotide substitutions in 423,654 total bases.

The mutation frequency for the central position at each pen-
tanucleotide motif was computed by scanning each inferred UA.
Of the 4° (1024) possible pentanucleotides, 938 motifs were
present in the total dataset, 922 in the out of frame dataset. Of
the motifs with at least 100 observations among the UAs in the
non-productive set, 24 of them had no mutations. In contrast, the
motif AGCTA, which is consistent with the canonical “hot-spot”
RGYW, was mutated at the center position 112 out of 618 times
for a frequency of 18%.

For comparison to other such datasets previously assembled, we
also computed the trinucleotide mutation frequencies. The spear-
man correlation between our trinucleotide mutation frequen-
cies and the corresponding mutability indices from unselected
sequences in the study by Shapiro et al. (29) is 0.80, indicating a
high level of agreement between the two sets.

Rather than use, the raw count ratios for the mutability and
mutation spectrum estimates directly (which is likely to result in
over- or under-fitting), we chose to fit these data to a variable-motif
length model using regression trees. The first statistical treatment
of sequence specificity in somatic mutation produced hot-spot
motifs of different lengths (7) and it seems natural to fit such a
model now that much more data are available.

The end result of this estimation procedure is a set of nucleotide
motifs that are mutually exclusive and complete (every nucleotide
in any DNA sequence will belong to exactly one motif) to each
member of which is assigned a mutation rate. Each motif may be
up to 5 nt long. The procedure is as follows.

Each node in the decision tree contains a pentanucleotide motif
of the form ny, ny, n3, ng, ns in which each n; = {A, G, T, C,R, Y, S,
W, N} where R, Y, S, W, N are the IUPAC symbols respectively for
purine (A or G), pyrimidine (T or C), weak (A or T), strong (G or
C), and any (A, G, T, or C) nucleotide.

The function to be maximized, the objective function, is the
log of the marginal likelihood summed over all nodes in the tree.
The overall likelihood is the product of the binomial likelihoods at
each node. At each node, the prior distribution on mutations is a
beta distribution with parameters o = 1,3 = 47. The beta distribu-
tion is chosen because it is conjugate to the binomial distribution,
and the specific parameters are chosen because they maximize the

information entropy at the observed average mutation frequency
in the set, 2.1%. As such, this prior is the most uninformative prior
consistent with the average mutation frequency.

The marginal likelihood for a node with m mutations and u
unmutated bases is computed by integrating over the mutation
probabilities in the product of the likelihood and prior density
functions giving:

Fa+mT@B+wl(@+p+1)

LMU(m’”lu’B):[‘(a)]"(ﬁ)l"(oc-i-ﬁ‘i‘m"‘”"‘l) )

where I' is the gamma function.

The tree-building algorithm is greedy, choosing the best avail-
able split at each node. Allowed splits at any step in the algorithm
at any single position in the motif are as follows:

N —- R/Y,N—> S/W,R— A/G,Y - T/C,
S— G/C,W — A/T.

This scheme ensures that each pentanucleotide is mapped to
exactly one terminal node on the tree at all stages of the proce-
dure. A node is declared terminal if the product of the marginal
likelihoods for the two daughter nodes in the optimal split is less
than the marginal likelihood of the parent node, that is, if the
likelihood cannot be increased any further at that node.

The result of applying this process to our count data is a tree
with 55 terminal nodes. Among these, the one with the lowest rela-
tive mutability is with YTGGS with posterior mean p = 7.9 x 1074,
The AID “hot-spot” motif AGCT is assigned to the NAGCW node,
with p=8.8 x 1072

Regression model for the dependence of selection on mutability
The model scheme for analysis of selection is described in the main
text. The data used are all nucleotide position in the heavy-chain
variable regions up to and including the nucleotides of the FR3
invariant cysteine codon. The fitting of parameters by maximum
likelihood was performed by numerical optimization using the
Nelder—-Mead simplex algorithm using a software implementation
based largely on that described in Numerical Recipes (30).

Statistical hypothesis tests are based on the likelihood ratio test
when models are nested. Model comparison is done by differential
AIC expressed as relative likelihoods (31).

EXPERIMENTAL

Clinical protocol

The clinical EI protocol study was performed at Retroscreen Virol-
ogy Ltd. (Brentwood, UK) as previously described (32) using a
protocol approved by their local ethics board and the Duke IRB.
Subjects were prescreened and provided informed consent before
being given a nasal challenge with influenza A/Wisconsin/67/2005
(H3N2) challenge stock manufactured under current good man-
ufacturing practices by Baxter BioScience (Vienna, Austria).
Intranasal challenge was given using 10> TCID50 to subject E113
from whom the antibodies described in this study were derived. In
this protocol, blood was drawn before challenge, then daily on days
0-7, and on day 28 after challenge. Symptoms were recorded twice
daily using a modified Jackson scoring system (33). Productive
infection was confirmed by active viral shedding detected by assays
of nasal washes obtained during the 7-day quarantine period.
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Single-cell flow cytometry sorting strategy

Human peripheral blood mononuclear cell samples collected
7 days after infection with A/Wisconsin/67/2005 (H3N2) were
labeled with panels of fluorochrome-antibody conjugates specific
for human CD3 (PE-Cy5), CD16 (PE-Cy5), CD19 (APC-Cy?7),
CD20 (PE-Cy7), CD27 (Pacific Blue), CD235a (PE-Cy5), IgD
(PE), IgM (FITC) (all, BD Biosciences, San Jose, CA, USA), CD14
(PE-Cy5), and CD38 (APC-Cy5.5) (both Invitrogen, Carlsbad,
CA, USA). Plasma cells/plasmablasts were sorted into 20 pl/well
RT/PCR buffer in 96-well plates as described (10, 12) by gating
on CD3~ CD14~ CD16~ CD235a~ CD19* CD20~"° CD27M
CD38M cells. All antibody reagents were tittered and used at
optimal concentrations for flow cytometry.

PCR amplification of plasmablast/plasma cell inmunoglobulin VH
and VL variable-region genes

The Ig VH and VL variable-region genes of the sorted plas-
mablast were amplified by RT and nested PCR using the method
as reported (11). The PCR products amplified by this method
contain enough coding region sequences for the constant regions
of either heavy- or light-chain genes for allowing the identifi-
cation of IgH subclass and light-chain types (12). Isolated VH
and VL variable-region genes were used to assemble full-length
Ig IgG1l heavy- and light-chain expression cassette by overlap-
ping to express recombinant IgG1 antibodies using the method as

described (12).

Expression of VH and VL variable-region genes as IgG1 recombinant
mAb

The isolated Ig VH and VL gene pairs were assembled by PCR into
the linear full-length Ig heavy- and light-chain gene expression
cassettes for production of recombinant mAbs by transfection in
the human embryonic kidney cell line, 293T (ATCC, Manassas,
VA, USA) using the methods as described (12). The purified PCR
products of the paired Ig heavy- and light-chain gene expression
cassettes were co-transfected into near confluent 293T cells grown
in 6-well (2 g of DNA for each cassettes per well) tissue culture
plates (Becton Dickson, Franklin Lakes, NJ, USA) using PolyFect
(Qiagen, Valencia, CA, USA) or Effectene (Qiagen Valencia, CA,
USA) using protocols recommended by the manufacturers. Six to
eight hours after transfection, the 293T cells were fed with fresh
culture medium supplemented with 2% FCS and were incubated
at 37°C in a 5% CO; incubator. Culture supernatants were har-
vested 3 days after transfection and quantified for expressed IgG
levels and screened for antibody specificity.

Antibodies that bound HA in a screening assay as well as the
inferred UA and intermediate clonal antibodies were produced
on a larger scale so that screening assays could be replicated and
broadened to more fully define the range of binding activity of
expressed plasma cell derived-antibodies. Purified recombinant
antibodies were produced in bulk cultures by transient trans-
fection using Ig heavy- and light-chain genes cloned in pcDNA
plasmids (12). The Ig heavy- and light-chain gene expression
cassettes used for production of recombinant antibodies for ini-
tial screening were cloned into pcDNA 3.3 (Invitrogen, Carlsbad,
CA, USA) for production of purified recombinant mAbs using
standard molecular protocol, and co-transfected into 293T cells

cultured in T175 flasks using PolyFect (Qiagen, Valencia, CA,
USA) or polyethylenimine (34), cultured in DMEM supplemented
with 2% FCS. Recombinant mAbs were purified from culture
supernatants of the transfected-293T cells using anti-human Ig
heavy-chain-specific antibody—agarose beads (Sigma, St. Louis,
MO, USA) using the method as previously described (12, 34).
Purified antibodies used in the study were confirmed having typi-
cal patterns of predominant whole IgG in SDS-PAGE and Western
blots under reducing and non-reducing conditions (12).

Binding antibody multiplex assay

Concentration of recombinant mAbs secreted in the transfected-
293T cell culture in the supernatants was determined using
a method previously described (12). The expressed recom-
binant mAb were assayed for antibody reactivity by a stan-
dardized binding antibody multiplex assay (35) performed in
a GCLP compliant manner. Binding specificities to influenza
vaccine 2007 (Fluzone® 2007), trivalent influenza vaccine
2008 (Fluzone® 2008), and baculovirus-derived HA proteins
(HIN1 A/Brisbane/59/2007, HIN1 A/California/04/2009, HIN1
A/Solomon Islands/03/06, H3N2 A/Brisbane/10/2007, H3N2
A/Johannesburg/33/1994, H3N2 A/Johannesburg/33/1994, H3N2
A/Wisconsin/67/05, B/Florida/04/06; Protein Sciences, Meriden,
CT, USA) were determined using purified mAb diluted serially
starting at 50 pLg/ml.

ELISA data analysis for estimation of K,

Purified mAb prepared at known concentrations were evaluated by
ELISA against baculovirus-expressed purified hemagglutinin (H1
A/Brisbane/59/2007; Protein Sciences, Meriden, CT, USA). Sam-
ples were diluted serially for the analysis and data were analyzed
using the model

G
; 4
Kd+6i]+8l @

yi =10g[oc+(6—a)
where y; is the log of the optical density measured at the ith dilu-
tion, o is the background optical density, § is the maximum optical
density, K 4 is the equilibrium dissociation constant, ¢; is the known
concentration of analyte at the ith dilution, and the ¢ are indepen-
dent, identically distributed Gaussian errors. For each antibody
studied, the parameters of this model were fit using software
developed for the purpose (28).
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Datasheet 1 | Sequence alignment for CL2569 heavy chain, including
observed and inferred sequences.

Datasheet 2 | Sequence alignment for CL2569 light chain, including
observed and inferred sequences.

Datasheet 3 | Tables of results for sequence specificity of mutation
frequency.
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