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Effective viral clearance requires the induction of virus-specific CD8+ cytotoxic T lympho-
cytes (CTL). Since dendritic cells (DC) have a central role in initiating and shaping virus-
specific CTL responses, it is important to understand how DC initiate virus-specific CTL
responses. Some viruses can directly infect DC, which theoretically allow direct presenta-
tion of viral antigens to CTL, but many viruses target other cells than DC and thus the host
depends on the cross-presentation of viral antigens by DC to activate virus-specific CTL.

Research in mouse models has highly enhanced our understanding of the mechanisms
underlying cross-presentation and the dendritic cells (DC) subsets involved, however, these
results cannot be readily translated toward the role of human DC in MHC class I-antigen
presentation of human viruses. Here, we summarize the insights gained in the past 20 years
on MHC class I presentation of viral antigen by human DC and add to the current debate
on the capacities of different human DC subsets herein. Furthermore, possible sources of
viral antigens and essential DC characteristics for effective induction of virus-specific CTL
are evaluated.

We conclude that cross-presentation is not only an efficient mechanism exploited by DC
to initiate immunity to viruses that do not infect DC but also to viruses that do infect DC,
because cross-presentation has many conceptual advantages and bypasses direct immune
modulatory effects of the virus on its infected target cells.

Since knowledge on the mechanism of viral antigen presentation and the preferred DC
subsets is crucial for rational vaccine design, the obtained insights are very instrumental
for the development of effective anti-viral immunotherapy.
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ROLE OF DENDRITIC CELLS IN THE INDUCTION OF
ANTI-VIRAL IMMUNITY
Immune responses to viral infections are a complex interplay
between the virus, target cells, and cells of the immune system.
Effective viral clearance requires the induction of virus-specific
CD8+ cytotoxic T lymphocytes (CTL), which have the capacity to
eradicate the virus by direct and indirect mechanisms (1). DC, a
low frequent population of white blood cells play a central role in
the induction of virus-specific CTL, since they are the most potent
antigen presenting cells and unique for their capacity to activate
naïve T cells (2). DC are located at strategic positions at sites of
pathogen entry, where they continuously sample the environment
for invading pathogens. Capturing antigens in combination with
encountering danger signals from pathogens induces maturation
of DC and their migration to secondary lymphoid organs where

Abbreviations: DC, dendritic cell; CTL, cytotoxic T lymphocyte; mDC, myeloid
dendritic cell; pDC, plasmacytoid dendritic cell; moDC, monocyte-derived den-
dritic cell; LC, Langerhans cell; PRR, pattern-recognition receptor; VLP, virus-like
particle; CLR, C-type lectin receptor; FcR, Fc receptor; TLR, Toll-like receptor.

they can activate naïve T cells. Activation of naïve CD8+ T cells and
polarization toward effective CTL requires presentation of MHC
class I–peptide complexes (signal 1) together with co-stimulation
(signal 2) and the presence of cytokines (signal 3) such as IL-12
(3) and IFNα (4).

Dendritic cells comprise a family of different subsets, diverging
in ontogeny, localization, and phenotype. Each DC subset has its
own specialized immune functions with regard to the functional
interactions with all kind of immune cells, including T cells, B cells,
and NK cells, due to differential expression of receptors and intrin-
sic differences in their ability to produce different cytokines and
other membrane-bound and soluble immune modulatory mol-
ecules (5). Human DC subsets present in blood, peripheral, and
lymphoid tissues can be classified in two main categories: plasma-
cytoid DC (pDC) and myeloid DC (mDC), which can be further
divided into BDCA1+ (CD1c+) and BDCA3+ (CD141+) DC (6).
pDC are specialized in the production of high amounts of anti-
viral type I interferon (IFN; IFNα/β) upon activation (7), whereas
BDCA1+ DC are known for their high production of IL-12 and
their ability to induce T cell responses (5). BDCA3+ DC, on the
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other hand, can produce high levels of type III IFN (IFNλ) (8),
which possess direct anti-viral activity, and induce Th-1 responses
(9). In the skin, two additional mDC subsets have been charac-
terized, epidermal Langerhans cells (LC) and dermal interstitial
DC (intDC) (10). Since DC represent a very rare population
in the human body that hampers isolation of sufficient num-
bers, in vitro-generated DC differentiated from monocytes (11)
or hematopoietic progenitor cells (12) are frequently used for
functional studies on human DC.

The notion that DC compared to other antigen presenting cells
stand out in their capacity to induce strong virus-specific CTL goes
back more than 20 years, when it was reported that human blood-
derived DC exposed to HIV-1 or influenza virus could induce
proliferation of autologous CTL (13, 14). At that time, it was not
known whether the efficacy of DC reflected specialized antigen
presentation pathways or that other factors were responsible for
the efficacy of DC in virus-specific CTL cell induction. At least it
was noted that only low numbers of DC were sufficient to induce
influenza-specific T cells (14).

Now we know that DC, in addition to their broad expression
of pattern-recognition receptors (PRR) and excellent T cell stim-
ulatory capacities, harbor unique specialized antigen presentation
pathways, that are of major importance for their central role in the
induction of virus-specific immunity; DC can efficiently facilitate
MHC class I presentation of endogenously synthesized antigens, a
process that is active in all nucleated cells, but also facilitate MHC
class I presentation of antigen engulfed from exogenous sources, a
process called cross-presentation (15). DC are very efficient in cap-
turing exogenous antigen, because they express a diverse repertoire
of receptors and exploit various mechanisms to engulf antigens,
including endocytosis, phagocytosis, and pinocytosis. The cross-
presentation capacity of DC may be crucial for the induction
of virus-specific CTL during infections with viruses that do not
infect DC.

Seminal mouse studies have demonstrated the importance
of cross-presentation for the generation of virus-specific CTL
responses (16–18). In addition, mouse studies have provided
important insights into the cell-biological mechanisms underly-
ing cross-presentation by DC (19, 20). However, composition of
the human DC compartment and susceptibility to viruses differ
largely between mice and men. In addition, the mechanism of
cross-presentation by human DC is less well-understood. There-
fore, research on MHC class I presentation of viral antigens by
human DC is of great importance to understand the induction of
virus-specific CTL in humans.

The study into antigen presentation of viruses by subsets
of human DC ex vivo has been facing several technical chal-
lenges, which has hampered the understanding of this process
for many viruses. However, some recent technical advancements
have become available that empowered this research. For example,
the possibility to more efficiently isolate human DC subsets from
peripheral blood and other organs and the development of a new
generation of protocols to generate human DC subsets in vitro
(21, 22), as was previously shown for BDCA1+ monocyte-derived
DC (moDC) (11) and CD34+ HPC-derived intDC and LC, that
resemble mDC found in mucosal tissues including skin (12, 23).
These technical advancements have revived the scientific interest

in the interactions between viruses and different human DC sub-
sets. Since 2010, a significant body of literature has been published
on presentation of viral antigens by different human DC subsets
that facilitated this review, which is based for a large part on studies
using human DC.

In the present review, the different mechanisms employed by
human DC to facilitate MHC class I presentation of viral antigens
are discussed. For this purpose, possible sources of viral antigens,
essential DC characteristics for optimal MHC class I presenta-
tion of viral antigens, and host factors important for virus-specific
CTL induction are defined. Furthermore, the roles of the various
human DC subsets of human DC in these processes are evaluated.
Since knowledge on mechanisms of virus-specific CTL induction
by human DC subset is crucial for rational vaccine design, recom-
mendations for development of effective anti-viral immune thera-
pies will be provided based on the insights obtained in this review.

SOURCES OF VIRAL ANTIGEN FOR MHC CLASS I
PRESENTATION BY DC
Virus-infected DC can use endogenously synthesized viral proteins
as antigens for presentation in MHC class I, whereas non-infected
DC need to actively engulf exogenous viral antigens for cross-
presentation. Here, we discuss possible sources of viral antigen
obtained from different viruses for MHC class I presentation by
human DC.

Human moDC are permissive for quite a number of viruses
including measles virus (MV), human cytomegalovirus (HCMV),
influenza A virus (IAV), human T-cell lymphotropic virus type
1 (HTLV-1), dengue virus (DV), vaccinia virus (VV), respiratory
syncytial virus (RSV), herpes simplex virus (HSV), and human
metapneumovirus (hMPV) (24–36). Although moDC can take up
HIV-1, they are largely refractory to HIV-1 productive infection
(37), whereas, productive infection of peripheral blood-derived
BDCA1+ DC and pDC has been demonstrated (38). In addition
to moDC, RSV also infects BDCA1+ and BDCA3+mDC (39) and
IAV infects BDCA1+ mDC, but not pDC (40). LC are permissive
for MV, but only after maturation (25). Although LC can take up
HIV-1, they are not permissive for HIV-1 replication and trans-
mission, but rather prevent it by degradation (41). Permissiveness
to infection indicates that these viruses not only enter human DC,
they also induce a certain level of protein neo-synthesis in DC
that ranges from restricted synthesis of early viral proteins (33)
to extensive synthesis of multiple viral proteins and secretion of
viral progeny (26). Intracellular synthesis of viral antigens by DC
suggests that these infected DC may facilitate direct presentation
of viral antigens in MHC class I and activation of virus-specific
cytotoxic T cells (CTL). MHC class I presentation of viral antigens
has been reported for DC infected with IAV, MV, HTLV-1, and
HCMV, albeit sometimes with low efficiency (14, 25, 27, 31, 42).

Nevertheless, it has been demonstrated in several indepen-
dent studies, involving IAV, HIV-1, and MV, that the efficiency
of MHC class I-antigen presentation of replication-incompetent
virus was at least comparable to replication-competent virus (25,
40, 43–46). These heat-or UV-treated replication-incompetent
viruses have lost the capacity to induce synthesis of viral pro-
teins, but still efficiently enter DC to act as exogenous sources
of viral antigen. It was estimated that MHC class I presentation
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of replication-incompetent IAV by BDCA1+mDC was 300 times
more efficient than MHC class I presentation of replication-
competent IAV (40). These studies clearly show that, at least for
the viruses studied, endogenous synthesis of viral antigens is not
required for MHC class I presentation and that cross-presentation
is an efficient mechanism to facilitate MHC class I presentation of
viral antigens.

Thus, cross-presentation is not only an efficient mechanism
exploited by DC to initiate immunity to viruses that do not infect
DC but also contributes to initiation of anti-viral immunity to
viruses that do infect DC. In fact, cross-presentation seems a clever
way to bypass direct immune modulatory effects of the virus on
its infected target cells. For instance, interference with MHC class I
presentation is commonly used by herpes viruses to evade immu-
nity [reviewed by Ref. (47)] and is also exploited by IAV, as was
elegantly shown by comparing CMV-specific CTL proliferation
by CMV-antigen loaded IAV-infected and uninfected BDCA1+

mDC (40). In addition, early during HIV infection, part of the
DC compartment is depleted, which may contribute to decreased
activation of adaptive immunity (48). Virus-induced cell death is
also reported for RSV (34, 39) and VV (33).

In addition to replication-incompetent viral particles, other
sources of exogenous viral antigens for cross-presentation by
human DC include virus-like particles (VLP), viral proteins,
and virus-infected cells (Figure 1). VLP morphologically and
immunologically resemble infectious viral particles because they
contain the natural viral envelop proteins, however, they are not
infectious, because they do not contain the viral genome. Although
some VLP naturally occur in vivo, they are often man-made, being
used as safe representatives of viral particles to study virus–host
interactions (49) or in the context of vaccine research (50, 51).
VLP can be efficient sources of exogenous viral antigen for cross-
presentation by DC, as was demonstrated for hepatitis C virus
(HCV) VLP (49), human papilloma virus 16 (HPV16) VLP (50),
and VLP composed of the coat protein of papaya mosaic virus
(PapMV) (51).

Recombinant proteins such as HCV-derived NS3 (52), HIV-
1-derived Nef (53), HCMV-derived pp65 (9, 54), and hepatitis B
virus (HBV)-derived hepatitis B surface antigen (HBsAg) (55, 56)
are sources of exogenous antigens that are often used to study
the mechanism of cross-presentation by DC. Nevertheless, the
efficiency of cross-presentation of these recombinant proteins is
relatively low compared to other sources of viral antigens. More-
over, with the exception of HBsAg, which is secreted by human
hepatocytes and can be measured in peripheral blood, most pro-
teins are not naturally occurring as soluble proteins in vivo but are
only present in/associated with infected cells.

Cell-associated antigen, i.e., antigen associated to or present
in infected target cells, represents another important source of
viral antigens that can be encountered by DC. Albert and col-
leagues contributed the first evidence of this by showing that
uptake of apoptotic IAV-infected monocytes by moDC leads to
efficient activation of influenza-specific CTL (57). After this study,
a compelling number of studies have confirmed that virus-infected
target cells can be efficient antigen sources for cross-presentation
in many infections. For instance, VV-infected monocytes (45, 58),
HTLV-1 infected CD4+ T cells (31), MV-infected B cell lines (25),

FIGURE 1 | Overview of different pathways underlying MHC class I
presentation of viral antigens by human DC. Although direct MHC class I
class I presentation may contribute to virus-specific CTL induction (dashed
arrow), cross-presentation is an effective mechanism for MHC class I
presentation of viruses that do not infect DC but also for those viruses that
do infect DC. Sources of viral antigen that can be efficiently
cross-presented by human DC include viral proteins, (infectious) viral
particles, VLP, and virus-infected cells, also referred to as cell-associated Ag.
Endocytic receptors including CLR, FcR and other receptors (Table 1) play
an important role in the uptake of Ag for cross-presentation.
Cross-presentation can be enhanced by opsonization. Two main pathways
for cross-presentation have been described that are also relevant for
cross-presentation of viruses by human DC and are characterized by
differences in the mechanism of protein degradation and differences in
kinetics (black arrows). The slower cytosolic pathway, that relies on
proteasomal degradation in the cytosol, is important for cross-presentation
of viral particles, infected cells, and opsonized viral proteins (A). The
relatively fast vacuolar pathway is independent of proteasomal degradation
and is important for cross-presentation of VLP (B). Alternatively, DC can
obtain viral peptides or MHC class I-peptide complexes by interaction with
virus-infected cells. EE, early endosome; LE, late endosome; PR,
proteasome.

HCMV-infected fibroblasts (27, 59), and EBV-transformed B cells
(60, 61) are reported as efficient sources of viral antigens for cross-
presentation by human DC. The latter study nicely illustrated the
high efficiency of this mechanism by demonstrating activation of
EBV-specific CTL by DC cross-presenting EBV latency antigens
that were expressed at low levels in EBV-transformed B cells (61).

In the above-mentioned studies, apoptotic or necrotic virus-
containing cells or cell remnants were used as sources of
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cell-associated antigens for cross-presentation. Transfer of viral
peptides from infected cells to DC could represent an alterna-
tive efficient mechanism underlying cross-presentation of cell-
associated viral antigens. Two different mechanisms facilitating
peptide exchange between cells have been described, including
transfer of antigenic peptides via intercellular communication
channels, called gap junctions (62), and direct transfer of MHC
class I/peptide complexes from infected cells to DC, named cross-
dressing (63, 64). The relevance of these pathways in presentation
of viral antigens by human DC and induction of virus-specific
T-cell immunity should be further evaluated.

In summary, for efficient viral antigen presentation to CD8+ T
cells, DC can acquire viral antigens from various sources. Although
direct presentation of endogenously generated antigen by virus-
infected DC has been reported for some viruses, evidence to
support an important role for this mechanism in the induction
of virus-specific CTL is lacking. In contrast, there is compelling
evidence that cross-presentation of exogenously acquired viral
antigen is highly efficient and provides an excellent way for the
host to bypass evasion mechanisms that several viruses employ to
prevent direct MHC class I presentation in infected target cells.

ENDOCYTIC RECEPTORS INVOLVED IN UPTAKE OF VIRUSES
BY DC
Being intracellular parasites, viruses use the host machinery for
internalization, proliferation, and transmission. DC are attractive
target cells for viral entry because they express numerous recep-
tors at their cell surface and they migrate through the body, which
facilitates viral dissemination. Viruses can enter DC via docking
with their viral envelop to endocytic receptors expressed at the
cell membrane (43, 44, 46). A commonly described receptor used
by viruses to enter DC is DC-specific C-type lectin dendritic cell-
specific intercellular adhesion molecule-3-grabbing non-integrin
(DC-SIGN/CD209). DC-SIGN is involved in the infection of
moDC by DV (32, 65), HCMV (28), HSV (66), MV (67), and IAV
(68) and also in DC-mediated transmission of HIV-1 (69) and
HTLV-1 (70) to CD4+ T cells. DC-SIGN is part of the large fam-
ily of C-type lectin receptors (CLR), comprising Ca2+-dependent
receptors that each have unique functions but share the recogni-
tion of carbohydrate structures present on micro-organisms (71).
Other CLR family members involved in interaction with viruses
include Langerin (CD207), involved in the interaction with MV
and HIV-1 (25, 41), DC immunoreceptor (DCIR) (72), proposed
as an alternative receptor for HIV-1 promoting infection in cis and
trans and macrophage mannose receptor (MMR/CD206), pos-
sibly involved in uptake of HBsAg by liver BDCA1+ DC (73).
Also non-CLR can be involved in the interaction with viruses or
VLP. DC-specific heparin sulfate proteoglycan Syndecan-3 coop-
erates together with DC-SIGN to facilitate infection of DC and
transmission to CD4+ T cells (74) and is involved in the interac-
tion with HPV VLP (75). Since expression of endocytic receptors
varies widely between DC subsets (Table 1), the different subsets
will likely have specialized roles in the interaction with different
viruses, determined by the combination of receptors expressed on
each DC subset.

Are these CLRs only involved in supporting viruses to enter the
host or did they evolve to support activation of the host’s immune

system through antigen presentation? Langerin is an important
receptor for interaction with pathogens in the skin and has been
shown to support antigen presentation in MHC class II, but its
role in MHC class I-mediated antigen presentation is under debate
(25). Moris et al. showed that blocking of DC-SIGN partly reduced
MHC class I presentation of internalized HIV-1 by DC, arguing
in favor of a role of DC-SIGN in cross-presentation of HIV-1
(91). In contrast, Sabado et al. showed that blocking of DC-SIGN,
DEC-205 (CD205), or MR did not reduce MHC class I presen-
tation of HIV-1 antigens (46) whereas Tjomsland and colleagues
showed that blockade of MR even promoted cross-presentation
of HIV-1 by DC (92). Thus, the physiological role of DC-SIGN
in cross-presentation of HIV-1 is thus far inconclusive, which
may be explained by differences in experimental set-up such as
the HIV-1 strain used. Antibody-mediated delivery of antigen to
the CLRs MR, DEC-205 (82), DCIR (81), DC-SIGN (93), and
CLEC9A (94) (Table 1) on human DCs facilitates efficient cross-
presentation. These examples show that CLR can facilitate cross-
presentation, however, the physiological role of these receptors in
cross-presentation of viral antigens is still under debate.

Whereas CLR can directly recognize viral envelop anti-
gens, complement receptors and Fc receptors (FcR) selectively
recognize viral antigens that are opsonized with complement and
immunoglobulins, respectively. Antigen immune complexes nat-
urally exist and are formed when pre-existing antibodies bind
to blood-borne antigens in the circulation, for example, during
HCMV re-infection (85). Binding of immune complexes to Fcγ
receptor (FcγR) on DC leads to efficient cross-presentation in
MHC class I (85). Strikingly, the observation that FcR-dependent
uptake of HBsAg can enhance activation of HBV-specific CTL
was made years before the concept of cross-presentation by DC
was recognized (95), indicating that opsonization of viral antigens
may be important for generating virus-specific CTL. Similarly,
opsonization of antigen by complement can efficiently enhance
cross-presentation, as was recently demonstrated for HIV-1 by
targeting HIV-1 particles to CR3 (92). In addition, although not
classically referred to as opsonization, binding of high-density
lipoprotein (HDL) to HCV VLP supported efficient Scavenger
receptor B-mediated uptake and cross-presentation (96). A similar
role for extracellular heat-shock proteins (HSP) has been pro-
posed [reviewed by Ref. (97)], mainly based on mouse studies in
the field of cancer immunotherapy. However, the role of HSP in
cross-presentation of viral antigens by human DC remains to be
investigated.

Although these results indicate that several endocytic receptors
may be involved in facilitating cross-presentation, their exact role
needs to be determined. Especially recognition of viral antigens
by opsonins seems to be an effective way of natural antigen tar-
geting to DC for cross-presentation. Increased knowledge on the
receptors used by viruses for infection on the one hand and the
receptors that facilitate cross-presentation on the other hand may
be of great value for therapeutic interventions.

MECHANISMS UNDERLYING CROSS-PRESENTATION
One of the intriguing aspects of cross-presentation is that process-
ing of incoming antigen needs to be very efficient to compete with
the vast amount of endogenous proteins for MHC class I binding.
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Table 1 | Summary of receptors that are involved in DC–virus interaction on different DC subsets.

Family Name BDCA1+

mDC

BDCA3+

mDC

pDC Epidermal

LC

Dermal

intDC

moDC Reference

C-type lectin receptors DEC-205 (CD205) + + + − + + MacDonald et al. (76), Ebner et al. (77)

DCIR (CLEC4A) + − + + + + Bates et al. (78), Lambotin et al. (79),

Eklöw et al. (80), Klechevsky et al. (81)

MMR (CD206) ± + − − + + Chatterjee et al. (82), MacDonald et al.

(76), Lambotin et al. (79)

DC-SIGN (CD209) − − − − + + Turville et al. (83), MacDonald et al. (76)

CLEC9A (DNGR1) − + − − − − Huysamen et al. (84)

Langerin (CD207) − − − + − − Turville et al. (83), MacDonald et al. (76)

Toll-like receptors 1 + + + + + + Kadowaki et al. (5), Jongbloed et al. (9),

Lambotin et al. (79)

2 + + − + + +

3 + + − + + +

4 + − − − + +

5 + − − − + +

6 + + + + + +

7 − − + + + −

8 + + − + + +

9 − − + − − −

10 + + + − − +

Fcγ receptors FcγRI (CD64) + − nf nf nf ± Flinsenberg et al. (85)

FcγRIIA (CD32) + + + nf nf + Flinsenberg et al. (85), Tel et al. (86)

FcγRIII (CD16) − − − nf nf − Flinsenberg et al. (85)

Complement receptors CR4 (CD11c) + + − + + + MacDonald et al. (76), Lambotin et al. (79)

CR3 (CD11b) ± − − ± + + Donaghy et al. (87), Lui et al. (88), Poulin

et al. (21)

Heparan sulfate proteoglycan Syndecan-3 nf nf nf nf nf + de Witte et al. (74)

Chemokine receptor XCR1 − + − − − − Crozat et al. (89), Bachem et al. (90)

pDC, plasmacytoid DC; LC, Langerhans cell; intDC, interstitial DC; moDC, monocyte-derived DC; nf, information not found.

In addition, cross-presentation requires access of incoming anti-
gen to the MHC class I pathway that is mechanistically separated
from the uptake vesicles (98).

Dendritic cells harbor unique pathways to facilitate these logis-
tic and mechanistic challenges underlying cross-presentation.
Based on research of numerous groups, two main models
have been put together for the mechanisms underlying cross-
presentation of exogenous antigens, referred to as the “cytosolic”
pathway and the“vacuolar”pathway [reviewed by Ref. (20)]. These
pathways are not mutually exclusive and may operate together in
one cell (99). The most discriminative aspects between the two
pathways are discussed below.

In the cytosolic pathway, antigens are degraded by the protea-
some, a large enzyme complex situated in the cytosol that makes
this pathway sensitive to inhibitors of proteasomal degradation.
Alternatively, in the vacuolar pathway, both antigen degradation

and MHC class I presentation occur in the endocytic com-
partment. Involvement of this pathway can be experimentally
addressed by confirming resistance to inhibition of proteasomal
degradation and sensitivity to inhibition of lysosomal proteolysis.

Lysosomal proteolysis has a detrimental role in the cytosolic
cross-presentation pathway. It was experimentally demonstrated
that limiting lysosomal proteolysis by chemically increasing the
lysosomal pH favors cross-presentation of viral proteins HCV-
derived NS3 and HIV-derived Nef by preventing complete degra-
dation of potential MHC class I binding epitopes (53). Several
different adaptations on the endocytic compartment, including a
differential lysosomal protease activity, mechanisms to control the
lysosomal pH, and antigen storage compartments, together endow
DC to facilitate cross-presentation via the cytosolic pathway (100–
102). Cross-presentation via the cytosolic pathway further requires
export of internalized antigens from the endocytic compartment
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to the cytosol for proteasomal degradation, which is probably
the rate-limiting step in this pathway, at least for protein anti-
gen. Many enveloped viruses can enter the cytoplasm as part of
their infection strategy that requires fusion of the viral envelope
with the endosomal membrane to release the viral genome into the
cytoplasm. This endosomal fusion capacity probably underlies the
efficiency of cross-presentation of viral particles, at least for those
particles that are able to enter the cytoplasm of DC. The mech-
anism of cytosolic delivery for other viral antigens and viruses
that do not undergo endosomal fusion in human DC is largely
unknown. Candidate proteins that may be involved in cytosolic
delivery include HSP and p97 and sec61, which belong to the
endoplasmic reticulum-associated protein degradation (ERAD)
machinery (20), however, the role of these molecules in human
DC is poorly studied.

Interestingly, the cytosolic and vacuolar pathway has totally
different kinetics, which can be used to determine which path-
way is involved (103). Whereas cross-presentation via the vac-
uolar pathway is fast and can be detected after 20 min (104),
cross-presentation via the cytosolic pathway is much slower and
formation of MHC class I–peptide complexes via this pathway
may take at least 8 h (100), probably because it relies on MHC
class I neo-synthesis (20). In contrast, MHC class I loading
in the vacuolar pathway occurs in the endocytic compartment
and depends on recycling of MHC class I molecules that are
constitutively internalized by a highly regulated process (105).

VIRAL ROAD TO CROSS-PRESENTATION
The cytosolic and the vacuolar pathways were largely established
based on model antigens and mouse studies. It is important to
assess if these models are applicable to cross-presentation of viral
antigens by human DC.

As discussed above, viral particles use receptors expressed on
the plasma membrane to enter DC and uptake of viruses often
involves endocytosis. After receptor-mediated endocytosis, the
cargo is transported through the endocytic compartment, a highly
regulated network of vesicles with different characteristics and
functions (103). An important function of the endocytic system is
to sort internalized receptors and cargo to different locations for
either degradation or recycling. Viruses use the endocytic system
to exert their fusion capacity, however, at the same time DC use it
to obtain viral antigen for cross-presentation. For example, when
IAV reaches late endosomes, the low pH enforces conformational
change, leading to hemagglutinin-mediated fusion of the endoso-
mal and viral membranes and release of the viral RNA and proteins
into the cytoplasm (106). IAV is efficiently cross-presented, at least
when its fusogenic activity is intact (43, 107). The fusion depen-
dence was also observed for HIV; cross-presentation of HIV-1
was completely absent when fusion-incompetent HIV-1 mutants
were used or fusion was inhibited chemically (44, 46). Cross-
presentation of HIV-1 viral particles is sensitive to proteasome
inhibitors, but enhanced by inhibition of lysosomal proteolysis
(46). Taken together, the above-mentioned work suggests a role for
the cytosolic pathway in cross-presentation of fusion-competent
viral particles, at least by mDC. Interestingly, cross-presentation
of IAV by pDC is not sensitive to proteasome inhibitors, but is
sensitive to inhibition of endosomal processing. Together with

fast MHC class I presentation, this study suggests a role for the
vacuolar pathway for cross-presentation of IAV by pDC.

Evidence from different studies involving IAV-infected
monocytes (108), HCMV-infected fibroblasts (27), and EBV-
transformed B cells (61) suggests that cross-presentation of cell-
associated antigen involves uptake by receptor-mediated phagocy-
tosis and that antigen processing is dependent on the proteasome,
but also sensitive to inhibition of lysosomal proteolysis (109).
Cross-presentation of Ag–Ig immune complexes also requires
both proteasomal and endosomal antigen processing (85). Taken
together, these data indicate that although cross-presentation of
both cell-associated antigen and Ag–Ig immune complexes require
proteasomal degradation, they may need some degree of lysosomal
proteolysis to facilitate translocation of antigens from lysosomes to
cytoplasm. Since these sources of viral antigen do not have intrin-
sic fusogenic capacity, they rely on functional specializations of DC
to export Ag of the endocytic compartment to the cytosol (103).

Interestingly, several lines of evidence suggest that VLP follow
a different pathway for cross-presentation. Cross-presentation of
PapMV VLP, HCV VLP, and HBV VLP was not affected by pro-
teasome inhibitors but sensitive to reagents that inhibit lysosomal
proteolysis (51, 96, 110). Furthermore, it was shown that cross-
presentation of HBVVLP by both mouse DC (110) and human DC
(our own unpublished observations) is fast and TAP-independent.
Together, these studies suggest that cross-presentation of VLP
occurs via the vacuolar pathway.

The differences in cross-presentation pathways between fusion-
competent viruses and VLP suggest that different vesicles within
the endocytic compartment are involved. Chatterjee et al. showed
that antigen targeting via MR or DEC-205 both lead to cross-
presentation via different compartments (82). Evidence for a
process of sorting comes from an elegant study by Lakadamyali
et al., where it was shown that after endocytosis, IAV is sorted into
a population of dynamic endosomes that rapidly becomes more
acidic, which is necessary for the virus to enter the cytoplasm (111).
In contrast, an alternative non-viral ligand, transferrin is sorted
into a different population of static endosomes that facilitate
recycling of antigen and receptors to the cell surface.

Antigen targeting to DC-SIGN can result in trafficking to differ-
ent cellular compartments, as was shown for HCV envelop protein
and Lewis X uptake via DC-SIGN (112). In addition, antibody-
mediated antigen targeting to the neck region of DC-SIGN was
dramatically more efficient with regard to cross-presentation of
the targeted antigen compared to targeting to the carbohydrate-
binding domain, and these differences were related to different
endocytic trafficking (93). Taken together, these studies suggest
that endocytic sorting is important for the fate of antigens and
that sorting occurs at the receptor level. The nature of the sorting
signal and the role of endocytic receptors and their adaptor mol-
ecules in this process remains to be further elucidated. However,
an indication that poly-ubiquitination may be involved in sorting
and antigen translocation comes from a mouse study involving
the MMR (113).

We conclude that both the cytosolic and the vacuolar pathways
are applicable to cross-presentation of viral antigen by human
DC, depending on the type of viral antigen that is encoun-
tered by DC (Figure 1). The studies discussed above suggest
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that VLP preferentially traffic via the vacuolar pathway for cross-
presentation, whereas protein antigen, fusion-competent viral par-
ticles, cell-associated antigen, and Ig-opsonized antigen preferen-
tially traffic via the cytosolic pathway for cross-presentation,except
in pDC that may preferentially facilitate the vacuolar pathway.
Since the above-mentioned studies together suggest that antigen is
sorted into pathways with different efficiency of cross-presentation
at the receptor level, it is of high importance to gain more knowl-
edge on the receptors used for internalization of viral antigens
and their exact role in the sorting of Ag to different pathways in
order to fully understand the cross-presentation of viral antigens.
Currently, besides VLP, no other viral antigens were found that
utilize the vacuolar cross-presentation pathway in human mDC,
thus the physiological role of this pathway remains to be further
understood. However, since this pathway is highly efficient, as was
demonstrated in pDC (114), further understanding of the mech-
anisms underlying the vacuolar pathway may be of interest for
therapeutic purposes.

DC MATURATION AS A CRITICAL FACTOR FOR CTL
INDUCTION
Antigen presentation in MHC class I can lead to CTL priming or
tolerance, depending on the context in which DC encounter the
antigen (15). Sensing of danger signals by PRR on DC (Table 1)
induce DC maturation, a differentiation process initiated after
innate immune recognition that regulates key functions involved
in CTL induction, including migration, antigen presentation, co-
stimulation, and production of cytokines. Co-stimulation lowers
the threshold for antigen recognition by the T-cell receptor and is
important for proliferation, survival, effector function, and mem-
ory formation of T cells. Changes in antigen presentation after
DC maturation include upregulation of MHC class I molecules
(42), enhanced proteasomal activity (115), and reduced lysosomal
antigen degradation (116) due to lower expression of lysosomal
proteases (107). It is well-accepted that matured human DC have
an enhanced capacity to activate virus-specific CTL (25, 42, 56, 60,
117, 118). Importantly, however, the experimental stimuli used for
induction of DC maturation are often not representative for the
type of danger signals that are encountered by DC during viral
infection in vivo.

Which danger signals can be naturally encountered by PRR
on DC during viral infection? Viruses can display danger signals
of various nature including viral nucleic acids, replication inter-
mediates, carbohydrate structures, and proteins on the envelop,
that can be sensed by PRR on DC (Table 1). IAV and RSV, both
ssRNA viruses, induce maturation of different human DC sub-
sets including moDC, BDCA1+ mDC, and pDC (34, 39, 42, 119,
120). Also VLP have been shown to induce DC maturation (49,
50, 75), which is not dependent on TLR but may be mediated by a
recently identified innate recognition mechanism (121). In addi-
tion to virus-derived danger signals, virus-induced danger signals
produced by the host in response to viral infection can induce DC
maturation. Examples of such virus-induced host-derived matu-
ration signals include cytokines such as IFNα/β and TNFα secreted
by virus-infected cells (122) and damage-associated molecular pat-
terns (DAMP) released by damaged or dying cells (123). During

interaction of DC with cell-associated Ag, DC can encounter both
virus-derived danger signals and host-derived maturation signals
(27, 124, 125) or host cell-derived DAMP, such as TLR4 ligand
high-mobility group box 1 (HMGB1) (126) or CLEC9A ligand
F-actin (127).

The induction of DC maturation by virus-derived and virus-
induced stimuli suggests that these factors also enhance CTL
priming, however, direct experimental evidence on the contribu-
tion of virus-induced DC maturation on CTL induction by human
DC is limited. IAV-infection of DC is associated with strong DC
maturation and efficient antigen-specific CTL proliferation (42,
117). Similarly, TLR agonist poly I:C that mimics viral double-
stranded RNA (dsRNA) is a strong inducer of DC maturation
and effectively enhances cross-presentation of recombinant viral
antigen by several subsets of human DC (9, 56, 128, 129). Also
TLR7/8 agonists have been shown to enhance DC-induced CTL
expansion and effector function in vitro (81). In contrast, cross-
presentation of cell-associated antigen was inhibited when polyI:C
or IAV were present in the captured dead cells, suggesting that
virus-derived danger signals may also have a detrimental effect on
cross-presentation, which may be specific for cross-presentation of
cell-associated antigen (130). IFNα, a widely studied representa-
tive of virus-induced signals, can exert multiple effects on human
DC that promote CTL cross-priming [reviewed by Ref. (4)]. For
example, moDC differentiated in the presence of IFNα, so called
IFNα-DC, have superior cross-presentation capacity compared to
classical moDC (52, 131). In conclusion, although it is widely
accepted that virus-derived and virus-induced stimulatory signals
are required for effective cross-priming of virus-specific CTL, it has
been difficult to experimentally address this hypothesis in the cur-
rently used in vitro models. Challenges include the low precursor
frequency of naïve virus-specific CD8+ T cells and dissection of the
separate contributions of DC maturation and antigen presentation
to CTL induction.

Interference with DC maturation and thereby subverting the
development of effective CTL induction is an important mech-
anism of immune evasion used by many viruses. Examples of
viruses that interfere with DC maturation are MV (132), VV,
via the production of cytokine receptor homologs (33), HSV, via
destabilization of host mRNA (35, 133) and HCMV, which pre-
vents upregulation of co-stimulatory molecules and production
of cytokines (134) and induces TGFβ production by its target cells
(124). Furthermore, DC isolated from patients with chronic HIV,
HBV, and HCV infections showed functional impairments in the
capacity to produce IL-12 or induce T-cell activation,which may be
a direct effect of the virus on DC and thereby the cause of the fail-
ing adaptive immune response, but could also be the consequence
of the chronic infection (135, 136).

The connection between innate immune recognition of viruses
by human DC and the induction of virus-specific CTL is an impor-
tant subject for further study. In addition, the PRR and pathways
underlying recognition of viruses by DC and the mechanisms
by which viruses circumvent these pathways needs to be further
explored. Novel molecular techniques such as the ability to knock
down PRR in human DC will empower this research, which is
important for the development of therapeutic interventions.
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DC SUBSETS INVOLVED IN CROSS-PRESENTATION OF VIRAL
ANTIGEN
Before 2010, the large majority of studies on cross-presentation
of viral antigen by human DC were performed with in vitro-
generated moDC, however, more recently a number of groups
have succeeded in obtaining sufficient numbers of DC from blood
or other organs to assess the ability and mechanism of cross-
presentation of viral antigens by different human DC subsets.

BDCA3+ DC were initially recognized as a subset with superior
cross-presentation capacity compared to other human DC subsets
(9, 21, 89, 137). Comparison of transcriptional profiles revealed
that BDCA3+ DC represent the human equivalent of murine
CD8α+ and CD103+ DC (56, 138), which have a superior intrin-
sic cross-presentation capacity compared to other DC subsets
(139). In parallel, selective expression of CLEC9A (84), a recep-
tor that senses dead cells (140) and facilitates cross-presentation
by mouse (141) and human DC (94), suggested that human
BDCA3+ DC would excell in cross-presentation of dead cell mate-
rial. Superior capacity to cross-present cell-associated antigen by
BDCA3+ DC was demonstrated by several independent studies
(9, 21, 89, 102, 137), however, not observed in all studies (118).
Although BDCA3+ DC are highly capable of cross-presenting
cell-associated antigen, cross-presentation of cell-associated anti-
gen has also been demonstrated for BDCA1+ DC (102), pDC
(89, 118), and moDC (31, 57). Also for other types of antigen,
cross-presentation is not restricted to the BDCA3+ DC subset.
Cross-presentation of protein antigen was shown for periph-
eral blood and tissue-derived BDCA1+ DC (9, 128), BDCA-2+

pDC (102, 128), and BDCA3+ DC (9, 56, 102, 128, 137), as well
as for in vitro-generated CD34+-derived DC (102) and moDC,
as discussed above. Although BDCA3+ DC are highly capable
of cross-presenting cell-associated antigen, cross-presentation of
cell-associated antigen has also been demonstrated for BDCA1+

DC (102), pDC (89, 118), and moDC (54).
Both BDCA3+ and BDCA1+ DC share the specialized machin-

ery that is associated with efficient cross-presentation capacity, i.e.,
high phagosomal pH, production of ROS within endocytic com-
partments, and efficient transfer of exogenous antigens into the
cytosol (102). Both subsets have a similar efficiency of endogenous
MHC class I presentation after transfection, a similar efficiency of
cross-presentation of heat-inactivated IAV that can egress to the
cytosol at low pH and a similar efficiency of cross-presentation
of antigen that is selectively delivered to early endosomes (107).
Nevertheless, BDCA3+ DC were superior compared to BDCA1+

DC at cross-presentation of antigen that was artificially targeted
to lysosomes by using antigen conjugated to DEC-205 targeting
antibodies (107). This suggests that although both DC subsets can
efficiently cross-present Ag delivered to early endosomes,BDCA3+

DC may exhibit a specialized machinery to transfer Ag from late
endosomes and lysosomes to the cytosol. This DC character-
istic might explain the superior capacity to cross-present IgG-
opsonized antigen targeted to FcγR that could not be attributed to
superior FcγR expression and/or antigen uptake in these cells (85).

Plasmacytoid DC contribute to anti-viral immune responses
by producing large amounts of IFNα/β, however, their role as pro-
fessional antigen presenting cell in the initiation of virus-specific
T-cell responses was initially questioned based on controversial

results in mice (86). Direct comparison of intrinsic characteristics
that can influence cross-presenting capacity, such as phagoso-
mal pH and ROS production, between pDC and BDCA1+ and
BDCA3+ mDC was hampered due to inconclusive data for pDC
(102). However, pDC express a broad repertoire of antigen-uptake
receptors on their cell surface such as FcR and CLR BDCA-2, DEC-
205, DCIR that can facilitate the uptake and cross-presentation of
viral antigens (116) (Table 1). In addition, pDC can efficiently
transfer exogenous Ag into the cytosol suggesting that they may
be capable of cross-presenting antigen via the cytosolic pathway
(102). Numerous functional studies showed that human pDC can
cross-present recombinant protein antigens, long peptide antigens,
IAV-derived antigens, and cell-associated antigens (88, 118, 119,
142). In addition, it was also demonstrated that pDC can efficiently
cross-present viral antigen via the vacuolar pathway, which may be
facilitated by MHC class I storage in recycling endosomes (114).
Taken together, we conclude that human pDC can efficiently facil-
itate cross-presentation of a wide range of viral antigens. Direct
comparison of cross-presentation efficiency between human pDC
and mDC was thus far inconclusive, with one study showing a
higher efficiency of cross-presentation by pDC (114), another
study showing superior MHC class I-restricted IAV presentation
by BDCA1+ mDC (40) and three studies concluding that pDC
and BDCA1+ or BDCA3+ mDC have similar cross-presentation
efficiencies (118, 119, 142).

Although blood DC required DC maturation for efficient
cross-presentation, skin or lymph node DC can cross-present
under steady state conditions, which might be due to a more
mature/activated status of these tissue DC compared to circulat-
ing DC (56, 102, 143). In addition to BDCA1+ and BDCA3+ DC,
skin contains Langerin+ LC and dermal intDC, often referred to as
CD14+ DC. Comparison of CD14+ DC to other skin DC subsets
indicated that this subset showed the least cross-presenting capac-
ity among skin subsets (10, 56), which may be related to the finding
that these cells express immunoglobulin-like transcript recep-
tors that antagonize CTL development (144). Cross-presentation
capacity of LC cells is under debate and may vary upon the
source of LC and type of antigen used in experiments. Cross-
presentation of recombinant protein antigen by in vitro-generated
LC has been demonstrated in several independent studies (10, 102,
145), however, cross-presentation of replication-incompetent MV
and MV-infected cells by skin-derived LC was absent (25). Sine
LC are potentially interesting vaccine target cells, because of their
presence at mucosal sites such as skin and higher respiratory tract
(25), further studies on the cross-presentation capacity of primary
LC are required.

We conclude that essential mechanisms of cross-presentation
are present among most human DC subsets, with the exception of
CD14+ DC. Superiority of cross-presentation among DC subsets
can be attributed to the repertoire of uptake receptors and adapta-
tions in the endocytic compartment and may vary depending on
the type of antigen.

TECHNICAL LIMITATIONS AND NOVEL APPROACHES
Although several technical advancements have potentiated the
study of MHC class I-antigen presentation by human DC, several
important questions remain to be addressed.
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One of the current technical challenges is to measure antigen
presentation at the level of DC. The purest read-out would be
to measure MHC class I-antigen complexes at the surface of DC
(signal 1 only), however, tools are lacking (20). The best current
available method to quantify MHC class I-antigen presentation is a
read-out involving activation or in vitro induction of virus-specific
T cells. However, it should be taken into account that activation of
virus-specific T cells results from a combination of TCR ligation by
MHC class I–peptide complexes (signal 1) and other stimuli pro-
vided by DC such as cytokines and co-stimulation (signal 2 and 3).

The study of induction of human CD8+ T cells by DC is also
hampered by the extreme low frequency of naïve virus-specific T
cells in peripheral blood. As discussed above, MHC class I presen-
tation by human DC has been most frequently studied for IAV,
HIV-1, and CMV. For these viruses, it has been possible to obtain
sufficient numbers of “memory”T cells from peripheral blood and
use T-cell expansion and IFNγ production as read-outs for antigen
presentation in an autologous setting (13, 14, 54). Virus-specific
T-cell clones to other viruses can be obtained by several rounds of
antigen-specific expansion in vitro. However, performance of such
in vitro-generated clones in cross-presentation studies is compli-
cated due to their limited life span and the allogenic bias present in
experiments because DC and T cells are not from the same donor.
A novel promising approach for the study of cross-presentation of
viruses by human DC is the use of T-cell receptor transfer to gen-
erate autologous virus-specific T cells (146, 147). Such T cells are
evaluated in the context of immunotherapy of patients but may
also be exploited as tools to monitor antigen presentation by DC.

RECOMMENDATIONS AND CONSIDERATIONS FOR
DEVELOPMENT OF THERAPEUTIC VACCINE STRATEGIES
Chronic viral infections such as HIV, HBV, and HCV are a big
health burden and affect 100 millions of patients worldwide. Viral
persistence is associated with a failure of the patient’s immune
response to eradicate the virus (136). In addition to chronic
persistent infections, reactivation of latent infections including
HCMV, EBV, and HPV is a major threat for immune compro-
mised patients. In addition, a high proportion of these chronic and
latent infections including HIV, HBV, HCV, EBV, HPV, and HTLV
is related to the development of malignancies later in life (148).
Immunotherapy represents an attractive therapeutic intervention
to combat such infections and prevent virus-related malignan-
cies by using the body’s own defense mechanisms. To accomplish
this, immunotherapy is directed to improve virus-specific immu-
nity and eradicate the virus but also generate protective memory
responses to prevent re-infections. Moreover, immunotherapy
should overcome T-cell exhaustion and anergy, often observed
in patients with chronic infections (148).

Insights into the mechanisms underlying effective priming
of virus-specific CTL by human DC are instrumental for the
development of effective virus-specific immunotherapy. We iden-
tified cross-presentation as a crucial mechanism for the induc-
tion of virus-specific CTL and embrace the concept to utilize
the effective cross-presentation mechanisms naturally present in
DC for immunotherapy. In line with this concept, antibody-
mediated antigen targeting to endocytic receptors is an emerging
approach employed by numerous groups to target antigen to DC

for cross-presentation. Endocytic receptors that efficiently facili-
tate cross-presentation by human DC include FcγRIIA, CLEC9A,
DEC-205, and DCIR (81, 85, 94, 116, 149). An advantage of antigen
targeting to specific receptors is the possibility to select receptors
that are uniquely expressed by distinct subsets of DC (Table 1),
such as proposed for XCR1 (150) or CLEC9A (94). Selective target-
ing to DC prevents antigen consumption by irrelevant cells, which
may lead to reduced availability of antigen to DC and improper
T-cell activation.

As discussed previously, DC maturation is crucial for virus-
specific CTL induction. Although the endocytic receptors are
very potent in internalizing antigen, their role in promoting DC
maturation is less clear. Therefore, the combination of antigen
targeting with adjuvants is an important field of study. FcγR have
been shown to facilitate both efficient antigen uptake and DC
maturation, however, it was recently shown that FcγR-dependent
DC maturation in human DC is less strong than was previously
observed in mice DC (85, 151). Other interesting approaches that
combine antigen targeting to DC and DC maturation in one cargo
include TLR-ligand–peptide conjugates (152) and nanoparticles
that contain both antigen and adjuvant (116).

Since DC comprise a heterogeneous family of subsets that differ
in location, frequency, receptor expression, and functional special-
izations, it is important to design a therapeutic vaccine with the
desired DC subset in mind. Based on accumulated evidence from
in vitro studies on antigen presentation by human DC subsets, we
conclude that most human DC subsets have the basic capacity to
cross-present, as long as the antigen is efficiently targeted to an
endocytic compartment that favors cross-presentation. Neverthe-
less, DC subsets do have unique functional characteristics, such as
type of cytokine production, which can have high impact on the
type of immune response induced. Moreover, DC subsets express
different PRR (Table 1) and only adjuvants for a selected number
of TLRs are currently available at clinical grade.

In addition to antigen targeting to DC in vivo, recruiting of
DC precursors may represent an attractive immunotherapeutic
approach, as was recently proposed for monocytes, which can con-
tain a natural reservoir of HBsAg that can be presented in MHC
class I upon differentiation of these monocytes to moDC (153).

CONCLUDING REMARKS AND FUTURE PERSPECTIVES
Based on two decades of research into MHC class I-restricted pre-
sentation of viral antigen by human DC, we conclude that cross-
presentation of viral antigens is a highly efficient mechanism for
defense against viruses. Furthermore, cross-presentation of viral
antigens seems not only pivotal for defense against viruses that do
not infect DC, but also for those that infect DC, as demonstrated
by in vitro studies using replication-incompetent IAV, HIV-1, and
MV. Since these viruses represent a selection of all viruses that
can productively infect human DC, the contribution of direct pre-
sentation by human DC infected with other viruses cannot be
completely ruled out. Nevertheless, as discussed in this review,
cross-presentation has many conceptual advances compared to
direct presentation by infected DC.

So far, knowledge on the presentation of viral antigens by
human DC is mainly derived from in vitro studies. Whether these
studies faithfully represent the in vivo situation is of course difficult
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to predict. Several caveats from these in vitro studies include the
use of in vitro-generated DC, which may behave differently than
their in vivo counterparts, the use of laboratory adapted virus
strains, and pseudo-typed viruses, which may have tropisms that
may not represent the in vivo situation, and the use of recombinant
viral proteins and TLR ligands that are not fully representative
for antigens or danger signals that can be encountered in vivo.
Nevertheless, taking these limitations into account, together these
studies have given us an important understanding of the mech-
anisms underlying MHC class I presentation of viral antigens by
human DC. This knowledge is an important basis for the rational
design of therapeutic vaccines for chronic viral infections.

Interesting venues for further research include identification
of DC receptors involved in viral infection and initiation of
immune response, elucidation of the molecular signals underly-
ing sorting of viral antigen to endocytic compartments that favor
cross-presentation and the role of virus-derived danger signals and
virus-induced maturation stimuli in cross-presentation and CTL
priming.

A more detailed knowledge of these key factors in virus–host
interaction will further empower the design of novel therapeutics
for infectious diseases.
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