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This review discusses the mechanisms and consequences of degradation of tryptophan
(Trp) in the placenta, focusing mainly on the role of indoleamine 2,3-dioxygenase-1 (IDO1),
one of three enzymes catalyzing the first step of the kynurenine pathway of Trp degra-
dation. IDO1 has been implicated in regulation of feto-maternal tolerance in the mouse.
Local depletion of Trp and/or the presence of metabolites of the kynurenine pathway
mediate immunoregulation and exert antimicrobial functions. In addition to the decidual
glandular epithelium, IDO1 is localized in the vascular endothelium of the villous chorion
and also in the endothelium of spiral arteries of the decidua. Possible consequences of
IDO1-mediated catabolism of Trp in the endothelium encompass antimicrobial activity and
immunosuppression, as well as relaxation of the placental vasotonus, thereby contributing
to placental perfusion and growth of both placenta and fetus. It remains to be evaluated
whether other enzymes mediating Trp oxidation, such as indoleamine 2,3-dioxygenase-2,
Trp 2,3-dioxygenase, and Trp hydroxylase-1 are of relevance to the biology of the placenta.

Keywords: pregnancy, placenta, intrauterine growth restriction, fetal growth restriction, preeclampsia, vasotonus,
feto-maternal tolerance, immunoregulation

INTRODUCTION
l-Tryptophan (l-Trp) is a hydrophobic amino acid with a chemi-
cal structure based on an indole ring. l-Trp is the least abundant
essential amino acid, and therefore needs to be supplied by nutri-
ents such as meat, fish, milk, eggs, vegetables, nuts, and seeds such
as soybeans, sesame, and sunflower seeds. The daily requirement
of adults is in the range of 3 mg/kg (1). Apart from protein syn-
thesis, l-Trp is utilized for the synthesis of the neurotransmitter
serotonin and the hormone melatonin in the pineal gland. Degra-
dation of Trp in mammals occurs predominantly (>95%) along
the kynurenine pathway, leading to synthesis of nicotinamide
adenine dinucleotide (NAD+) (2) (Figure 1).

The first step in the oxidative metabolism of l-Trp along the
kynurenine pathway is catalyzed independently by three different
enzymes: indoleamine 2,3-dioxygenase-1 (IDO1), indoleamine
2,3-dioxygenase-2 (IDO2), and Trp 2,3-dioxygenase (TDO). By
incorporating molecular oxygen, these enzymes convert l-Trp to
N -formyl-kynurenine, which is then converted to kynurenine. l-
Trp degradation not only leads to depletion of the amino acid but
also to the production of metabolites displaying various biological
activities.

TRYPTOPHAN-DEGRADING ENZYMES
INDOLEAMINE 2,3-DIOXYGENASE-1
Indoleamine 2,3-dioxygenase-1 (IDO, indoleamine-pyrrole 2,3-
dioxygenase), reviewed in Ref. (3), is a cytosolic heme-containing
enzyme sharing some sequence similarity with myoglobin (4).
IDO1 has been conserved through 600 million years of evolution
(5). The protein is encoded by the IDO1 (also INDO) gene that
is located on chromosome 8, contains 10 exons, and a promoter
region that includes 2 interferon (IFN) – stimulated responsive
elements. Human IDO cDNA encodes a protein of 403 amino

acids with molecular weight of about 45 kDa (6, 7). The primary
sequence of human IDO1 shows 57 and 58% identity to mouse
and rat IDO1, respectively, whereas no sequence homology was
found to rat TDO (8). IDO1 requires activation by reduction
of its Fe3+-heme form. Early studies suggested that superoxide
anion is responsible for this reductive activation (9), although
more recent studies indicate formation of Fe2+-IDO1 is accom-
plished by cytochrome b5 plus cytochrome P450 reductase and
NADPH (10). Despite numerous studies, the mechanism by which
IDO1 oxidizes l-Trp to N -formyl-kynurenine remains controver-
sial, with both concerted incorporation of the two oxygen atoms
and consecutive insertions of single oxygen atoms into the sub-
strate being proposed (11). Fe2+-IDO1 rapidly autoxidizes to the
inactive Fe3+-IDO1 (12). In the presence of hydrogen peroxide
(H2O2), IDO1 takes on a peroxidase activity that can lead to the
oxidation of l-Trp to oxyindolylalanine, and protein oxidation
leading to IDO1 inactivation (13). IDO1 prefers l-Trp as a sub-
strate but may also cleave d-Trp and other indoleamines such
as tryptamine. In contrast to rabbit IDO, however, the human
enzyme does not act on serotonin (14). 1-Methyltryptophan (1-
MT) is a compound commonly used to inhibit IDO1 activity,
although it is now recognized that the enzyme is also capable of
metabolizing 1-MT. The l-isoform of 1-MT has been reported to
be a more efficient inhibitor of IDO1 than the d-isomer (15, 16).
Further IDO inhibitors are discussed in (17, 18). INCB024360 and
Amg-1 have been reported to block IDO1 selectively, with no effect
on IDO2 and TDO (19, 20).

In humans, high Trp-degrading activity has been described in
the lung, the intestine, and particularly in the term placenta, where
it was attributed to IDO1 (21). At that time, however, a possi-
ble contributory role of extrahepatic TDO and/or IDO2 was not
envisaged. IDO1 is also detected in the mammalian epididymis,
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Sedlmayr et al. Placental tryptophan catabolism

FIGURE 1 | Pathways ofTrp degradation.

where its absence generates an inflammatory state and correlates
with an increase in abnormal spermatozoa in IDO1 gene knockout
(IDO1−/−) mice (22). On a cellular basis, constitutive expression
of IDO1 has been found in subsets of dendritic cells (DC) (23),
including DC of tumor-draining lymph nodes (24). Moreover,
IDO1 has been reported in eosinophils (25), in glandular and sur-
face epithelium of the endometrium and Fallopian tubes (26),
and in placental endothelial cells (26–28). IDO1 is also present in
microvascular endothelial cells of tumors (29) (Blaschitz, unpub-
lished observations for hepatocellular carcinoma) and the heart in
human septic shock (30). Regulatory T cells have been reported
to induce the expression of IDO1 in vascular endothelial cells of
transplanted hearts in rats (31). Diverging inducibility of IDO1
has been reported for different types of normal endothelial cells,
as summarized in Table 1.

Indoleamine 2,3-dioxygenase-1 can be induced by IFN-γ acting
via Janus kinase (JAK)/signal transducer and activator of tran-
scription (STAT) signaling, type I interferons, prostaglandin E2,
lipopolysaccharide (LPS), DNA regions containing a high fre-
quency of cytosine nucleotides adjacent to guanine nucleotides
(CpG islands), and other factors in a variety of cell types such

as DC, macrophages, epithelial and endothelial cells, Langerhans
cells, astrocytes, and T lymphocytes. Also hormones such as estro-
gen (32) and human chorionic gonadotropin (hCG) (33–35)
induce IDO1 expression. Upregulation of IDO1 in DC by hCG is
independent of IFN-γ (34). The compounds which induce IDO1
expression in DC have been reviewed previously (36). In addition
to IDO1 induction, blockade of cyclooxygenase (COX)-2 has been
reported to downregulate IDO1 expression in tumors of animal
models, suggesting an interplay between these two enzymes (37).

INDOLEAMINE 2,3-DIOXYGENASE-2
Indoleamine 2,3-dioxygenase-2 (IDO-like protein, INDOL1,
proto-IDO) was described first in 2007 (38, 39) and has been
reviewed recently (40). IDO2 has a molecular weight of 47 kDa, is
composed of 420 amino acid residues, and displays 43% identity
with IDO1 at the amino acid level. The gene for IDO2 is located on
chromosome 8, adjacent to its paralog IDO1, and may have arisen
from gene duplication (41). Alternatively spliced transcripts have
been described (42), however, it is unclear whether they are all
translated into protein. Two genetic polymorphisms in the human
gene encoding IDO2 ablate its enzymatic activity, such that about

Frontiers in Immunology | Inflammation May 2014 | Volume 5 | Article 230 | 2

http://www.frontiersin.org/Inflammation
http://www.frontiersin.org/Inflammation/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sedlmayr et al. Placental tryptophan catabolism

Table 1 | Expression of IDO1 in various types of vascular endothelium.

Constitutive Following inflammation

in vivo

Following cytokine stimulation

(IFNγ and/orTNF-α or IL-1β)

Constitutively negative

expression following cytokine

stimulation not tested

No or little even

after stimulation

with IFNγ

Chorionic vascular

endothelium (26, 28,

59)

Mouse brain vascular

endothelium (63, 125)

HUVEC (28, 116) Iliac vein endothelial cells (28) HSVEC (IDO

upregulated after

mycoplasma

infection) (116)

Arteries and capillaries

of the decidua (26, 28)

Mouse microvascular

endothelium in kidney and

intestine during cerebral

malaria infection or after

administration of LPS (63)

HAEC (10, 28) RAEC (116)

Pulmonary capillaries

(Blaschitz, unpublished

observations),

expression enhanced in

hypoxia (62)

Human microvascular

endothelial cells in heart and

kidney in septic shock (30)

HBMEC (126) IMAEC (116)

Vascular endothelial cells following

incubation of porcine, rabbit, rat,

and mouse coronary, carotid, and

aortic arteries with IFN-γ (63)

HUVEC, human umbilical vein endothelial cells; HAEC, human aortic endothelium cells; HSVEC, human saphenous vein endothelial cells; RAEC, radial artery endothelial

cells; IMAEC, internal mammary artery endothelial cells; HBMEC, human brain microvascular endothelial cells.

50% of Caucasians and Asians and 25% of Africans lack functional
IDO2 alleles (42).

Expression of IDO2 mRNA has been described in kidney, liver,
epididymis, testis, uterus, placenta, and brain (15, 38, 43). IDO2
has also been found in sperm tails (38), pancreatic cancer cell lines
(44), and tumors of the stomach, colon, and kidney (45). Similar to
IDO1, IFN-γ upregulates IDO2 expression in DC (45), mesenchy-
mal stem cells, macrophages, and astrocytes (43), although IFN-γ
does not necessarily induce IDO1 and IDO2 simultaneously (19,
43). Preferential inhibition of IDO2 by a particular 1-MT enan-
tiomer is contentious. An early report of more efficient inhibition
by the d-isomer of 1-MT (42) has not been confirmed (16, 46) [for
discussion see (40)]. Tenatoprazole has been reported to inhibit
IDO2 without affecting IDO1 or TDO, although this compound
also displays other biological effects (47).

FURTHER Trp-DEGRADING ENZYMES
Like IDO1, TDO is a cytosolic heme dioxygenase. It is coded for
by the TDO2 gene and displays only 10% amino acid sequence
identity with IDO1 (48). The structure and function of TDO and
IDO1 have been compared previously (49). TDO is a homote-
tramer with a subunit molecular weight of 103 kDa. In contrast to
IDO1, TDO is enantiomer-specific and only cleaves the l-isoform
of Trp (48). Although thought initially to be expressed in the liver
only, TDO is also present in placenta (50), brain (51), and a vari-
ety of human carcinomas. In the mouse endometrium, TDO is
induced at the time of implantation (52). The expression of TDO
is upregulated by glucocorticoids (53, 54) and by l-Trp (55). 1-
MT does not inhibit TDO, while the compound 680C91 has been
reported to selectively block TDO but not IDO1 (56).

Tryptophan hydroxylases (Tph-1 and Tph-2) convert Trp to
5-hydroxytryptophan for subsequent synthesis of serotonin and
melatonin, rather than being involved in the kynurenine pathway.

Tph-1 and Tph-2 are homologous enzymes with 71% amino acid
sequence identity, and with their respective genes located on chro-
mosomes 11 and 12. Mast cells are the major source of Tph-1,
whereas Tph-2 is expressed predominantly in neuronal cells of the
brain stem (57).

PLACENTAL EXPRESSION AND LOCALIZATION OF
Trp-DEGRADING ENZYMES
There are several, albeit partly conflicting reports on the localiza-
tion of IDO1 in the human placenta.

IDO1 IN THE CHORIONIC VASCULAR ENDOTHELIUM
In early pregnancy, IDO1 expression is restricted exclusively
to immediately subtrophoblastic capillaries (Figure 2), and it
increases with advancing gestational age. In term placenta, the
endothelium of larger vessels in stem villi and some arteries
and veins of the chorionic plate stain positive for IDO1 protein,
whereas the vessels of the umbilical cord remain IDO1 negative
(28, 58, 59) (Figure 3). Similar results for chorionic vascular
endothelial expression of IDO1 have been described in rhesus
monkeys and common marmosets (60). This increase in protein
expression correlates with both the amount of mRNA in the pla-
centa and the increase in the placental kynurenine-to-Trp ratio,
a surrogate measure of IDO activity. In term placentas at deliv-
ery, the kynurenine-to-Trp ratio measured in the blood obtained
from vessels of the chorionic plate is far higher than that in the
peripheral blood of healthy blood donors (28). This suggests that
endothelial IDO1 within placental vessels is highly active beyond
the cessation of placental blood circulation at delivery. Consis-
tent with this, endothelial cells isolated from the chorionic plate
of term placenta express IDO1 mRNA, in contrast to endothe-
lial cells isolated from human umbilical vein, iliac vein, or aorta
(28). Moreover, expression of the aryl hydrocarbon receptor (AhR)
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AhR, a receptor for kynurenine, has been reported for syncytiotro-
phoblasts, the endothelium of large vessels in the chorionic villi,
and in the endothelium of umbilical cord arteries and veins (61).

IDO1 IN VASCULAR ENDOTHELIUM OF THE DECIDUA AND THE UTERUS
In endometrium of non-pregnant women, vascular endothelium
does not express IDO1 protein, whereas the protein is expressed
in HLA-DR-negative endothelium of spiral arteries and in cap-
illaries. In contrast, the HLA-DR-positive endothelium of veins
of the decidua is negative for IDO1 as assessed by immunohisto-
chemistry (Figure 2). During mid-gestation, endothelial expres-
sion IDO1 extends to the inner but not the outer layer of the
myometrium (26, 28). Thus, endothelial IDO1 is increasingly
expressed the tissue closer to the feto-maternal interface, sim-
ilar to the situation in the chorion. It is noticeable that con-
stitutive expression of IDO1 in vascular endothelium is limited
to the placenta, the uterus, and the lungs (28, 62) (Blaschitz,

FIGURE 2 | Schematic drawing of the localization of IDO1 in the
human placenta during first trimester pregnancy. The chorionic villus is
the structural element involved in feto-maternal exchanges. The stem villi
originate from the chorionic plate and ramify into villous branches. They
consist of a core of mesenchymal connective tissue containing vessels,
which are in contact with the fetal vasculature via the umbilical cord. The
chorionic villi are covered by a double layer of villous trophoblast (the upper
syncytiotrophoblast and the lower cytotrophoblast) separating the fetal
closed blood circulation from the intervillous space, which is filled with
maternal blood which is supplied via the uterine spiral arteries (a) and
discharged via the uterine veins (v). Some of the villi are anchored into the
maternal decidua basalis by roots built of extra-villous cytotrophoblast cells,
which also invade the maternal decidua. The IDO1 expression sites are
highlighted in red color and refer to the villous subtrophoblastic capillaries,
few immune cells of the decidua, and the epithelium of uterine glands.

unpublished observations). In contrast, IDO1 appears to be
more generally expressed in the endothelium under conditions
of systemic inflammation (63).

IDO1 IN EPITHELIUM OF THE ENDOMETRIUM AND THE DECIDUA
Expression of IDO1 increases over the course of the menstrual
cycle in the surface and glandular epithelium of the endometrium,
just as the protein is expressed in cervical glands and epithelium of
Fallopian tubes in non-pregnant women. Cervical mucus displays
some Trp-degrading activity (26). In first trimester decidua, IDO1
is present in glandular epithelial cells (26, 59).

IDO1 IN THE TROPHOBLAST
There is discrepancy among publications as to whether IDO1 is
expressed in trophoblast cells. Earlier publications reported IDO1
to be present in first trimester (59) and/or term placenta syncy-
tiotrophoblast (26, 58, 64) and in extra-villous cytotrophoblast
cells (58, 64). Hönig et al. described IDO1 in the invasive extra-
villous trophoblast in the decidua basalis and trophoblast giant
cells (58). These observations were challenged in a subsequent
publication that also discussed possible reasons for the appar-
ent discrepancies (28). In keeping with this, Wang et al. (65)
reported that isolated first trimester trophoblast cells do not
constitutively express IDO1 mRNA and protein. However, treat-
ment with polyinosinic–polycytidylic acid [poly(I:C)] (a synthetic

FIGURE 3 | Schematic drawing of the term placenta with the basal
plate after delivery. The structures of placental architecture are described
in the legend to Figure 1. Here, the branching of the villous tree has
increased, the villous trophoblast is largely reduced to the
syncytiotrophoblast. IDO1 protein is indicated by red color broken red lines
indicate partial expression. All endothelia of the vessels of the villous
chorion express IDO1, while only part of the vessels of the chorionic plate
and none of the umbilical cord vessels are positive. Openings of maternal
arteries (a) express IDO1 whereas veins do not.
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double-stranded RNA, which mimics viral RNA and is a lig-
and of the Toll-like receptor-3) induced IDO1 mRNA and Trp-
degrading activity in the trophoblasts (65). Conditioned media
from poly(I:C)-treated trophoblast cells suppresses T cell DNA
synthesis, and IFN-β was identified as the mediator of this effect
via the induction of IDO1 (65). In human placental explants, IDO1
mRNA was found after 24 h of culture, the expression increased
following LPS stimulation (66).

Recently, expression of IDO1 mRNA was described in cul-
tured third trimester human placental cytotrophoblast cells, with
higher expression in male than in female CT cells (67). However,
these cytotrophoblast preparations also contained CD34 mRNA
(Cvitic and Desoye, personal communication), so that contami-
nation with endothelial cells cannot be excluded. Contaminating
endothelial cells may also explain similar findings reported earlier
by Dong et al. (68). In mice, placental IDO1 expression was found
to be limited to trophoblast giant cells (69).

IDO1 IN OTHER PLACENTAL CELL TYPES
Indoleamine 2,3-dioxygenase-1 expression has been reported in
macrophages of the villous stroma (59, 64). However, this finding
was contested subsequently by the observation that IDO1-positive
chorionic cells consistently co-expressed CD34 (28), suggesting
that in the villous stroma IDO1 is restricted to endothelial cells.
IDO1 protein is absent from the majority of macrophages and
DC in the decidua (70, 71). However, IDO1 can be induced in
these cells by treatment with CTLA-4 or IFN-γ (71). Decidual
macrophages sorted for CD14+ have been reported to express
IDO1 mRNA (72), although the purity of these cells was only
72–90%, so that it cannot be ruled out that contaminating cells
rather than macrophages were responsible for the observed pres-
ence of IDO1 mRNA. Jones et al. implied the presence of IDO1 in
mesenchymal stem cells grown from placentae, based on the obser-
vation that these cells suppressed allogeneic T cell proliferation in
a manner partly dependent on IDO1 (73). Unpublished data show
expression of IDO1 protein in stromal cells of the placental bed
post partum (Astrid Blaschitz).

TDO AND IDO2
Limited information is available regarding the localization and
role of TDO in the placenta. TDO mRNA and protein has been
observed in mouse concept and placenta at a time preceding
IDO1 expression (50). Dharane et al. reported TDO mRNA to
be present in human placental explants (prepared following cae-
sarian section) after 24 h of culture, and its expression increased
following ex vivo exposure to LPS (66).

Indoleamine 2,3-dioxygenase-2 mRNA has been detected in
term and, to a much lower extent, also in first trimester placentae
(74). Isolated first trimester and term trophoblast cells as well as
the BeWo choriocarcinoma cell line do not express IDO2 mRNA
(74). Preliminary observations suggest, however, that both IDO2
and TDO protein are expressed in the human placenta (Astrid
Blaschitz, unpublished data).

FURTHER ENZYMES INVOLVED IN Trp DEGRADATION
Kynurenine 3-hydroxylase (KYN-OHase) catalyzes the oxidation
of kynurenine to 3-hydroxykynurenine. KYN-OHase has been

localized to glandular epithelial cells of first trimester decidua,
as well as the syncytiotrophoblast, stroma, and macrophages of
first trimester placenta. In term placenta, KYN-OHase expression
was confined mainly to vascular endothelial cells of villous blood
vessels, and to macrophages within the fetal villus (59). We are
aware of only a single report of Tph (is it Tph-1?) in the cytoplasm
of human cytotrophoblasts and syncytiotrophoblasts (75).

ROLE OF Trp DEGRADATION
GENERAL ASPECTS
It has been known for decades that IDO1 is induced during infec-
tions and displays antimicrobial activity. Originally, induction
of IDO has been observed in the lung following application of
bacterial LPS (76) and infection with influenza virus (77). Such
infection-associated induction of IDO1 was soon found to be
mediated by IFN-γ (78). In a variety of different human cell lines,
induction of IDO1 by IFN-γ is associated with growth inhibition
of intracellular bacteria (such as Chlamydia psittaci) and protozoa
(Toxoplasma gondii), as well an extracellular bacteria (14, 79, 80).
In many though not all situations, addition of exogenous l-Trp
attenuates growth inhibition, consistent with the notion that limi-
tation of this essential amino acid by IDO1 at least in part explains
the antimicrobial activity observed. The antimicrobial activity of
IDO1 in human endothelial cells has been reviewed recently (81).

Oxidative degradation of Trp leads to both, a local depletion of
Trp and formation of Trp metabolites. Both aspects are biologically
relevant and have recently been reviewed (82), see also Table 2.
For example, the Trp metabolites kynurenine (83) and kynurenic
acid (84) are ligands of the AhR. Following ligand binding, this
cytosolic transcription factor translocates into the nucleus where
it binds to response elements in the promoters of target genes (85).
In this way, kynurenine displays immunosuppressive properties by
generating regulatory T (Treg) cells (86). The immunogenicity of
DC is decreased, as AhR signaling induces DC to express IDO1
and IL10 (86–89). 3-Hydroxyanthranilic acid (3-HAA) as well
as the other kynurenine metabolites anthranilic acid, quinolinic
acid, and nicotinamide do not directly activate the AhR. Hydrox-
ykynurenine does display an effect which, however, is weaker than
kynurenine (86). On the other hand, 3-HAA has been suggested
to prime DC for expressing reduced levels of pro-inflammatory
cytokines, enhanced levels of TGF-β, and inducing Treg cells (90,
91). The depletion of Trp also triggers amino-acid-sensing signal
transduction pathways, such as the GCN2 kinase and inhibition
of mTOR (92). The former pathway leads to cell-cycle arrest and
functional anergy in CD8+ T cells (93). Lymphocytes are specifi-
cally affected by Trp depletion. This is because in these cells, IFN-γ
does not induce tryptophanyl-tRNA synthetase so that lympho-
cytes are inefficient in competing for Trp compared with other cells
(94, 95). In T helper cells, Trp depletion inhibits differentiation to
Th17 cells (96) and it promotes de novo Treg differentiation (97).
IFN-γ is the main inducer of IDO in DC for the prevention of
hyperinflammatory responses, whereas TGF-β confers regulatory
effects on IDO independent of its enzymatic activity. In this case,
IDO1 appears to act as a signaling molecule, by promoting com-
plex formation of IDO1 with the tyrosine protein phosphatases
SHP-1 and SHP-2. This leads to long-term tolerance via activation
of SHP-1 phosphatase activity in plasmacytoid DC (98). Moreover,
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Table 2 | Pathways of immunomodulation by IDO1 and kynurenine pathway metabolites.

Pathway Functional consequence Reference

IDO1 acting as a signaling molecule by complex formation

with SHP-1 and SHP-2

Long-term tolerance in plasmacytoid DC (98)

Depletion of Trp, activation of GCN2 kinase, and inhibition of

mTOR in IDO-expressing cells

Cell-cycle arrest and functional anergy in CD8+ T cells (92, 93)

Binding of kynurenine to AhR in DC and T cells Decrease in immunogenicity of DC, and generation of Treg cells (86, 89)

3-HAA acting on DC (possibly via blocking the JNK and p38

MAPK pathways)

Decrease in expression of pro-inflammatory cytokines,

increase in expression of TGF-β, and induction of Treg cells

(90, 91)

IDO1 plays an important role in the self-limitation of the immune
response. Thus, short-term (4 h) activation of DC with IFN-γ
and LPS leads to the induction of pro-inflammatory cytokines,
while long-term (48 h) activation favors immunosuppression and
tolerance via IDO1 signals (36, 82).

As stated above, on one hand IDO1 generates metabolic prod-
ucts that induce Treg cells, on the other hand Treg cells can induce
IDO1 expression (31). This suggests the presence of a positive feed-
back loop and raises the question of the limitation of this mutual
interaction.

Indoleamine 2,3-dioxygenase-1-based suppression of immune
reactions against foreign MHC-I molecules and minor histocom-
patibility antigens mediates feto-maternal tolerance (99, 100) also
via induction of Treg cells, which play a critical role in suppress-
ing the anti-fetal immune response (101). The role for this in
pregnancy has been questioned based on the fact that matings of
allogeneic male and female IDO1−/− mice yield viable offsprings
(69). However, IDO2 and/or TDO may compensate for IDO1 and
promote Trp metabolism in these mice, particularly as it is increas-
ingly recognized that TDO expression is not limited to the liver.
Rather, the enzyme is also present in mouse placenta (50).

Indoleamine 2,3-dioxygenase-1 mediates tolerance against
tumors (102), and IDO inhibitors are being tested in clinical trials
with patients suffering from cancer and chronic infections (103).
Whereas IDO1 has been found in DC of tumor-draining lymph
nodes (24), IDO1 could not be detected in regional lymph nodes
of uteri of pregnant mice (P. Ack, Astrid Blaschitz, unpublished
observations).

Trp metabolites also display non-immunological functions:
for example, quinolinic acid and kynurenic acid have neu-
roactive properties (104–106), and 3-hydroxykynurenine and
3-hydroxyanthranilic acid display antioxidant activity (107).
IDO1-mediated degradation of Trp in the endothelium of mice
infected with malaria parasites or induced by endotoxemia con-
tributes to the relaxation of arteries and to the control of
blood pressure (63). Originally, kynurenine was reported to
mediate arterial relaxation under these pro-inflammatory con-
ditions, in part via activation of soluble guanylate cyclase.
These findings were based on studies with commercial prepa-
rations of kynurenine (63). However, more recently, HPLC-
purified kynurenine was found to be inactive, and IDO1-mediated
vasorelaxation has been attributed to a yet to be identified
Trp metabolite (Proceedings of the British Pharmacological

Society at http://www.pa2online.org/abstract/abstract.jsp?abid\
protect\kern+.1667em\relax=\protect\kern+.1667em\relax31322).
Most recently, IDO1 has been reported to mediate angiotensin
II-induced production of reactive oxygen species, apoptosis, and
endothelial dysfunction (108).

The biological role of IDO2 is as yet unclear. Its Trp-degrading
activity is much lower or even undetectable (15) compared with
IDO1 (41), at least in the in vitro ascorbate/methylene blue assay
commonly used (14). However, the probable physiological elec-
tron donor cytochrome b5 reduces recombinant mouse IDO2 and
it increases its activity in vitro compared with that observed in the
ascorbate/methylene blue assay (16). Human IDO2 expression is
not able to rescue a yeast strain auxotrophic for nicotinic acid,
suggesting it does not have sufficient activity to supply NAD+ in
yeast (109). On the other hand, chemokine-induced production
of kynurenine in human basal carcinoma cells correlated with the
induction of mRNA expression of IDO2, but not IDO1 (110). It
has been suggested that IDO2 activity is determined by the pres-
ence of particular co-factors that may be present only in certain
cell types or conditions (40).

The high expression of TDO in the liver (111) makes it the key
enzyme regulating circulating concentrations of l-Trp, and it is
believed to have a major role in supplying NAD+ (112). TDO−/−

mice display increased plasma concentrations of Trp, leading to
increased serotonin biosynthesis and alterations in behavior and
neurogenesis (113). In analogy to IDO1, TDO activity also has
been implicated in the inhibition of immune responses against
tumors (56).

Hydroxylation by Tph-1 may also contribute to the exhaustion
of Trp in a microenvironment, and it too has immunoregulatory
effects. Tph-1 deficiency breaks allograft tolerance, induces tumor
remission, and intensifies neuroinflammation. These effects are
independent of the downstream product serotonin (114).

FUNCTIONAL ASPECTS OF PLACENTAL Trp CATABOLISM
Localization of IDO1 in the utero-placental unit leaves us to spec-
ulate about its role at this site in particular: IDO1 in the epithelium
of the mucosal surface and the glands of the endometrium and the
decidua, and secretion of IDO [reflected in Trp-degrading activity
in the cervical mucus (26)) may provide a mechanism of innate
immunity against ascending infections of the female reproductive
tract with intracellular bacteria such as Chlamydia but also against
extracellular pathogens.
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Endothelial cells may act as semi-professional antigen-
presenting cells (115) and, as they degrade Trp, may contribute to
the suppression of the immune response (31). Inhibition of IDO
activity improves the ability of human umbilical vein endothe-
lial cells to stimulate allogeneic T-cell responses. Transfection of
these cells or human saphenous vein endothelial cells with the
IDO1 gene, stimulates allogeneic T-cell responses and induces
anergy in allospecific T cells (116). IDO1-positive endothelial
cells of both the fetal and the maternal part of the placenta
do not coexpress HLA-DR, which renders their contribution to
the establishment and maintenance of feto-maternal tolerance
unlikely. In situations where pro-inflammatory stimuli act on and
induce MHC-II expression in placental endothelial cells, the ensu-
ing immune response may, however, be modulated by endothelial
IDO1. An antibacterial and antiparasitic role of endothelial IDO1
may be anticipated, and this might contribute to protection of the
feto-placental unit against infection (81).

Endothelial catabolism of Trp by IDO1 in the villous chorion
may also contribute to the regulation of the placental vasotonus.
Preliminary data suggest that preconstriced human placental arte-
rial rings relax in response to added Trp, and that this relaxation is
partly inhibited by 1-MT (Roland Stocker, Peter Sedlmayr, unpub-
lished observations). As the maintenance of placental perfusion is
of crucial importance to the fetus, IDO1-induced relaxation of
placental vessels may play an important role for feto-placental
growth in the course of pregnancy. Moreover, on the other side
of the interface, expression of IDO1 in the endothelium of spiral
arteries may induce vasodilation and contribute to feeding blood
into the intervillous space. This suggested role of IDO1 at this loca-
tion might be a phenomenon particularly relevant after the first
trimester of pregnancy, once the endovascular trophoblast plugs
have vanished.

ALTERED Trp DEGRADATION IN PREGNANCY PATHOLOGY
There are reports of reduced placental IDO1 mRNA, protein, and
placental Trp-degrading activity in preeclampsia, including a cor-
relation between reduced placental Trp-degrading activity and the
severity of the disease (27, 117–119). Not all studies, however,
take into account that the gestational age of preeclamptic placen-
tae needs to be matched to control placentae, as placental IDO1
expression normally increases with gestational age. Whereas the
kynurenine-to-Trp ratio in plasma increases during normal preg-
nancy, in preeclampsia it remains unchanged and similar to that
in non-pregnant women (117, 120).

In a model of pregnant mice carrying hemiallogeneic con-
cept, pharmacological inhibition of IDO1 was reported to result
in the mothers developing high blood pressure, proteinuria, and
impairment of the local placental circulation, analogous to the
lesions characteristic of human preeclampsia (121). In this model,
8-hydroxy-2′-deoxy-guanosine (8-OHdG, a marker for oxidative
damage to DNA) was found to be higher in preeclamptic than
normotensive pregnancies. Moreover, immunohistochemical sig-
nals of 8-OHdG inversely correlated with Trp-degrading activity,
suggesting that a decrease in the antioxidant activity of IDO1
contributed to the pathogenesis of this disorder (122).

So far, little is known regarding the role of IDO1 in the context
of intrauterine growth restriction (IUGR, synonymous with fetal

growth restriction). There is one (however not in-depth) report
stating that placentae in this disease show decreased IDO activity
(123). Current interest focuses on a possible pathogenetic role
of endothelial IDO1: in IUGR with and without preeclampsia
chorionic vessels show reduced expression of IDO1, as assessed
by immunohistochemistry, and a decrease in the relaxation of pla-
cental arteries induced ex vivo by added Trp (Roland Stocker and
co-workers, unpublished).

Indoleamine 2,3-dioxygenase-1 expression in monocytes,
macrophages, and DC of the decidua and of peripheral blood
increases in normal pregnancy after treatment with CTLA-4 or
IFN-γ whereas it decreases in spontaneous abortion (71). In
allogeneic pregnancies in mice, application of 1-MT leads to T
cell-mediated hemorrhagic necrosis and rejection of the concep-
tus soon after implantation (99, 100). This situation is similar to
that of in vivo administration of an antibody against the T cell
receptor β chain (124), and may be analogous to early pregnancy
loss in humans, also called “chemical pregnancies.”

CONCLUSION
Trp-degrading enzymes in the placenta lead to a deprivation of
tryptophan and the formation of biologically active tryptophan
metabolites at and near the sites of catabolism. The combi-
nation of these two processes has important consequences for
the establishment and maintenance of feto-maternal immune
tolerance. In addition, it may affect placental circulation and
growth, as well as modulate local antimicrobial activity, the precise
underlying mechanisms of which await elucidation. In particu-
lar, at present we lack detailed information on the expression,
localization, and specific roles of IDO2 and TDO in the pla-
centa. The occurrence of allogeneic pregnancies in IDO1−/−

mice suggests redundancy for the role of IDO1 in protect-
ing against alloreactive maternal T cells, the mechanism of
which needs to be uncovered. This might be done, e.g., by
using various combinations of IDO1, IDO2, and TDO dou-
ble gene knockout mice, perhaps in combination with pharma-
cological inhibition of the third Trp-oxidizing enzyme where
appropriate.
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