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Visceral leishmaniasis is a neglected infectious disease caused primarily by Leishmania
donovani and Leishmania infantum protozoan parasites. A significant number of infections
take a fatal course. Drug therapy is available but still costly and parasites resistant to first
line drugs are observed. Despite many years of trial no commercial vaccine is available to
date. However, development of a cost effective, needle-independent vaccine remains a
high priority. Reverse vaccinology has attracted much attention since the term has been
coined and the approach tested by Rappuoli and colleagues. This in silico selection of anti-
gens from genomic and proteomic data sets was also adapted to aim at developing an
anti-Leishmania vaccine. Here, an analysis of the efforts is attempted and the challenges
to be overcome by these endeavors are discussed. Strategies that led to successful identi-
fication of antigens will be illustrated. Furthermore, these efforts are viewed in the context
of anticipated modes of action of effective anti-Leishmania immune responses to highlight
possible advantages and shortcomings.
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INTRODUCTION
A cure or effective prophylaxis for visceral leishmaniasis (VL)
also known as Kala azar is a prioritized objective in global efforts
directed toward improving the situation for people at risk of and
patients suffering from Leishmania-infections (1, 2). The problem
of VL is grave as it is thought to be second only to malaria in terms
of fatal infections (3). Therapy is one option to help the individual
patient but on its own is unlikely to offer a lasting solution to man-
age the public health problem because of emerging resistance to
available drugs (4). Vaccines are therefore considered a desirable,
cost effective strategy complement (5).

There is encouraging evidence that vaccination against VL
should be possible. Immunity is thought to depend on a protective
cellular immune response requiring CD4 as well as CD8 T cells that
activate leishmanicidal mechanisms in host phagocytes (6, 7) since
their suppression correlates with disease (8, 9). Epidemiological
data suggest that the majority of infections are in fact controlled
and do not lead to disease. For example, the KalaNet study reported
an estimate of only 1 in 10 infections leading to disease in India and
Nepal where more than 50% of globally recorded fatal VL cases
occur (10, 11). In addition, there is the paradigmatic example of
lifelong protection against cutaneous leishmaniasis through the
century old practice of Leishmanization. This deliberate infection
of a non-immune person with virulent parasites (12) has been
implemented in the immunization programs of soldiers of several
armies in the Middle East but has been discontinued because of
the risk of uncontrolled disease in a fraction of vaccines (13) and
problems with vaccine strain stability (14). The protective effi-
cacy against subsequent infection afforded by a healed primary
infection due to Leishmanization in the majority of cases fostered

the development of attenuated live parasites (15–18) or parasites
not pathogenic to humans (19) as vaccines also against VL. This
approach works remarkably well in rodent models of disease and
may be a very promising approach to control VL where this is
fueled by a zoonotic cycle.

For human use, subunit vaccines based on selected parasite
antigens, however, would offer a more defined and more stable
alternative (20). But, major obstacles to their successful develop-
ment exist and these are on the one hand the identification of the
most effective antigens and on the other hand their formulation.
Formulation relates to selecting adjuvants and/or delivery systems
such as recombinant viruses (2, 21, 22) or bacteria (23, 24) and
exploitation or engineering of immune-modulating agents and
properties to induce protective antigen-specific CD4 and CD8
T cells. Although our understanding of what makes a protec-
tive response in humans remains sketchy (8, 9, 25), there is no
reason to object to the idea that this can be achieved through
vaccine formulation if selected Leishmania-antigens were fit for
purpose.

In the post-genomic era, the approach to antigen selection and
vaccine development has been revolutionized. The term reverse
vaccinology has been coined by Rappuoli and colleagues (26) at
the turn of the millennium to designate the process. The idea is
simple and is about exploiting genomic and other -omics data sets
to filter out relevant gene products in silico. Selection proceeds
through an algorithm that is developed “backwards” starting from
a known or anticipated mode of action of the vaccine. This has
been impressively successful for the development of novel anti-
Meningococcal Serotype B vaccines because (a) the mode of action
was known and allowed to develop a straight forward in vitro
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screening assay based on lysis-mediating antibodies and (b) this
assay was scalable and had high throughput capacity (26, 27). The
Reverse Vaccinology approach has also been adapted to identify
potential vaccine protein antigens against leishmaniasis and the
combined search terms “reverse vaccinology” and “leishmania”
retrieve five publications from PubMed as of March 10th 2014
(24, 28–32). Reverse Vaccinology when adapted to VL will aim at
identifying vaccine antigens that induce protective CD4 and CD8
T cells (24, 28, 30).

In the following, I will try to critically assess the adaptation of
the Reverse Vaccinology approach to the development of an anti-
VL vaccine. However, before doing so, I will summarize in a bullet
point way features of the cell biology of Leishmania-infection and
of MHC class I and II dependent antigen-presentation in the con-
text of this infection. The aim is to distil scenarios that allow
identification of process-relevant steps through which reverse vac-
cinology may be improved. The reader will quickly note that
this comes at a price. This is the deliberate simplification of our
understanding of the parasite’s intracellular life style.

BULLET POINT STYLE SUMMARY OF THE CELL BIOLOGY OF
LEISHMANIA SPP. INFECTIONS
• Disease-causing Leishmania replicate in the form of amastig-

otes in a membrane-delimited intracellular habitat of host
phagocytes (33).

• The habitat has the characteristics of a late endosome/early lyso-
some, i.e., a relatively low pH with numerous proteases such as
cathepsins and other hydrolases present (34, 35).

• The parasites’ habitat is in communication with the host cell’s
endocytic compartments via fusion and fission of vesicles
(36, 37).

• Parasite protein secretion can occur via the classical, signal
peptide-dependent pathways or, as recently favored, via the
release of exosomes (38, 39).

BULLET POINT STYLE SUMMARY OF
ANTIGEN-PRESENTATION BY LEISHMANIA-INFECTED HOST
CELLS
• Parasite proteins are processed for presentation by proteolysis

inside vesicles and it is within a vesicular compartment that pep-
tides form complexes with MHC class I and II histocompatibility
antigens (37, 40).

• The so-called cross-presentation, i.e., formation of parasite pep-
tide – MHC class I complexes does not involve proteasomal
cleavage (41).

• Proteins secreted via the classical route or located on the surface
of the parasite are more efficiently presented to stimulate CD4
and CD8 T cells (40, 42, 43).

• The major antigen-presenting cells initiating the immune
response are dendritic cells (44, 45) while infected macrophages
are likely the most frequent antigen-presenting cell during
infection (46, 47).

• Macrophages need to be activated, e.g., through cytokines such
as IFN-γ to express MHC class II molecules, a prerequisite to
present antigens to CD4 T cells (48, 49).

• Only a minority of infected macrophages seems to interact with
Leishmania-specific T cells in vivo (46).

BULLET POINT STYLE SUMMARY OF PROCESSES AND
MOLECULE NUMBERS RELEVANT FOR
ANTIGEN-PRESENTATION
• Mature dendritic cells express up to 106–107 MHC Class II and

105 MHC I molecules per cell (50, 51).
• Mature dendritic cell “fix” a surface MHC class II-peptide

complex repertoire to present an immunological snap shot to
interacting T cells (52).

• Activated macrophages express 105–106 MHC Class II and 105

MHC I molecules per cell and these are undergoing turn over
and recycling (53).

• Immature dendritic cells and Macrophages constantly cycle
MHC–peptide complexes from cell surface through endocytic
peptide loading enabling compartments back to the surface
allowing peptide sampling over time (54).

• Cells display two populations of MHC–peptide complexes, one
with a fast off rate of the peptide ligand and one with slow off-
rates, a property that in combination with dynamic sampling is
a mechanism to enrich for the thermodynamically most stable
MHC–peptide complexes for presentation (55).

• Estimates of the number of cognate MHC–peptide complexes
required for successful T cell stimulations vary from a single
complex (56) to several hundred (57) and a number in the order
of 102 is a reasonable estimate (58).

• Amastigotes yield ~2–4× 10−12 g of protein per cell that corre-
sponds to 3–5× 107 protein molecules per parasite assuming an
average size of ~50 kDa per molecule (40, 59).

• Leishmania genomes encode some 8200 distinct proteins (60),
which are predicted to encode nearly 3× 105 MHC class I epi-
topes with binding capacity for MHC even when only a single
MHC class I allele is considered (30).

• The average number of predicted epitopes per protein is thus
>36 hence >109 epitope molecules are likely to be generated
from a single parasite if all proteins were processed.

• Parasite proteins may become accessible for the presenta-
tion machinery either through parasite lysis, directed release
(through exosomes or via classical secretion) or surface exposure
and hydrolytic release.

ALGORITHMS OF REVERSE VACCINOLOGY TO IDENTIFY
CANDIDATE PROTEINS FOR ANTI-LEISHMANIA VACCINE
DEVELOPMENT
The most puristic Reverse Vaccinology algorithms to identify
candidate vaccine antigens adapted for leishmaniasis proceeded
stepwise from genome to T cell epitope prediction (28, 30). For
example, Herrera-Najera et al. (30) based their algorithm on the
condition that a vaccine protects through induction of CD8 T cells
recognizing a parasite protein-derived epitope in the context of
MHC class I molecules. In a first step, they analyzed the complete
genome for encoding peptides predicted to have MHC–ligand
properties (for selected mouse H-2 class I alleles) using a slid-
ing window of 8–11mer amino acids over the entire open reading
frames and adapting a filter to account for proteasome-processing
preferences implemented in the RankPep software. This identified
~3× 105 candidate epitopes. To reduce this number, a stringent
but arbitrary threshold of the binding score to MHC was intro-
duced resulting in 250 candidate peptides. In step 2 of the process,
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these candidates were further analyzed using different T cell epi-
tope prediction algorithms. A set of 78 epitopes was predicted by
all or nearly all software. In step 3, the 78 epitopes were compared
to the predicted proteomes of putative hosts based on mouse and
human genome data, the rationale being to reduce the risk of
inducing autoimmune reactions. In this step, it was considered
satisfactory that none of the selected peptide-epitopes had >80%
identity with a host protein. However, there were peptides with
lower identity, i.e., with up to 9 of 11 amino acids identical. Step
4 checked for conservation of the candidate protein containing
the epitope(s) in different Leishmania spp. and other kinetoplas-
tids. The authors noted that their algorithm did not identify any
of the known, experimentally validated candidates. These failed
the arbitrarily set stringent threshold for the MHC-binding score
in step 1.

An alternative algorithm based on the same idea of vaccine
mode of action was developed by John et al. (28). In this case,
additional characteristics of a vaccine antigen were assumed and
used for filtering. In step 1, subcellular localization was analyzed
using PSORT and TMHMM software, respectively, and used to
enrich for 903 proteins with predictions for plasma membrane
localization or secretion and with counter-selection of proteins
with more than one predicted transmembrane domain. This list
was purged in step 2 of proteins showing homology to murine or
human host proteins leaving 553 candidates in the basket. Selec-
tion step 3 analyzed the presence of MHC class I binding and step 4
of MHC class II binding peptides using several programs. Unfor-
tunately, the adopted thresholds that reduced the number to 19
candidates were not described. This final set was tested again for
similarity to host self-epitopes but this did not reduce the number
further. As before, no experimentally identified protein antigen
has passed this selection process.

While both of these approaches identified potentially immuno-
genic epitopes [in fact immunogenicity was demonstrated in the
case of Ref. (30)], the fact that these algorithms did not identify
any of the experimentally tested vaccine proteins/epitopes (which
is not the same as the ideal vaccine antigen) is worrisome. What is
missing?

REFLECTIONS ON IMPROVING REVERSE VACCINOLOGY
APPROACHES FOR THE PREDICTION OF CANDIDATE
ANTIGENS FOR A VACCINE AGAINST LEISHMANIASIS
The working hypothesis that the success of a vaccine to prevent or
treat VL in humans will rely on the induction of CD4 and CD8 T
cells is valid. However, individual steps in the algorithms aiming
at antigen identification need to be scrutinized on the one hand
for the validity of underlying concepts and logic and on the other
hand for their effectiveness as selecting filters. Since the above-
mentioned studies offer recent examples, I shall follow steps as
proposed in their algorithms for illustration.

Herrera-Najera et al. (30) started with predicting MHC-
binding peptides considering the proteasomal pathway of peptide
generation. While there is evidence against involvement of the pro-
teasome for cross-presentation of parasite-delivered antigens (41),
there is currently no evidence in support of it. Thus, this filter may
neither be necessary nor instructive. MHC-binding peptide pre-
diction highlighted nearly 3× 105 candidates. Thus, every ORF is

likely to encode more than one candidate hence the filter lacks effi-
ciency. An arbitrary threshold as introduced can seemingly provide
filtering capacity but will quickly become too stringent since in the
said example it excluded all experimentally identified candidates.
The next step involved selection based on T cell epitope predict-
ing algorithms. This filtering is highly error prone and probably
superfluous as the T cell receptor is an explorative, adaptive mol-
ecule that can recognize epitope variants (61). Because of this, the
advantage of implementing this step can be questioned. In addi-
tion, there is little evidence from many other areas of its predicting
power.

Both in silico Reverse Vaccinology algorithms discussed added
then an additional step of counter-selection at the epitope stage by
testing for molecular mimicry of proteins of putative host species.
In theory, this is totally reasonable. In practice, this is either insensi-
tive [see Ref. (30)] or seems impossible since cognate interaction of
MHC–peptide complexes with TCRs is not as specific as previously
thought and,where analyzed, the sequence space allowing mimicry
is extensive (62). The intricacies of this have been reviewed recently
in the context of cancer-cell specific epitopes and provide instruc-
tive insight (63). In conclusion, T cell epitope prediction may have
no and selection against host proteins very limited practical value.

Does this mean that genome and other genomics informa-
tion offers no opportunities of adapting the Reverse Vaccinology
approach to our field? This view may be too pessimistic. The algo-
rithm proposed by John et al. (28) enriched for proteins predicted
to be secreted or surface localized. Reasons for this are that these
two topologies will facilitate access for the MHC processing and
loading machineries from living,actively replicating parasites. This
assumption is founded on experimental evidence since phagocytes
infected with parasites genetically engineered to secrete or surface
expose trackable antigens were more readily presenting the anti-
gens (40, 42). However, evidence that this situation is the prevailing
or most relevant mode of antigen-delivery for presentation in vivo
is still scarce. In fact recent data from in vivo tracing approaches
suggest that control of infection and healing involves engagement
of only a minority of infected or parasite-exposed cells with pro-
tective T cells (47, 64). Also, there is evidence that major normally
secreted antigens are relatively resistant to proteolytic processing,
as shown for the highly abundant secreted proteophosphogly-
cans of Leishmania mexicana (65). This is probably no surprise
since parasite products secreted into the phagolysosomal compart-
ment should have evolved this property to preserve their function.
Nonetheless, under the assumption that a productively infected
cell is the most relevant antigen-presenting cell in these infec-
tions, filtering candidate antigens for secreted or surface exposed
localization remains reasonable.

Alternative scenarios of antigen-presentation that should be
considered are host cells that become activated under pro-
inflammatory conditions to kill the parasites or cells in which
a fraction of parasites may undergo spontaneous lysis, e.g., due to
faulty replication. In these cases, the entire set of parasite proteins
will ultimately become available for processing and presentation.
Of note, from the point of view, which set of proteins will be
presented these modes are also akin to a scenario where antigens
reach the processing machinery via the recently proposed secre-
tion pathway involving exosome release by live parasite. Antigens
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accessible to the processing machinery in these situations are sim-
ilar because the proteome of exosomes largely overlaps that of
the abundant protein set present in whole parasite lysates [e.g.,
compare data from Ref. (39, 66)].

In all these situations, I would argue that relative protein abun-
dance is the single most important parameter for candidate antigen
selection and is of a high practical value. The algorithms discussed
so far did not take relative protein abundance into account. Instead
they assumed equivalence of all predicted proteins with respect to
their chance to being successfully processed and loaded onto MHC
molecules. Not having considered abundance may be an addi-
tional reason why none of the experimentally identified candidate
antigens were within the set identified by purely bioinformat-
ics approaches. Fortunately proteome data sets reporting about
relative abundance of proteins are available and these resources
are permanently expanding (67–73) although improvements to
the reporting of quantitative aspects of proteome data would be
desirable.

In the following, I would like to analyze the potential of inte-
grating quantitative proteome information with a quantitative
view of the presentation process (see also bullet point style sum-
maries above) into an algorithm of Reverse Vaccinology. If we
accept that in principle each parasite protein contains functional
MHC I and II binding peptides and, thus, potential T cell epitopes,
we may simply base our estimates on the number of protein mole-
cules per parasite (~5× 107 molecules). Similarly, if we agree that
both CD4 and CD8 cells are relevant for protection, we can base
our analysis on the number of MHC class I molecules expressed
per antigen-presenting cell (~105 molecules) since this is thought
to be lower than the number of class II molecules, hence can be
considered the limiting peptide receptor species. To illustrate the
next steps, I will base my arguments on a data set published by our
group. We aimed at identifying the relative abundance of proteins
in amastigotes of L. mexicana based on a label free method that
deduces a protein abundance index (emPAI) for each protein in a
data set (66, 74). The reason for this choice is simply that equiv-
alent data is not easily accessible in other comparable proteome
data sets. When parasite proteins are ranked according to their
emPAI value, it is quickly realized that proteins encoded by less
than 50 and 200 genes contribute more than 25 and 50% of the
total parasite protein content in terms of mass (Figure 1).

These relative values can be expressed as number of molecules
per parasite taking into consideration the respective molecular
weight and the total protein content per parasite (~4 pg). Thus,
the copy number per cell of proteins detected in current proteomic
analyses ranges from a few million to a couple of 100 molecules.
MHC–peptide complex formation,however,ultimately follows the
law of mass, hence abundant molecules have a greater chance of
becoming processed and ensuing peptides bound to the MHC-
binding groove. The simplest version of predicting the chance of
a protein to be successful in this respect is to calculate an expected
value for how often this may be the case if 105 MHC molecules
are allowed to dip into the compartment where the peptides are
formed and pick a peptide (remember as a further simplification,
we equal 1 protein to 1 epitope). The expected value of MHC–
peptide complexes for each protein in the data set can be plotted
in an ordered way according to protein abundance,which produces
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FIGURE 1 | Relative contribution of individual proteins to total protein
content of Leishmania amastigotes. For illustration, the contribution of
each of 1764 proteins detected by shot gun proteomics in L. mexicana
amastigotes (66) is expressed as percent to total protein mass and values
plotted in ordered fashion for each protein. Numbers on X -axes show the
rank of the nth protein at the thresholds of 75, 50, and 25% of total mass.

an S-shaped curve (Figure 2). For candidate prediction purposes,
it is then necessary to try to define rationally a threshold below
which the chance of a peptide species to be bound by a stimula-
tory number of MHC molecules becomes negligible. One way to
set this threshold is to adopt the number of surface MHC–epitope
complexes required for stimulating T cells as defined by immunol-
ogists. As mentioned before a reasonable estimate for this is in the
order of 100 complexes, which is indicated by a horizontal line in
Figure 2. The expected number of MHC-peptides was calculated
for experimentally validated,naturally immunogenic proteins and,
indeed, for the majority the expected number is above this thresh-
old (Figure 2; green shaded area of plot). A complementary way
to define the threshold is by extrapolation of experimental data on
individual parasite proteins that were assayed either in vaccination
studies or in T cell stimulation tests. Importantly, there is experi-
mental evidence for a lower boundary of the protein copy number
per cell value at which infected macrophages do no longer stimu-
late the respective antigen-specific CD4 T cells (40). This threshold
is indicated as a blue dotted line in Figure 2.

The presented approach is easily expanded or adapted to addi-
tional proteomic data sets when information on relative protein
abundance becomes available. It reveals not only the likely rea-
son why most experimentally studied antigens were immuno- and
antigenic but also defines a large number of additional candi-
dates. In contrast, the majority of the candidates predicted purely
by bioinformatics (28, 30) were not in the proteome data set. This
may indeed indicate that their respective copy number per parasite
was below detection levels of the method (which is then likely to be
also below the detection level of the MHC presentation machin-
ery). However, this conclusion has to be drawn with caution as the
likelihood of detecting the protein by proteomics can be reduced
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FIGURE 2 | Expected number of individual MHC–peptide complexes
depending on protein abundance. The black curve indicates expected
number of complexes assuming protein copy number is most determining.
Blue curve indicates lower boundary of the model basing expected number
of complexes on the assumption that all protein are first degraded to
peptides. The likelihood of complex formation for a peptide derived from the
average size protein (52 kDa) is thus reduced 36-fold [i.e., the average
number of predicted epitopes deducted from Herrera-Najera et al. (30)].
Green shaded area in plot: proteins above the threshold of 100
MHC–peptide complexes when sampled by 105 MHC molecules assuming
one binding peptide per protein. Area shaded in gray: proteins with ranks
below that of lysosomal membrane acid phosphatase (MAP; blue dotted
line) for which the corresponding molecule number per parasite was
experimentally shown to be non-stimulatory for T cells. Green dotted lines
indicate ranks of proteins with experimental evidence of T cell recognition
(in ascending order GRP78, HSP83, Histone H-2, STI-1, CSP-B, Glu
synthetase, ATP synthase, LACK, LeIF, TSA, gp63, KMP-11, HSP20, 60S
ribosomal protein, nucleoside hydrolase, amastin, SMT, and
γ-glutamylcysteine synthetase=LmjF18.1660). Blue dotted line indicates
lysosomal membrane acid phosphatase (MAP) for which the corresponding
molecule number per parasite was experimentally shown to be
non-stimulatory for T cells. Red dotted lines refer to the rank of proteins
identified in silico to contain candidate epitopes by Herrera-Najera et al. (30)
(again in ascending order, LmjF35.0070, LmjF29.0867, LmjF17.1160,
LmjF16.1300, LmjF28.0530, and LmjF32.3410), or John et al. (28) (red
stippled line: PI-3 Kinase like protein, lipase).

for technical reasons, which is the case, e.g., for integral membrane
proteins [see also Ref. (66)]. The latter however can be reasonably
well-predicted through bioinformatics analysis.

Of course an algorithm as presented above, that integrates pro-
tein abundance to derive the set of likely immunogenic and hence
vaccine candidate proteins, is simplistic. But, its advantages are its
practical value and high flexibility since any change in parameters
can be easily accommodated. Changing parameters will essentially
only re-position the threshold value for the effective number of
MHC–peptide complexes. For example, the threshold may change
if dynamic sampling of the peptide pool by recycling MHC is
integrated over the time of an infection cycle. In this case, pep-
tide off-rates from MHC–peptide complexes may be a valuable,

bioinformatically accessible factor to improve the algorithm. It
has been shown that kinetic stability of MHC–peptide complexes
is probably the single most important determinant that defines
immunodominant T cell epitopes (75). Furthermore, dynamic
exchange of weakly binding peptides for more stably bound pep-
tides has been shown to occur upon MHC-peptide recycling from
and to the plasma membrane (76). Thus, in theory the algorithm
for ranking candidates may include a weighting factor based on
predicted peptide off-rates from their MHC receptors. This fac-
tor may be multiplied by protein/peptide abundance to derive an
“effective concentration” of a particular peptide. A high effective
concentration may be the reason underlying the efficacy of leish-
manial γ-glutamylcysteine synthetase as an effective vaccine in
animal models of Leishmania donovani infection (77, 78). Alter-
natively, this antigen may be more abundantly expressed in L.
donovani than suggested by the data derived from L. mexicana that
were used here for illustration. Consistent with the latter idea, the
same γ-glutamylcysteine synthetase-based vaccines were less effec-
tive against L. mexicana (79). Unfortunately, experimental data on
an exemplary set of antigens to derive such a weighting factor are
lacking and given the uncertainties associated with MHC-peptide
ligand predicting algorithms the practical value of such a factor is
currently difficult to assess.

In summary, developing an algorithm to adapt Reverse Vac-
cinology for the identification of antigens for anti-VL vaccine
should include as a first step quantitative aspects of protein expres-
sion and incorporate the growing resource of proteomic data
sets. On its own, however, this approach still leaves one with
some 500 candidates. Selection against epitopes with homology
to host proteins is certainly advisable but one should be aware
of its limitations and the gargantuan dimension of its unknowns
due to the fact that T cells recognize a sequence space (63). If
adopted, the definition of the immunological self should probably
include commensals (80). Thus, selection against peptides with
homology to host proteins seems on the one hand not rigorous
enough and, on the other hand, appears to adopt a functionally
limited if not wrong concept of self. Nonetheless, integration of
this information and data on predicted candidate antigen localiza-
tion, MHC-peptide stability, conservation between parasites and
selection of genus-specific antigens may all be criteria of practical
value. It should be noted though that the latter two are common
sense criteria but there is scarcely any experimental data (81) to
validate them.
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