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Erdheim–Chester disease (ECD) is a rare form of systemic histiocytosis characterized
by the diffuse infiltration of tissues by lipid-laden macrophages. As the clinical course
and prognosis are highly influenced by site of disease involvement, ECD course ranges
from asymptomatic to life threatening, with a reported global 5-year mortality of 30–40%.
Whether ECD is an inflammatory or clonal disease in its nature has long been debated.
The disease is characterized by a network of pro-inflammatory cyto/chemokines responsi-
ble for the recruitment and activation of histiocytes into ECD lesions, similarly to what
reported in Langerhans cell histiocytosis (LCH). Growing evidence supports a central
role of the oncogenic BRAFV600E mutation in histiocytosis pathogenesis, and suggests
oncogene-induced senescence (OIS), a major protective mechanism against oncogenic
events characterized by cell-cycle arrest and the induction of pro-inflammatory molecules,
as the possible link between the oncogenic mutation and the observed inflammation.
Indeed, ECD recapitulates in vivo the molecular events associated with OIS, i.e., cell-cycle
arrest and a potent local inflammatory response. Accordingly, the infiltration of different
tissues by macrophages and the inflammatory local and systemic effects observed in ECD
likely represent a drawback of OIS. Therefore, these findings delineate a new conception
of OIS as a new pathogenic mechanism intrinsically responsible for disease development.

Keywords: Erdheim–Chester disease, histiocytosis, oncogene-induced senescence, BRAF kinases, inflammation,
macrophages

INTRODUCTION
Erdheim–Chester disease (ECD) is a rare, multi-systemic, non-
Langerhans form of histiocytosis characterized by the infiltra-
tion of different tissues by foamy, lipid-laden macrophages.
William Chester first reported the disease in 1930 together
with his mentor Jakob Erdheim, a Viennese pathologist (1).
The clinical spectrum of ECD is broad, as pathologic histio-
cytes can infiltrate virtually every organ and tissue (Figure 1).
The protean clinical manifestations of ECD include bone pain
due to skeletal involvement, diabetes insipidus, neurological and
constitutional symptoms, retroperitoneal infiltration with pos-
sible ureteral obstruction, as well as pulmonary, cutaneous,
cardiovascular, and endocrine involvement (2–4). Although
ECD is undoubtedly rare, it is arguably an overlooked diag-
nosis (5). In recent times, the number of recognized cases
increased dramatically due to the raising awareness of ECD
in the medical community. Over time, several different ther-
apeutic approaches have been explored, often with unsatisfac-
tory results, and the prognosis has been traditionally consid-
ered poor. More recently, it was demonstrated that pathologic
histiocytes bear an activating mutation in the oncogene BRAF
(BRAFV600E) (6–10). This recent discovery led to novel, tar-
geted therapeutic strategies for patients affected by this neglected
disease (11).

PATHOGENETIC THEORIES: FROM NEOPLASIA TO
INFLAMMATION
Erdheim–Chester disease is characterized by xanthomatous or
xanthogranulomatous infiltration of tissues by foamy histiocytes,
or lipid-laden macrophages, surrounded by fibrosis. The patho-
logical cells express markers of the macrophage lineage, such as
CD14 and CD68, and in the majority of cases (80%) stain nega-
tive for markers of dendritic lineage, such as CD1a and S-100 (2).
Such histological/immunohistochemical features help distinguish
ECD from Langerhans’ cell histiocytosis (LCH), a disease showing
many similarities with ECD (12).

Several different theories on the pathogenesis of ECD arose over
time. Based on the aforementioned histopathological findings,
ECD was first hypothesized to be a lipid storage disorder, but inves-
tigations aimed at confirming this theory were inconclusive (13).
Afterward, the conception of ECD as a neoplastic disease became
the prevalent theory. This hypothesis was mostly supported
by the clinical observation that aberrant macrophages progres-
sively infiltrate different tissues, thus determining an aggressive,
multi-systemic clinical course.

Yet, the hypothesis of a neoplastic pathogenesis never found
ultimate confirmation, due to the inability to unambiguously
identify evidence of clonal proliferation and of impaired cellular
differentiation (14–17).
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FIGURE 1 | Histological findings in patients with Erdheim–Chester
disease (ECD). Histology shows a xanthogranulomatous infiltrate composed
by foamy histiocytes accompanied by fibrosis [(A), H&E, original

magnification 200×]. Immunohistochemical studies reveal that some of the
infiltrating histiocytes stain for BRAFV600E [(B), VE1 immunostaining, 200×],
and p16Ink4a [(C), p16Ink4a immunostaining, 200×].

In the following years, most studies aimed at identifying
alternative mechanisms possibly responsible for the recruitment,
accumulation, and differentiation of histiocytes into affected tis-
sues. Analogously to the “cytokine storm” described in LCH, our
group and others discovered in ECD lesions a pro-inflammatory
milieu responsible for the skewing of histiocytes toward an
M1, inflammatory phenotype (18). Local pro-inflammatory
effects were paralleled by the systemic release of a network of
Th1-associated soluble factors, such as IL-1, IL-6, CCL2, CCL5,
CXCL8, TNF-α, and interferon (IFN)-γ (17, 19–21).

The clinical and pathogenic similarities between ECD and
LCH resulted in the adoption of therapeutic strategies for the
treatment of ECD that were mostly derived from the clinical
experience with LCH. For instance, early reports documented
the efficacy of the purine analog cladribine, which has been
used in the treatment of multisystem LCH (22, 23). IFN-α, also
used in the management of ECD based on its clinical efficacy
against LCH, later became the first-line drug for the treatment
of ECD, and its efficacy has now been extensively documented
(24, 25). The molecular mechanisms underlying the efficacy of
IFN-α in ECD are unclear. Among the proposed, disparate bio-
logical effects of this drug are the modulation of maturation and
activation of dendritic cells, the immune-mediated destruction
of histiocytes via natural killer cells, and direct anti-proliferative
effects (26–29).

Following the identification of this network of pro-
inflammatory mediators in lesions and sera of ECD patients,
cytokine blockade with biological drugs was explored as a pos-
sible therapeutic strategy. Clinical observations on small numbers
of patients demonstrated that treatment with cytokine-blocking
agents could be effective in the management of the disease. In
particular, treatment with the IL-1 receptor antagonist anakinra
was associated to a favorable clinical response in a significant
number of ECD patients with different disease manifestations (30–
32). More limited clinical experience with TNF-α-blocking drugs
also yielded encouraging results (33). Moreover, the results of a
phase II clinical trial conducted by our group aimed at evaluat-
ing the IL-6 blocker tocilizumab are expected in the near future
(NCT01727206). The promising results of cytokine inhibitors in
the management of the disease long provided a proof-of-concept
to the central pathogenic role of cytokine/chemokine-mediated
histiocyte recruitment and activation in the development of ECD
lesions.

More recently, new insights into the pathogenesis of ECD came
from the discovery that a significant proportion of ECD and LCH
patients bear a mutation in the proto-oncogene BRAF (7, 10, 34),
further substantiating a correspondence between the two diseases.
The first identification of a BRAF mutation in ECD macrophages
was reported by Blombery et al. (10): their investigation revealed
the presence of a histiocyte-restricted mutation in the genetic
sequence of BRAF, which confers the amino acid substitution
of glutamic acid for valine at position 600 of the B-Raf protein
(BRAFV600E). Haroche et al. (7) expanded this finding by exam-
ining tissue samples from 127 patients affected by different his-
tiocytoses. The investigation, performed by pyrosequencing and
confirmed by immunohistochemical analysis, revealed the pres-
ence of BRAFV600E in 13 out of 24 (54%) ECD patients and in 11
out of 29 (38%) LCH patients. The mutation was not found in any
patient affected by different histiocytoses. Other studies performed
on larger cohorts revealed that 57% (35 out of 61) of LCH patients
and 51% (19 out of 37) of ECD patients harbor the BRAFV600E

mutation (9, 34). The recent finding of an oncogenic NRAS muta-
tion in a BRAFV600E-negative ECD patient further supports the
hypothesis of significant role of the Ras–Raf–Mek–Erk pathway in
the pathogenesis of the disease (35).

The discovery that histiocytes from a considerable propor-
tion of ECD patients bear the BRAFV600E mutation inspired a
new therapeutic strategy. The small molecule vemurafenib (also
known as PLX4032 and marketed as Zelboraf), was the first spe-
cific BRAFV600E inhibitor to be approved by FDA for the treatment
of malignant melanomas as well as other cancers (36). By inhibit-
ing the mutated kinase activity, vemurafenib abrogates signaling
downstream B-Raf, thus blocking the proliferation and inducing
death of cells carrying this mutation (37, 38). When administered
to a small number of patients with severe ECD who harbored the
mutation, vemurafenib showed dramatic efficacy (11). The clinical
efficacy of selective BRAFV600E inhibition demonstrates the crucial
relevance of the oncogenic BRAFV600E mutation in the pathogen-
esis of ECD. Meanwhile, it reinvigorates the hypothesis that ECD
might be a clonal disease.

THE BRAFV600E MUTATION IS INVARIABLY ASSOCIATED
WITH ECD
In spite of most recent advances in the understanding of ECD
pathogenesis, some areas of uncertainty remained unexplored. For
instance, BRAFV600E was detectable in a relevant fraction, but not
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in all ECD patients. Furthermore, the presence of an oncogenic
mutation per se did not explain the robust local and systemic
inflammatory response observed in ECD.

At immunohistochemical analyses, ECD lesions are charac-
terized by an uneven distribution of different cellular popula-
tions. Moreover, when we analyzed available specimens from a
large cohort of ECD patients followed-up at our Institution, we
observed that some samples stained positive for BRAFV600E as eval-
uated by means of immunohistochemistry, whereas the analysis
of the same samples by means of pyrosequencing failed to detect
the BRAFV600E mutation (6). BRAFV600E is exclusively found in
the histiocytic compartment, but the percentage of BRAFV600E-
positive histiocytes varies considerably among different biopsy
samples, ranging from 20 to 50% (6, 7, 10). On these grounds,
we hypothesized that even the ECD biopsy samples that were neg-
ative for BRAFV600E as evaluated by pyrosequencing might include
a small fraction of BRAFV600E-mutated macrophages, which
remained undetected due to the higher frequency of the wild-type
allele. Indeed, traditional pyrosequencing techniques can lead to
the generation of false negatives, since mutated histiocytes may be
undetectable when present in very small numbers – e.g., <10% of
total cells – due to the overwhelming signal of wild-type cells (6).

We thus re-evaluated the ECD biopsy samples exploiting an
ultrasensitive approach, characterized by the amplification of the
extracted DNA by means of an ad hoc locked nucleic acid (LNA)–
PCR/pyrosequencing assay. This combination of techniques – a
wild-type allele-specific locked PCR followed by pyrosequencing,
further on referred to as LNA/pyrosequencing – enabled the iden-
tification of one mutated BRAF allele among 10,000 wild-type
copies (6, 39). By means of LNA/pyrosequencing, we demon-
strated the presence of BRAFV600E in histological samples from
18 out of 18 studied ECD patients, whereas direct pyrosequenc-
ing allowed the detection of the mutation in only 12 out of 18
patients (6). Given the extremely high sensitivity of this tech-
nique, we also investigated the BRAF status in peripheral blood
mononuclear cells, and identified the presence of BRAFV600E in
a small fraction of cells, which were characterized as circulating
monocytes by means of immunohistochemistry and flow cytom-
etry. These data were independently confirmed by droplet-digital
PCR. Although the mere association of BRAFV600E with ECD does
not imply pathogenic causality, the extremely high occurrence of
BRAFV600E in ECD patients suggests that this mutation plays a cru-
cial role in the pathogenesis of the disease. Again, the hypothesis
of a pivotal pathogenic role of BRAFV600E in ECD is substantiated
by the clinical experience with specific BRAFV600E pharmacologic
inhibitors, whose efficacy in controlling ECD manifestations is
becoming progressively evident (11).

BRAFV600E MUTATION AND ONCOGENE-INDUCED
SENESCENCE IN ECD
B-Raf is a serine–threonine protein kinase that is implicated in
the Ras–Raf–Mek–Erk mitogen-activated protein kinase (MAPK)
transduction pathway. This signaling pathway is activated by extra-
cellular growth factors binding to membrane tyrosine kinase
receptors, and regulates cell proliferation and survival (40).
BRAFV600E is characterized by a conformational change that makes
the ATP binding site constantly accessible (41), thus causing the

constitutive activation of the aberrant protein. The constitutive
activation of B-Raf results in the deregulated phosphorylation of
downstream signaling proteins and promotes uncontrolled cellu-
lar proliferation. Consistently, BRAFV600E is a mutational hotspot
in a variety of human cancers, including melanomas, papillary
thyroid cancers, and hairy-cell leukemia (42–44).

In addition to this recognized oncogenic activity, BRAFV600E

mutation has also been associated with oncogene-induced senes-
cence (OIS), a recently identified major protective mechanism
against oncogenic events (45, 46). In OIS, the isolated activa-
tion of an oncogene, in the absence of additional mutations,
induces cell-cycle arrest and prevents cell proliferation. In this
way, OIS ensures the elimination of early neoplastic cells from
the proliferative pool, thus dampening the risk of transforma-
tion to overt cancer associated with persistent cellular outgrowth.
OIS is associated with distinctive molecular features, such as the
expression of p16Ink4a, a major tumor suppressor protein, and
with potent pro-inflammatory effects via the activation of a pro-
inflammatory transcriptome. Indeed, BRAFV600E-mutated cells
produce a variety of Th1-associated cytokines and chemokines
whose autocrine and paracrine effects are crucial for the induc-
tion and maintenance of the OIS phenotype (47). In ECD, the
local production of chemokines by BRAFV600E-mutated cells likely
attracts circulating leukocytes to the lesion sites, where the inflam-
matory milieu sustained by senescence-associated cytokines elicit
the pro-inflammatory differentiation of recruited cells. The so
formed local inflammatory reaction may hinder the transfor-
mation of the mutated cells to overt cancer, while perpetuating
the OIS phenotype of cells. Recent studies on murine models
of BRAF-mutated thyroid cancer demonstrated that BRAFV600E

confers the capability to the cells harboring the mutation of
potently recruiting macrophages (48). Indeed, BRAFV600E induces
an increased expression of the macrophage chemo-attractants
CXCL8, CCL2, CCL4, and CCL5 (17, 19). As a consequence,
BRAF-mutated thyroid cancers are densely infiltrated with tumor-
associated macrophages, which may account for up to 50% of the
total mass of the tumor (48).

ONCOGENE-INDUCED SENESCENCE: A NEW PATHOGENIC
MECHANISM RESPONSIBLE FOR DISEASE DEVELOPMENT?
Collectively taken, these data support a central role of BRAFV600E

in the pathogenesis of ECD, and suggest OIS as the possible link
between the oncogene mutation and the observed inflammatory
activation. As previously described, ECD recapitulates in vivo the
molecular events associated with OIS. According to this model,
ECD is a clonal disease of macrophages bearing the BRAFV600E

mutation. The activation of OIS programs in mutated cells results
in an increased production of pro-inflammatory cytokines, thus
inducing potent local and systemic inflammatory effects. The infil-
tration of different tissues by macrophages and the inflammatory
local and systemic effects observed in ECD likely represent a draw-
back of OIS (Figure 2). Thus, the paradigm of ECD pathogenesis
delineates OIS not only as a protective pathway against overt
cancer development, but also as a new mechanism intrinsically
responsible for disease development. It is however tempting to
speculate that OIS, although responsible for the local and sys-
temic alterations seen in ECD, may prevent ECD cells to overtly
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FIGURE 2 |The finding that a fraction of both circulating monocytes and
tissue-infiltrating macrophages bear the BRAFV600E mutation suggests
that the oncogenic event likely occurs in a monocyte–macrophage
precursor. The occurrence of the BRAFV600E oncogenic mutation represents
the initiating event in the pathogenesis of Erdheim–Chester disease (ECD). In
turn, BRAFV600E activates in mutated cells oncogene-induced senescence
(OIS) pathways, as also testified by the intense expression of the cell-cycle
gatekeeper p16Ink4a. OIS results in the activation of a pro-inflammatory
transcriptome and in the production of cytokines and chemokines (CCL2,

CCL4, CXCL8, CXCL10, IL-1β, IL-6, TNFα, and IFNγ). The so formed
inflammatory milieu exerts autocrine and paracrine effects responsible for the
recruitment of circulating wild-type inflammatory cells to lesion sites, and for
the induction and maintenance of the senescent phenotype in both mutated
and bystander infiltrating cells. Cytokine-blocking agents interfere with the
inflammatory effects downstream BRAFV600E and exert moderate efficacy in
the treatment of ECD, but are ultimately of no cure for the disease.
Conversely, therapy with the selective BRAFV600E inhibitor vemurafenib might
dampen all the pathogenetic mechanisms of ECD.

proliferate and thus to give origin to a more aggressive and invasive
phenotype, in agreement to what observed in LCH (49).

To date, whether ECD is a cancerous process or a disease char-
acterized by recruitment and activation of histiocytes remains a
matter of debate. Is ECD a clonal or an inflammatory disease
in nature? Most likely, it is both. Indeed, the emerging evidence
on BRAFV600E mutation delineates a new conception of ECD,
which encompasses all previous pathogenic theories. Moreover,
this model not only reconciles the dichotomy between clonal and
inflammatory pathogenesis, but also explains why several thera-
peutic approaches explored so far yielded unsatisfactory results.
As BRAFV600E mutation seems to contribute to ECD pathogenesis
through OIS, it is tempting to speculate that specific targeting of
senescent cells may hold promise as a future treatment for ECD.

Whereas the mere disruption of pathways responsible for
senescence-associated replicative arrest could promote cancer
development, strategies that eliminate accumulating senescent
cell might instead be beneficial, both by dampening tissue
inflammation and damage, and by eliminating cells bearing

potentially cancerous lesions, thereby reducing cancer risk. The
characteristic phenotype, gene expression, and secretion patterns
of senescent cells make them a suitable target for ad hoc designed
antibodies or small molecules (50). Since targeting senescent cells
is emerging as a possible therapeutic strategy to delay or pre-
vent several age-related or chronic diseases, future discoveries
and developments in this field will hopefully translate into new
treatment options for ECD.
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