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Inflammatory cytokines have long been recognized to produce potent APCs to elicit robust
T cell responses for protective immunity. The impact of inflammatory cytokine signaling
directly onT cells, however, has only recently been appreciated. Although much remains to
be learned, the CD8T cell field has made considerable strides in understanding the effects
of inflammatory cytokines throughout the CD8T cell response. Key findings first identified
IL-12 and type I interferons as “signal 3” cytokines, emphasizing their importance in gener-
ating optimal CD8T cell responses. Separate investigations revealed another inflammatory
cytokine, IL-15, to play a critical role in memory CD8 T cell maintenance. These early stud-
ies highlighted potential regulators of CD8 T cells, but were unable to provide mechanistic
insight into how these inflammatory cytokines enhanced CD8 T cell-mediated immunity.
Here, we describe the mechanistic advances that have been made in our lab regarding the
role of “signal 3” cytokines and IL-15 in optimizing effector and memory CD8T cell number
and function. Furthermore, we assess initial progress on the role of cytokines, such as
TGF-β, in generation of recently described resident memory CD8 T cell populations.
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INTRODUCTION
Naïve CD8 T cells undergo activation when presented with
their cognate antigen following a three-signal model. Professional
antigen-presenting cells (APCs) provide the crucial first and sec-
ond signals through the T cell receptor (TCR) and costimulatory
molecules, while innate immune cells contribute inflammatory
cytokines to promote optimal accumulation and differentiation
of effector CD8 T cells (1). Although the role of inflammatory
cytokines in maturing professional APCs to stimulate robust T
cell responses has been well described (2), investigation of their
direct effect on T cells is ongoing. In the following review, we
outline mechanistic studies identified for inflammatory cytokine
regulation of various stages of the CD8 T cell response and discuss
cutting edge research on the cytokine requirements for generation
of the novel resident memory T cell (TRM) population.

SIGNAL 3 CYTOKINES AND THE MAGNITUDE OF THE
EFFECTOR CD8 T CELL RESPONSE
Initial studies suggesting that cytokines, particularly IL-12, may be
important for signaling directly to T cells were made in in vitro
cultures of T cells and artificial APCs more than a decade ago.
Since then, the importance of IL-12 and type I interferon signal-
ing directly to CD8 T cells for optimal effector cell accumulation
has been demonstrated both in vitro and in vivo (3–7). Despite
the clear impact of IL-12 and IFNα/β on effector CD8 T cell num-
bers, it remained unclear how inflammatory cytokines regulated
the magnitude of effector CD8 T cell responses. Although sev-
eral other cytokines have been discussed in the literature recently
for T cell differentiation (8, 9); here, we will focus on signal 3

cytokines as originally defined for their role in T cell accumula-
tion (3–7). After their classification as signal 3 cytokines, IL-12
and type I interferons were proposed to enhance accumulation
of CD8 T cells following one of two models: via greater survival
(2, 10) or by conferring an early proliferative advantage (11, 12).
The model for enhanced survival stemmed from 3 days culture
experiments, which demonstrated accumulations of cells in cul-
tures containing IL-12 with no detectable changes in cell division.
The latter model was supported also by in vitro studies, where IL-
12 transiently increased expression of CD25, the high affinity IL-2
receptor, peaking at day 2 (11). Hence, previous reports addressing
the mechanism by which signal 3 cytokines allow optimal accu-
mulation of effector CD8 T cells were limited to short-term in vitro
experiments with no clear answer to the question of whether sur-
vival or early proliferation, or both, contribute to the magnitude
of the CD8 T cell response. Furthermore, the temporal disconnect
between signal 3 cytokine-driven CD25 expression and optimal
accumulation of effector CD8 T cells many days later has not
been assessed (13). Here, we describe a recent study from our lab
addressing these knowledge gaps concerning the mechanism by
which signal 3 cytokines allow optimal accumulation of effector
CD8 T cells in vivo.

Utilizing an OT-I T cell adoptive transfer system followed
by DC-OVA priming with or without the TLR9 agonist, CpG,
to induce signal 3 cytokines, Starbeck-Miller et al. compared
CD8 T cells activated in vivo in the presence or absence of sig-
nal 3 cytokines (14). Gene expression profiling of T cells from
these groups at D7 post immunization clearly showed that sig-
nal 3 cytokines enhanced transcription of proliferation, but not
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anti-apoptosis-associated genes (14). Additionally, analysis of CD8
T cells primed by DC with or without signal 3 showed no dif-
ferences in proliferation or total cells numbers as late as day 5
post immunization. Thus, the in vivo data do not support either
of the proposed models for signal 3 activity. Interestingly, both
DC and DC+CpG OT-I cells isolated on D4 and moved into
in vitro cultures failed to divide, although transfer of the same
populations to an in vivo host revealed more robust proliferation
from the CD8 T cells that had been exposed to signal 3 cytokines.
This suggested that signal 3 cytokines established a proliferation
program, but sustained proliferation required an additional com-
ponent that was present in a naïve host. Since IL-2 is an important
driver of T cell accumulation, Starbeck-Miller et al. monitored
expression of the high affinity IL-2 receptor, CD25, on DC ver-
sus DC+CpG CD8 T cells. Indeed, IL-12 and type I interferon
sustained CD25 expression, allowing for greater IL-2-induced pro-
liferation via activation of the PI3K pathway and expression of
FoxM1, a positive cell cycle gene regulator. Importantly, adminis-
tering the IL-2 neutralizing antibody JES6 from D4-6 removed the
proliferative advantage conferred by signal 3 cytokines. Thus, these
studies verify, and add mechanistic insight to the model, indicat-
ing that signal 3 cytokines neither enhance survival not provide
and early proliferative advantage, but rather sustain expression
of the high affinity IL-2 receptor, which extends the duration
of proliferation after immunization and permits optimal gener-
ation of effector CD8 T cells in vivo. Interestingly, the effects of
IL-12 and type I interferons are not limited to promoting opti-
mal CD8 T cell accumulation, but offer functional advantages to
effector CD8 T cells, such as antigen sensitivity, which will be
discussed next.

DYNAMIC REGULATION OF ANTIGEN SENSITIVITY BY
INFLAMMATORY CYTOKINES
The protective capacity of CD8 T cells depends on their quan-
tity, functional properties, and anatomical distribution (15). High
antigen sensitivity, otherwise referred to as functional avidity,
strongly correlates with protective immunity against intracellular
pathogens (16). Although T cells cannot directly alter the binding
affinity of their TCR through processes like somatic hypermuta-
tion, it has been shown that monoclonal TCR-transgenic CD8 T
cells can increase their functional avidity from early to late effector
time points (17). This study suggested that the functional avidity
maturation was a fixed property of CD8 T cells. Here, we describe
a mechanistic study demonstrating that inflammatory cytokines
directly enhance antigen sensitivity of effector and memory CD8
T cells, however this enhanced sensitivity is not hardwired, but
rather tuned by the pathogen-specific milieu.

Using a similar DC immunization protocol as indicated pre-
viously, Richer et al. activated OT-I CD8 T cells in the presence
or absence of signal 3 cytokines (18). Distinct inflammatory
milieu were then initiated by co-infection of DC primed mice
with Listeria monocytogenes (Lm) or lymphocytic choriomenin-
gitis virus (LCMV) and antigen sensitivity was assessed at day 5
after priming. Strikingly, DC-OVA with LCMV infection substan-
tially enhanced antigen sensitivity by more than 10-fold whereas
co-infection with Lm enhanced antigen-sensitivity four to six-
fold. To determine whether inflammation increased functional

avidity via enhanced TCR signaling, Richer et al. isolated OT-
I T cells from DC and DC+ LCMV mice on D4 and analyzed
phosphorylation of downstream TCR signals after TCR liga-
tion (18). Indeed, inflammatory cytokines dramatically enhanced
phosphorylation of ZAP-70, PLCgamma, and ERK1/2 in response
to TCR stimulation. Importantly, greater ERK1/2 phosphoryla-
tion was not observed with PMA stimulation, which bypasses
proximal TCR signals, suggesting that inflammatory cytokines
increased the antigen sensitivity of the TCR by enhancing prox-
imal TCR signaling. Consistent with the data from effector CD8
T cells, inflammatory cytokines also increased the antigen sen-
sitivity of memory CD8 T cells by enhancing TCR proximal
signaling, albeit to a lesser degree than observed with effector
CD8 T cells. This study demonstrated how the pathogen-specific
inflammatory milieu affects antigen-sensitivity, an essential func-
tional aspect of both effector and memory CD8 T cells. In
addition to signal 3 cytokine effects on memory CD8 T cells,
we next review a novel role for IL-15 in memory CD8 T cell
trafficking.

IL-15-DEPENDENT SYNTHESIS OF SELECTIN LIGANDS
Numerous studies have described the functional differences
between memory and naïve CD8 T cells (13, 19). Among such
reports, it was demonstrated that memory, but not naïve, CD8
T cells can be rapidly recruited to inflamed lungs in an antigen-
independent manner (20). Importantly, this large influx of mem-
ory CD8 T cells was shown to provide immediate cytolytic killing
against pathogens expressing cognate antigen (21). Although this
non-specific recruitment of memory CD8 T cells was shown to
depend on CCR5 expression, the molecular mechanisms initiating
early “tethering and rolling” events before chemokine recognition
by memory CD8 T cells detection remained undefined.

Immune cell homing is a highly regulated process that begins
with selectin family proteins. Leukocytes extravasate into inflamed
tissue by constructing ligands to P- and E-selectin, which are
expressed on activated endothelium. In contrast, L-selectin medi-
ates homeostatic trafficking of naïve and central memory CD8 T
cells through lymph nodes. Previous reports concerning the syn-
thesis of P- and E-selectin ligands had been limited to in vitro
models, which suggested TCR activation was essential to express
appropriate selectin ligands. Herein, we describe studies from
Nolz et al. that show P- and E-selectin ligand synthesis occurs
on memory, but not naïve, CD8 T cells following inflammation
in vivo (22). Utilizing the model pathogen, LCMV, Nolz et al.
observed uniform expression of functional P- and E-selectin lig-
ands on effector populations, but that most memory CD8 T cells
did not express functional P or E-selectin ligands. After detect-
ing high selectin ligand expression on non-specifically recruited
memory P14 CD8 T cells following several irrelevant pathogen
infections, it was demonstrated, through use of blocking anti-
bodies to P- and E-selectin or P-selectin glycoprotein ligand-1,
that non-specific recruitment of memory CD8 T cells to inflamed
sites was dependent on selectin binding. To investigate the mech-
anism regulating inflammation-induced selectin ligand expres-
sion on memory CD8 T cells, Nolz et al. analyzed expression
of the Gcnt1 gene, which prompts their formation on naïve,
effector, and memory CD8 T cells. Although effector CD8 T
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cells expressed high levels of Gcnt1, naïve, and memory CD8
T cells had minimal expression of this protein. Interestingly,
recombinant IL-15 substantially enhanced P- and E-selectin lig-
and synthesis on memory, but not naive CD8 T cells in vitro
and Nolz et al. revealed a similar induction of the Gcnt1 protein
via immunoblot. In vivo, IL-15-deficiency significantly reduced
expression of selectin ligands, and subsequent memory CD8 T
cell trafficking to inflamed sites, suggesting that P- and E-selectin
ligand expression occurs in an IL-15/STAT5-dependent, but TCR-
independent manner. Importantly, IL-15-driven P- and E-selectin
ligand expression was shown to occur in human memory CD8
T cells, demonstrating conserved trafficking pathways between
mouse and human T cells that can be manipulated for therapeutic
purposes.

Until now, IL-15 has been referred to, principally, as a mainte-
nance cytokine for memory CD8 T cells. This study investigating
the role of IL-15 in the regulation of core 2 O-glycan synthesis on
memory CD8 T cells suggests the possibility of other unexplored
functions of this important inflammatory cytokine.

TGF-β, IL-33, AND TNF REQUIRED FOR RESIDENT MEMORY
CD8 T CELLS
Although the CD8 T cell field has established a paradigm of IL-15-
driven homeostatic proliferation as the model of memory CD8
T cell maintenance for circulating T cells, localized CD8 T cell
populations in the lung (23), gut (24), and skin (25), among
other tissues, have been shown to sustain a sizable pool of mem-
ory CD8 T cells despite the absence of IL-15 signaling. Most
recently, the TRM population has garnered immense interest for
their distinct surface phenotype, local protective capacity, and
long-term maintenance in the absence of traditional cytokines.
Skin and gut infection models to generate transgenic CD8+ TRM

populations are well established (26, 27); hence, we describe recent
advances in determining the cytokine signals involved for TRM

development and maintenance following either immunization or
infection.

Resident memory T cell cells represent a novel, non-circulating
class of T cells that persist within extralymphoid tissue and demon-
strate superior regional immunity (28). The best-characterized
TRM cells express the alpha chain of the αEβ7 integrin (CD103),
as well as the sphingosine 1 phosphate receptor (S1PR1) inhibitor
CD69, in multiple tissue compartments. Relevantly, both mole-
cules are required for the optimal formation and maintenance
of TRM cells in the skin (26). Since in vitro and some in vivo
studies have long since shown that transforming growth factor-
β (TGF-β) signaling promotes CD103 expression on immune
cells (29–31) and that TGF-β is expressed in the skin epithelium,
Mackay et al. investigated whether signaling through the TGF-
β receptor was required to upregulate CD103 and establish TRM

cells in vivo (26, 32). Utilizing one to one adoptive transfer mod-
els of WT and Tgfbr2f/f.dLck-Cre (Tgfbr2−/−) OT-I T cells into
C57BL/6 mice followed by infection with OVA-expressing HSV,
Mackay et al. indeed demonstrated that Tgfbr2−/− OT-I cells
failed to upregulate CD103 and had a dramatically reduced ability
to form TRM.

By utilizing acute and chronic infections with LCMV, Zhang
et al. delved further into the mechanism behind TGF-β signaling

for generation and maintenance of TRM cells (27). Creating equal
ratio mixtures of WT and Tgfbr2−/−P14 T cells followed by either
LCMV-Armstrong (acute) or Clone 13 (Cl13, chronic) infec-
tions, Zhang et al. notices defective maintenance of Tgfbr2−/−
cells in Armstrong, but not Cl13-infected hosts. While monitor-
ing integrin expression in secondary lymphoid organs, which are
the major source for TRM cells, Zhang et al. detected enhanced
expression of α4β7 on Tgfbr2−/− cells in Cl13, compared to
Armstrong-infected mice (27). As α4β7 aids in the migration
to the gut (33, 34), it was concluded that, although Tgfbr2−/−
TRM cells are locally declining in both Armstrong and Cl13-
infected mice, the more prominent, enhanced expression of α4β7
on splenic Tgfbr2−/− T cells of Cl13-infected hosts allowed for
continual replacement and stabilization of TRM numbers. Thus,
TGF-β acts as a negative regulator to TRM formation through
α4β7 downregulation, but is required for the maintenance of
established TRM cells in the gut through induction of CD103
expression.

The above findings clearly identify the relationship between
TGF-β and CD103 expression for persistence of TRM cells; how-
ever, CD103 is not required in all TRM niches (35–37). Thus,
we outline a complementary study, defining the transcriptional
regulation of a ubiquitous TRM marker, CD69, to establish TRM

cells, where CD103 may be dispensable. The antagonistic rela-
tionship between CD69 and S1PR1 are well established (38).
The zinc-finger transcription factor KLF2 catalyzes the expres-
sion of S1PR1, known to promote lymph node egress (39). Hence,
Skon et al. initially uses adoptive transfer models of KLF2-GFP
P14 T cells followed by LCMV-Armstrong infection to monitor
KLF2 expression in circulating, compared to resident memory
CD8 T cells (40). As expected, TRM cells expressed low levels
of both KLF2 and S1PR1, while CD69 expression was increased.
Interestingly, in vitro cytokine screening revealed that a com-
bination of TGF-β, IL-33, and TNF were capable of inducing
a modest downregulation of KLF2 expression. To analyze the
effect of S1PR1 expression on TRM formation, Skon et al. over-
expressed S1PR1 through retroviral transduction of P14 cells, and
demonstrated that failure to downregulate S1PR1 prevented the
establishment of TRM cells in the salivary gland, kidney, lam-
ina propria, and intestinal epithelium (40). Hence, these stud-
ies propose that migration to non-lymphoid tissue enhances
exposure of CD8 T cells to TGF-β, IL-33, and TNF, which
triggers some loss of KLF2 expression, subsequently decreasing
S1PR1, and allowing CD69 upregulation. Although the upregu-
lation of CD69 may be controlled by multiple factors, increas-
ing the complexity of this process, these studies, among others,
clearly demonstrate that the non-migratory TRM population has
novel cytokine requirements for their generation and mainte-
nance (Figure 1) and that this list of cytokines may continue to
expand.

SYNOPSIS
In this review, we outline recent studies uncovering the mecha-
nisms by which inflammatory cytokines regulate various attrib-
utes of circulating and resident memory CD8 T cell populations.
Although investigation of the role of inflammatory cytokines on
TRM cells, and T cells in general, remain far from complete, the field
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FIGURE 1 | Cytokines involved inTRM formation and maintenance.
Early after infection, local TGF-β signals prevent migration of effector CD8 T
cells from the spleen to non-lymphoid tissue by downregulating the αEb7
integrin. However, tissue-specific programming during priming of CD8 T
cells causes homing to appropriate resident tissue. In addition, the
transcription factor KLF2 gets downregulated as effector CD8 T cells travel
to non-lymphoid tissue toward a combination of TGF-β, IL-33, and TNFα

signals, which causes a decrease in S1P1, allowing upregulation of CD69.
Within resident tissue, TGF-β signals sustain TRM numbers.

has made remarkable progress in understanding how the inflam-
matory environment can directly modulate the number, function,
migration, and maintenance of T cells.
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