
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OPINION ARTICLE
published: 07 July 2014

doi: 10.3389/fimmu.2014.00313

Toll-like receptor 4 in inflammation and angiogenesis: a
double-edged sword
Sheeba Murad*

Molecular Immunology Lab, Health Care Biotech Department, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology,
Islamabad, Pakistan
*Correspondence: sheebamall@yahoo.com; s.mall@asab.nust.edu.pk

Edited by:
Anton G. Kutikhin, Russian Academy of Medical Sciences, Russia

Reviewed by:
Fulvio D’Acquisto, Queen Mary University of London, UK
Anton G. Kutikhin, Russian Academy of Medical Sciences, Russia

Keywords: LPS,TLR4, PAMPS, DAMPs, angiogenesis

Toll-like receptors (TLRs) primarily known
for the pathogen recognition and subse-
quent immune responses are being inves-
tigated for their pathogenic role in various
chronic diseases. The recent reports corre-
lating the microbial infections with chronic
disorders such as atherosclerosis have lead
to questions in relation to the role of micro-
bial sensors such as TLR4 in an intriguing
phenomenon of the inflammation-induced
angiogenesis. This article focuses on the
possible mechanisms involved in it.

Toll-like receptors comprise a large fam-
ily of the pathogen-pattern recognition
receptors (PPRR) originally identified in
Drosophila in the mid 1990s as a Toll
protein (1). In Drosophila, it was found
to be involved in the resistance against
fungal infections (2). The first human
homolog for the Toll protein was described
in 1997 (3). Since then, 13 mammalian
homologs of the TLR family have been
identified; including 12 in mice (TLR1-9
and TLR11-13) and 10 in humans (TLR1-
10). TLR 10 is a pseudogene in mice, but is
functional in humans (4). The membrane
expressed TLRs recognize the pathogen-
associated molecular patterns (PAMPs)
either directly on the plasma membrane or
within the endosomal compartment after
the phagocytosis. In addition to the for-
eign molecules, a range of various endoge-
nous ligands are also detected by TLRs,
which suggests a role beyond that of sim-
ple pathogen recognition. Endogenous lig-
ands released from the damaged, apop-
totic, or fibrotic cells during inflammation,
are termed danger-associated molecular pat-
terns (DAMPs). A significant number of
DAMPs have been reported for TLR4 (5, 6).

TLR4 is one of the best characterized
and the first member of the TLR family to
be discovered as a PPRR. TLR4 signaling is
implicated in the innate immune responses
against a wide-range of microbes, includ-
ing Gram-negative and -positive bacteria,
mycobacteria, spirochetes, yeasts, and some
viruses such as respiratory syncytial viruses
(RSV) and mammary tumor viruses (4).
TLR4 is a type I transmembrane protein
characterized by an extracellular domain
containing leucine-rich repeats (LRRs) and
a cytoplasmic tail harboring a conserved
region known as Toll/IL-1 receptor (TIR)
domain. TLR4, along with its two co-
receptors, the myeloid differentiation anti-
gen (MD2) and the LRR protein CD14,
forms a trimeric receptor that is involved
in the recognition of lipopolysaccharide
(LPS). The TLR4 ligand binding causes
the C termini of the ectodomains to move
close to each other, thus triggering signal-
ing and inflammation. The diverse inter-
actions between TLRs with their ligands
converge into either the MyD88-dependent
or MyD88-independent pathways, result-
ing in the: (1) activation of lympho-
cytes, (2) up-regulation/expression of co-
stimulatory signals, and (3) release of pro-
inflammatory cytokines/chemokines (7).
As sentinels in the innate immunity, TLR
expression was thought to be confined to
the immune cells such as macrophages,
monocytes, and dendritic cells. How-
ever, an increasing number of reports
show a more diverse expression of TLRs;
including epithelial cells, endothelial cells
(8), neural and glial cells, thereby play-
ing an important role in tissue-specific
inflammation (9).

TLR4 is implicated in a diverse range of
pathological processes associated with or
induced by angiogenesis including autoim-
mune diseases such as psoriasis, diabetic
retinopathy, thrombosis, and inflamma-
tory disorders including arthritis and ath-
erosclerosis and cancer (10, 11). It has
been proposed that TLR4 contributes
to these diseases through inflammation-
induced angiogenesis. The recent associa-
tion between bacterial infections and ath-
erosclerosis has intensified the search for
the biological functions of TLRs especially
TLR4 in blood vessel formation (12). The
exact mechanism needs to be elucidated.

Angiogenesis is the normal process
required for the development of an exten-
sive vasculature. With its over 60 trillion
endothelial cells, the vascular network is
the first and the largest organ to develop
in the human body (13). It mainly occurs
during embryonic development. In adults,
angiogenesis is a highly regulated process
only occurring during the retinal devel-
opment, in the adult intestinal villi and
in the female reproductive organs (14).
The postnatal angiogenesis may take place
through one of the two possible mecha-
nisms; (1) vasculogenesis – the de novo gen-
eration of blood vessels from endothelial
progenitor cells (EPCs) or mesoderm and
more commonly (2) angiogenesis, which is
the sprouting/branching of the pre-existing
blood vessels – together they are called
neoangiogenesis. Angiogenesis is a highly
complex series of sequential events orches-
trating various molecular events involving
multiple cell populations, cytokines, and
chemokines. It takes place in two impor-
tant steps; (1) formation of a nascent
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Murad TLR4 in inflammation and angiogenesis

vascular network and (2) its subsequent
maturation. The degradation of extracel-
lular matrix (ECM) allows the sprouting
of EPCs from old vessel into an avascu-
lar space and differentiation into nascent
vasculature under the influence of pro-
angiogenic factors. The maturation process
involves the recruitment of supporting
cells (mural cells) and vessel remodel-
ing. Mural cells include vascular smooth-
muscle cells (VSMC) in arteries, arteri-
oles, and veins; pericytes in capillaries (15,
16). They provide structural integrity to
the developing vasculature and may also
interact with the endothelial cells, through
paracrine signaling. Pro-angiogenic factors
such as the vascular endothelial growth fac-
tor (VEGF); the basic fibroblast growth
factor (bFGF); the transforming growth
factor beta (TGF-β); the platelet-derived
growth factor (PDGF); the tumor necro-
sis factor alpha (TNF-α); the insulin-like
growth factor-1 (IGF-1); the monocyte
chemotactic protein (MCP)-1; interleukin
(IL)-6 and 8 all help in the recruitment
of cells, ECM degradation, and with vessel
development and maturity (14). An impor-
tant empirical role played by TLR4 in the
lymphocytic activation, recruitment, and
release of cytokines is evident in TLR4-
deficient mice. Such mice are reported to
display significantly impaired expression of
pro-inflammatory cytokines after reperfu-
sion triggered by retinal ischemia injury
(17). The process of lymphangiogenesis
was shown to be affected in TLR4-deficient
mice through lack of macrophage recruit-
ment by TLR4+ lymphatic endothelial cells
(LEC) (7).

As one of the two main sources of
cytokines, macrophages play a critical role
in the leukocyte trafficking and the post-
natal angiogenesis. TLR4-mediated LPS-
activated macrophages have been shown
to be an important source of pro-
angiogenic factors. Accumulating evidence
shows that antigenic stimulation and the
surrounding cytokine environment can
have profound effects on the activation
status and the functional capabilities of
macrophages. Although there are vari-
ous schools of thought regarding the
macrophage activation status, here, we
focus on two; the M1 and M2 pheno-
types. The classical activation or M1 phe-
notype of macrophages contributes sub-
stantially toward anti-microbial immune

responses via the production of pro-
inflammatory cytokines such as IL-6,
IL-8, IL-12, inducible nitric oxide syn-
thase (iNOS), and interferons (IFNs) (18)
(Figure 1). The alternate activation of
macrophages may lead to the M2 phe-
notype, which is reported to be involved
in the wound repair and fibrosis by con-
tributing toward angiogenesis through the
VEGF production (19). The strong mito-
genic effect on the endothelial cells and
the induction of vascular permeability are
the pro-angiogenic effects, which makes
VEGF the most potent simulator of angio-
genesis. In murine macrophages and other
TLR4+ cell populations, a strong syner-
gism is reported to significantly influ-
ence the production of VEGF. Endotox-
ins (including LPS) together with the
growth factors and cytokines such as IFN-
γ, TGF-β, IL-1, and IL-6 have been impli-
cated in a significant augmentation in
VEGF levels (20–24). In this regard, the
synergism reported between TLR4 and
adenosine receptor 2A (A2AR) in the
murine macrophages (M2) is noteworthy
(Figure 1) (25). Adenosine receptor sig-
naling plays an important role in inflam-
mation. Adenosine is produced by many
different cell types and is elevated in con-
ditions such as hypoxia, ischemic con-
ditions, and stress. So far, four adeno-
sine receptors have been reported, i.e.,
the A1, A2A, A3B, and A3 receptors (26).
The synergistic effect of A2AR is not
restricted to TLR4, but TLR2, 7, and 9
also lead to high VEGF production in
the presence of adenosine signaling (22).
Both TLR4 and A2AR were shown to
signal through hypoxia inducible factor
(HIF)-1α and hypoxia response element
(HRE) (27). Although the TLR4 along
with its co-receptors are known to be
expressed on the endothelial cells, it is
not yet known whether the endothelial
cells share the synergistic effect of TLR4
with A2AR. The transcriptional expres-
sion of A2AR has been reported on the
endothelial cells; however, there are limited
number of studies in this context. Many
groups have demonstrated potent endothe-
lial responses to LPS in vitro (28–32).
However, there are reports supporting the
in vivo role of LPS in postnatal angiogen-
esis. A study conducted in murine tumor
model (metastatic) demonstrated the pro-
angiogenic effects of LPS. The LPS-induced

growth and metastasis of 4T1 experimental
lung metastases model was shown to
take place through increased angiogene-
sis, vascular permeability, and tumor cell
migration (33). The LPS-mediated angio-
genic effects can be reversed through
TLR4 downregulation. While studying the
anti-inflammatory affects of a compound
known as Baicalein, its anti-angiogenic
effects were shown to be carried out
through the downregulation of TLR4 and
its downstream mitogen-activated phos-
phate kinase (MAPK) pathway (34).

The ubiquitous and abundantly
expressed DAMPs are often found in
association with different anomalies.
One such commonly expressed pro-
tein is high mobility group chromatin
protein B1 (HMGB-1). It is a nuclear
DNA binding protein released by injured
or necrotic cells. Resting, non-activated
inflammatory cells, such as monocytes or
macrophages, contain HMGB-1 in their
nuclei. When these cells are activated by
LPS or inflammatory cytokines, HMGB-1
translocates in the cytoplasm, undergoes
acetylation, and is exocytosed. It is evi-
dent that excreted HMGB-1 acts like a
pro-inflammatory cytokine, therefore,
HMGB-1 can be regarded as a signal of
tissue injury and a mediator of inflamma-
tion (35). Macrophage-derived HMGB-1
has been shown to increase the endothelial
cell proliferation, sprouting, and chemo-
taxis by stimulating the migration of
adherent cells, such as fibroblasts and
smooth-muscle cells. In a recent study,
HMGB-1-TLR4 signaling was reported
to be an important mediator in retinal
neoangiogenesis in an oxygen-induced
retinopathy murine model (36). HMGB-1
is an important marker for tumor endothe-
lial cells and was shown to be necessary for
the sustained expression of pro-angiogenic
genes. A positive feedback mechanism has
been suggested for the HMGB-1 expres-
sion and that of its cognate receptors, i.e.,
TLR4 and receptor for advanced glycation
end products (RAGE) on the endothe-
lial cells. Thus HMGB-1 may prove to
be a promising target for interfering
with cancer-related angiogenesis (37).
However, there is some disagreement in
relation to the HMGB-1 as an endoge-
nous ligand for TLR4. The lack of an
LPS-free in vitro system makes it difficult
to study the signaling resulting exclusively
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Murad TLR4 in inflammation and angiogenesis

FIGURE 1 |TLR4 in postnatal angiogenesis.

from the TLR4-ligands other than LPS.
Even small traces of LPS can upregulate
TLR4 and can affect the interpretation of
results.

Ischemic diseases are one of the major
causes of morbidity and mortality. Treat-
ment of such disorders requires angio-
genesis. It is therefore the prime goal of
therapeutic angiogenesis to achieve this.
However, the close association between
angiogenesis and inflammation presents
an obstacle to the success of the therapy.
Most of the pro-angiogenic factors are also
pro-inflammatory. Therefore, the reperfu-
sion of ischemic tissues often results in
injury due to the microvascular dysregu-
larities and inflammation (edema) asso-
ciated with it. The activated endothelial
cells lead to an imbalance between oxy-
gen radicals and nitric oxide causing the
release of inflammatory mediators (38, 39).
The TLR4-deficient mice have been a valu-
able tool for studying the role of TLR4
in tissue-related ischemia–reperfusions
in vivo. A recent study reported the role
of TLR4-mediated responses contribut-
ing to the oxygen-induced neovascular-
ization in ischemic neural tissue (retina).

The TLR4-dependent responses, proposed
to be mediated through HMGB-1 release
in the ischemic neural tissue were found
to be impaired in TLR4-deficient mice,
revealing an important angiogenic role of
TLR4 in neural tissues (36). On the other
hand, there are several studies highlight-
ing the inflammatory role of TLR4 in var-
ious reperfusion–ischemic models in tis-
sues such as liver, lung, and intestine. Most
of these studies showed reduced inflam-
mation in relation to the injury induced
by the reperfusion of various organs after
a period of ischemia in TLR4-deficient
mice, thus, highlighting the inflammatory
role of TLR4 in reperfusion-related injury
models, without significant compromise
in angiogenesis (40–43). Considering these
reports, the dual role of TLR4 in angio-
genesis and inflammation comes to light,
which seems to be governed by an intricate
balance between the inhibitory or stimu-
latory factors that may be tissue-specific.
Nevertheless, TLR4 remains a promis-
ing target for suppressing the undesired
and prolonged inflammatory responses. In
this regard, various synthetic and plant-
derived therapies are currently being tested.

TLR4-blocking through small molecule
inhibitors and antibodies are being eval-
uated in pre-clinical trials for their effi-
cacy in various inflammatory conditions.
Novimmune is a humanized counterpart
of rat anti-TLR4 monoclonal antibody;
1A6, found to reduce inflammation in a
murine colitis model. It is undergoing pre-
clinical evaluation for the treatment of the
inflammatory bowel diseases (44–46). Var-
ious plant-derived drugs such as wogono-
side and celastrol have shown promis-
ing results against TLR4-mediated LPS-
induced angiogenesis in pre-clinical drug
testing (47, 48).

In conclusion, it can be said that the
close association between inflammation
and angiogenesis makes the therapeutic
modulation of TLR4 somewhat challeng-
ing and can lead to potential side effects.
Therefore, the fine tuning of TLR4 and its
associating proteins is required in order to
circumvent the undesired inflammatory or
angiogenic responses associated with TLR4
targeting in various pathologies. For that
purpose, further insight into its in vivo
networking and the effects of TLR4 target-
ing in various pathologies through the use
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of closely related animal disease models is
required.
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