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INTRODUCTION
Pregnancy poses a challenge to normal
mechanisms of immune recognition and
rejection: both the mother and her fetus
are exposed to allogeneic cells from one
to the other. In the case of the mother,
these cells are fetal cells carrying pater-
nal antigens; in the case of the fetus, they
are maternal cells expressing non-inherited
maternal alloantigens (1, 2). Since adap-
tive immune recognition of these alloanti-
gens could result in mutual rejection and
an end to the pregnancy, there are exten-
sive mechanisms in place to inhibit such
responses, including poor antigen presen-
tation (3), non-canonical MHC expres-
sion, and unique placental and decidual
immunomodulatory cell populations (4).
The reader is referred to several excellent
reviews on this subject (4–7).

Given the inherent difficulties attend-
ing experiments in humans, studies of
the fetal–maternal interface have focused
primarily on inbred strains of laboratory
mice. There are, however, major differences
between the biology of immune system
development of such mice and that found
in humans, making it challenging to relate
findings in one species to the other. In
mice, by example, mature αβ T cells col-
onize peripheral lymphoid organs during
very late gestation and do not fully popu-
late the periphery until after birth (8). By
contrast, mature αβ T cells can be found
in the periphery of the human fetus as
early as 10–12 gestational weeks (5, 9).
Thus, early hypotheses posited that in utero
tolerance was maintained by a passive or
inert fetal immune system (similar to that
found in the mouse) (Figure 1A). However,
current research suggests that there exist
distinct fetal programs both in the T and
myeloid compartments that contribute to

the unique environment in utero, both in
mice and in humans (Figures 1B,C).

FETAL T CELL DEVELOPMENT AND
FUNCTION
Early work in quail chick embryos demon-
strated that thymic T cell development
occurs in sequential waves, each of which
can be identified by differential stem
cell colonization of thymic tissue and by
unique TCRs (10). These waves appear
to be developmentally regulated as they
wax and wane according to embryonic
gestational age (10), and further work in
mice has identified discrete TCR (γδ) uti-
lization during fetal and neonatal devel-
opment as compared to the adult TCR
(αβ) (11–15). Fetal-derived γδ T cells
have limited TCR diversity, suggesting a
distinct and limited antigen recognition
repertoire (12). Furthermore, these cells
appear to localize to specific tissues, includ-
ing the epithelium (16) and the intes-
tine (17). This localization and restricted
TCR repertoire suggest that these fetal-
derived cells may play a unique role in bar-
rier sites and, as they are developmentally
restricted, may be important for promot-
ing tolerance to skin and gut microbiota in
early life.

Because of their distinct TCR repertoire
and anatomical location, multiple fetal-
derived functional populations have been
characterized in mice, including dendritic
epidermal T cells (DETCs) and non-DETC
γδ T cell populations found in the dermis
(18, 19). DETCs are the first T cells and
seed the epidermis early in development
(20). These cells have been implicated in
the inhibition of inflammatory skin con-
ditions (21), protection against cutaneous
malignancies (22, 23), and wound repair
(24, 25). Non-DETC γδ T cell populations

have been shown to be the primary pro-
ducers of IL-17 (18, 19) in the skin and
may play a role in response to infection.

These functions may be indicative
of a fetal-specific program, ontologically
geared toward appropriate development
and maintenance of in utero tolerance.
Work in humans has demonstrated that
while fetal T cells are capable of recognizing
and responding to alloantigen in utero (1),
these cells preferentially differentiate into T
regulatory (Treg) cells, capable of suppress-
ing immune responses (1, 26). Further-
more, these studies show that the fetal T
cells are derived from a fetal hematopoietic
stem/progenitor cell (HSPC) in the fetal
liver and fetal bone marrow, which gives
rise to downstream progeny that are dis-
tinct from those generated by adult bone
marrow-resident HSPC.

Taken together, these data suggest that
there are developmentally restricted win-
dows of T cell development in which
fetal T cells, functionally distinct from
their adult counterparts, arise from dis-
crete HSPC, and seed specific anatomical
locations (Figure 1B,C).

FETAL MYELOID DEVELOPMENT AND
FUNCTION
The discovery that distinct HSPC give rise
to either fetal or adult T cell progeny raises
the possibility that there may be differ-
ences in other lineages of blood cells as
well. Thus, there has been extensive work
in human and mouse models elucidating
the pathways of regulation of fetal as com-
pared to adult hemoglobin in red blood
cells (27–30). Work in mice has meanwhile
demonstrated that the presence of fetal-
derived B1 cells, with distinct innate-like
functions as compared to the adult B2 cells
(31–36). Given the multilineage potential

www.frontiersin.org July 2014 | Volume 5 | Article 314 | 1

http://www.frontiersin.org/Immunology
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/about
http://www.frontiersin.org/Journal/10.3389/fimmu.2014.00314/abstract
http://www.frontiersin.org/people/u/164667
http://www.frontiersin.org/people/u/168852
mailto:mike.mccune@ucsf.edu
http://www.frontiersin.org
http://www.frontiersin.org/Immunotherapies_and_Vaccines/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Krow-Lucal and McCune Functional programs in fetal lineages

Massive an!gen 

exposure at birth An!gen Exposure

Ini!al pool of 

naïve/immature cells

A

B

C

FIGURE 1 | Models of human immune development. Throughout different stages of
development, fetal T and myeloid cells, as compared to their adult counterparts, specifically populate
a subset of tissues including the epithelium (DETC, non-DETC cells, and Langerhans cells), the brain
(microglia), and the heart (cardiac macrophages). This differential population of tissues depending on
developmental stage suggests that immune maturation does not proceed in a linear fashion and is
rather a specifically timed layering of cells with distinct functions, giving rise to specialized
tissue-resident populations. (A) Linear model of immune development. Previous work suggested
that the fetal immune system is completely naïve. After birth, it is exposed to massive antigenic
doses and matures into the adult immune system. (B) The layered model of immune development.
Several types of HSPC appear sequentially and function at specific times during development in a
cell autonomous manner, creating unique layers of HSPC-derived cells with different functional
outcomes. During gestation, cells are derived from a fetal HSPC and have a specific functional
outcome; while in the adult, the vast majority of the cells come from an adult HSPC that has an adult
functional outcome. This model suggests that there is a period between 20 gestational weeks and
6 months to a year after birth where there is an admixture of fetal and adult-derived cells, and that it
is this admixture of functionally different cell populations that gives rise to inter-individual differences
observed in the neonatal immune response. (C) The maturation model of immune development.
Fetal cells mature into adult cells such that at birth there are cells with a mixture of both fetal and
adult characteristics.

of HSPCs, it was also evident that there
should be a distinct lineage of fetal- or
adult-derived myeloid cells.

In mice, the first hematopoietic prog-
enitors emanate from the extra-embryonic
yolk sac and are engaged in primi-
tive hematopoiesis (E7.0–E9.0) (37, 38).
“Definitive hematopoiesis” occurs inde-
pendently in the aorta, gonads, and
mesonephros (AGM) region (37, 38). At
E10.5, progenitors colonize the fetal liver,
the major site of hematopoiesis early
in development (38). These waves of
hematopoiesis promote egress of various
monocyte and macrophage populations,
which then give rise to various tissue-
resident myeloid populations, including
microglia (39), Langerhans cells (LC) (40),
and cardiac macrophages (41).

Microglia are the resident macrophage
population in the brain and are associated
with brain inflammatory diseases. Studies
have shown that microglia arise from prim-
itive myeloid progenitors (before E8.0) and
are not replaced by circulating monocytes
in the adult. Whether or not these fetal-
derived cells have distinct functions that
differ from an equivalent adult counterpart
remains unknown.

Langerhans cells are found in the epi-
dermis of both human and mouse skin.
Recent work has demonstrated that LCs
are derived from a yolk sac myeloid pop-
ulation during early embryogenesis and
then replaced by fetal liver monocytes late
in embryogenesis (40). LCs were origi-
nally described as pro-inflammatory anti-
gen presenting cells (42); in recent years,
however, it has become evident that they
can also be involved in – and, indeed,
are essential for – the induction of Tregs
after infection (43), UV irradiation (44),
and glucocorticosteroid stimulation (45).
In humans, LCs are able to induce IL-
22, but not IL-17, producing T cells (46),
potentially suggesting a role in barrier
maintenance as opposed to inflamma-
tory processes. LCs also have a limited
Toll-like receptor repertoire, including low
TLR2, TLR4, and TLR5 expression, lead-
ing to attenuated responses to both Gram-
positive and Gram-negative bacteria (while
leaving viral responses completely intact)
(47). Similar to the limited TCR repertoire,
this suggests that LCs may be playing a role
in tolerization to the skin microbiome.
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Recent work highlights the fact that
other fetal-derived populations exist in var-
ious organs, including lung, liver, spleen,
and kidney (41). Furthermore, it has
been shown that these populations persist
and regenerate in situ, rather than being
replaced by the circulating adult monocyte
pool (40, 41, 48–50). Thus, these function-
ally distinct fetal-derived myeloid popula-
tions persist into adulthood and can affect
immunological outcomes throughout the
life of the organism.

MODELS OF IMMUNE DEVELOPMENT
Fetal-derived lymphoid and myeloid cells
colonize specific anatomical locations and
have distinct functions from their adult
counterparts. Many of these functions
seem tied to barrier integrity and induction
of tolerogenic mechanisms. Ontologically,
this could be a developmental program
designed to allow in utero tolerance to non-
inherited maternal alloantigens as well as to
promote tolerance to commensal bacteria.
These distinct functions, as well as the iden-
tification of a fetal HSPC (26), suggest that
immune maturation in humans may pro-
ceed in a layered fashion (51), with a fetal
system that pre-dominates in utero and an
adult system that pre-dominates later in life
(Figure 1).
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