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the intestine, and are selectively dependent in their development on the transcription factor
Batf3. XCR1* DC are located in the villi of the lamina propria of the small intestine, the T cell
zones of Peyer’s patches, and in the T cell zones and sinuses of the draining mesenteric
lymph node. Functionally, we could demonstrate for the first time that XCR1+/CD103*
CD11b~ DC excel in the cross-presentation of orally applied antigen. Together, our data
show that XCR1 is a lineage marker for cross-presenting DC also in the intestinal immune
system. Further, extensive phenotypic analyses reveal that expression of the integrin SIRPa
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INTRODUCTION
The intestinal immune system has to discriminate between harm-
less food proteins, commensal bacteria colonizing the gut, and
dangerous pathogens. Dendritic cells (DC) play a central role
in orchestrating the appropriate immune responses. Conven-
tional DC reside in the lamina propria (LP) of the small and
large intestine, in the scattered lymphoid follicles and Peyer’s
patches (PP), and in lymph nodes draining the intestine, such
as the mesenteric lymph nodes (MLN). In the past, any subdivi-
sion of intestinal DC into functional subpopulations was con-
troversial because DC-specific markers were lacking and other
surface molecules used for classification were found to be regu-
lated or were also present on macrophages (1-6). A major step
forward was the combined use of antibodies directed to the
integrins CD103 and CD11b, which allowed to define four DC
subsets, CD103" CD11b~, CD103* CD11b*, CD103~ CD11b*,
and CD103~ CD11b~ (7-9), which in the MLN were further
grouped into resident and migratory DC (10). Because of open
questions regarding the subdivision of DC in the intestine, only
very few studies on antigen presentation were performed with
intestinal DC.

Most of the work on the function of DC has been performed
with splenic DC populations. These studies demonstrated that all

classification system for intestinal DC based on the expression of XCR1 and SIRPa.
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DC can present exogenous antigen to CD4™ T cells (classical pre-
sentation), while only a subset excels in the cross-presentation of
antigen to CD8™ T cells (11, 12). Cross-presentation is a central
element in the activation of CD8T T cells to cytotoxic effector cells,
and thus of major importance in the defense of certain infections
and in the elimination of tumors (13-15). Based on the commonly
used classification of splenic DC, numerous studies established
that CD8a™ DC excel over CD4* DC and double-negative DC in
their capacity to cross-present (cell-associated) antigen. Because
of the different DC classification systems used, it remained unclear
whether these splenic CD8a™ DC have a correlate among the
intestinal DC.

A major advance for a unified classification of DC throughout
the immune system was brought by analyses on the role of tran-
scription factors (TF) in the differentiation of DC. These studies
revealed that CD8a™ DC in the spleen and CD103* CD11b™ DC
in the intestine and other organs were specifically absent in ani-
mals deficient for the TF Batf3 (16, 17). These findings strongly
indicated that CD8a™* DC in the spleen and the lymphoid organs
correspond to CD103" CD11b~ DC in tissues, and together rep-
resent a separate DClineage of cross-presenting DC. The intestinal
CD103% CD11b~ DC were thus subsequently also termed as
“CD8a-like DC” or “Batf3-dependent DC.”
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Recently, we and others have recognized that the chemokine
receptor XCR1 is exclusively expressed on murine (18) and human
DC (19, 20). In the murine system, expression of XCR1" DC was
found to be restricted to CD8a™t DC in the spleen and CD8a-like
DC in peripheral organs (18, 21, 22). However, in a subsequent
more detailed analysis it became apparent that splenic CD8a™
DC are not identical to XCR1T DG, since these two popula-
tions only overlap (21). We could firmly establish that splenic DC
expressing both XCR1 and CD8a™, or only XCRI1, belong to the
Batf3-dependent, antigen-cross-presenting DC (21). In contrast,
CD8a™ DC lacking XCR1 on the cell surface are a clearly different
population, which (i) is independent of Batf3, (ii) has a distinct
gene expression program (23), and (iii) is functionally different,
as it is unable to cross-present antigen (21). With this work, it
became clear that the identified lineage of Batf3-dependent DC
in the spleen (and possibly other organs) is truly represented by
DC expressing XCR1. At the same time, this work determined
that “CD8at DC” are in reality a phenotypically and functionally
heterogeneous population.

With the present study, we analyzed the development, pheno-
type, localization, and function of XCR1V cells in the intestinal
immune system to find out whether they correspond to XCR1*
DC in the spleen. Although our work was focused on XCR1*
DC, most of the experiments also yielded information on XCR1~
DC, which were used for comparison. The results demonstrate
that the expression of XCR1 also in the intestinal immune system
consistently demarcates the lineage of Batf3-dependent, antigen
cross-presenting DC. At the same time, we show that intestinal
XCRIT DC strongly overlap, but are not fully congruent with
CD103" CD11b~ DC.

Further, our extensive phenotypic studies demonstrate that
XCR1 and SIRPa delineate two mutually exclusive DC popula-
tions, which together encompass essentially all conventional DC
in the intestine. Based on these results, we propose a new and sim-
plified classification system for conventional DC in the intestine
based on only two surface markers, XCR1 and SIRPa.

MATERIALS AND METHODS

MICE AND Fit3-LIGAND TREATMENT

Unless indicated otherwise, 8—10-week-old C57BL/6 female mice
were used for cell isolation and immunohistological analyses.
CX3CRI1%FP (24), Langerin®SFP mice (25), B6.XCR1-lacZ '+ (The
Jackson Laboratories), and Batf3-deficient mice (16) were on the
C57BL/6 background. OT-I TCR-transgenic mice were crossed
onto the B6.PL background to allow identification of CD8T T
cells using the CD90.1 marker. For Flt3-ligand treatment, C57BL/6
mice were injected with 1 x 10° B16 cells secreting Flt3-ligand (26)
in 100 1 PBS s.c. All mice were bred under specific pathogen-free
conditions in the animal facility of the Federal Institute for Risk
Assessment (Berlin, Germany). All animal experiments were per-
formed according to state guidelines and approved by the local
animal welfare committee.

ANTIBODIES

Hybridomas producing mAb recognizing CD4 (clone YTS
191.1), CD8a (53-6.72), CD11b (5C6), CD11c (N418), CD16/32
(2.4G2), CD24 (M1/69.16.11.HL), CD45R/B220 (RA3-6B2),

DCIR2 (33D1), MHCII (M5/114.15.2), and NK1.1 (PK136) were
obtained from ATCC, CD90.1 (OX-7) from ECACC. MADb to
CD103 (M290), CD172a/SIRPa (P84), and CD11c (HL3) were
from BD Biosciences, to CD69 (H1.2F3), CD45 (30F11), and
CCR7 (4B12) from eBioscience, and to CD3 (17A2), F4/80
(BM8),and CD45R/B220 (RA3-6B2) from BioLegend. Anti-XCR1
[MARX10 (21)] and anti-Clec9A/DNGR-1 [clone 24/04-10B4
(27)] antibodies were used. Anti-CD3 (KT3) was generously
provided by H. Savelkoul, anti-CD25 (2E4) by E. Shevach, and
anti-DEC-205 (NLDC-145, CD205) by G. Kraal.

CELL ISOLATION

For isolation of small intestinal LP DC, the small intestine was
freed from fat and PP, opened longitudinally, and stirred in PBS,
2% FCS, 1 mM EDTA, 1 mM DTT for 7 min at 37°C. After addi-
tional stirring under the same conditions without DTT, epithelial
cells in solution were discarded, intestinal tissue was minced, and
stirred in 500 pg/ml collagenase VIII (in some experiments, col-
lagenase D was used instead in an attempt to improve staining
of Clec9a, both from Sigma) and 20 jng/ml DNAse I (Roche) for
30min at 37°C; thereafter, cells were mashed through a 70 pm
nylon sieve (BD Falcon). For isolation of DC from lymphoid
tissues, MLN and PP were ruptured and digested with collage-
nase D (500 ng/ml) and DNase I (20 ug/ml, both Roche) for
15min at 37°C in RPMI 1640 containing 2% FCS (low endo-
toxin, Biochrom); EDTA (10 mM) was added for additional 5 min
and cells were mashed through a 70 wm nylon sieve. For stain-
ing of DC from LP and PP, low density cells from these tissues
were enriched by centrifugation over a 1.073 g/ml density gradi-
ent (NycoPrep, Axis-Shield). For flow sorting of DC from LP and
MLN, low density cells were enriched and magnetically sorted with
CD11c microbeads (Miltenyi Biotec). Splenocytes were obtained
by mashing spleens through 70 pm cell sieves into PBS, followed
by erythrocyte lysis with ACK Buffer (155mM NH4Cl, 10 mM
KHCOs3, 0.1 mM EDTA).

FLOW CYTOMETRY AND FLOW SORTING

Antibodies were titrated for optimal signal-to-noise ratio. To block
unspecific binding to Fc-receptors, cells were pre-incubated with
100 pg/ml 2.4G2 mAb for flow cytometry and in addition with
50 wg/ml purified rat Ig (Nordic) for flow sorting. Doublets and
autofluorescent cells were excluded from the analysis. In all organs,
DC were identified as CD11ct MHCIIT Lin~ F4/80~ cells, in
LP and PP DC were additionally defined using CD45; the lineage
cocktail contained mAD directed to CD3 and B220. Standard stain-
ing with mAb was in PBS, 0.25% BSA, 0.1% NaN3 for 20 min on
ice, staining for Clec9A was in the same buffer for 20 min at 37°C.
For exclusion of dead cells, 4’,6-diamidino-2-phenylindole (DAPI)
was added 5 min before measurement. Data were acquired on an
LSRFortessa flow cytometer (BD Biosciences) and analyzed using
FlowJo (Tree Star Inc.). For analysis of surface receptor expres-
sion, gates were set according to the appropriate isotype/FMO
controls. Flow sorting of small intestinal DC (CD11¢™ MHCIT™
CD45% Lin~ F4/80~), migratory MLN DC (CD11ct MHCIIigh
Lin~ F4/807), and resident MLN DC (CD11c¢t MHCII'®¥ Lin~
F4/807) was based on their expression of CD103 and XCR1 and
performed on a FACSAriall (BD Biosciences).
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HISTOLOGY

For histological $-galactosidase analysis, tissues from homozygous
B6.XCR1-lacZ*/* mice and C57BL/6 mice were fixed with 0.1%
glutaraldehyde plus 4% paraformaldehyde in PBS for 4h at RT,
immersed in 10% sucrose overnight, and snap-frozen in 0.9%
NaCl. Cryostat sections (15 pm) were washed with cold PBS (pH
7.4) for 5 min after thawing, incubated with X-Gal staining solu-
tion (28) overnight at 37°C, washed with PBS, and counterstained
with Neutral Red.

CROSS-PRESENTATION ASSAY

C57BL/6 mice were fed with 25mg ovalbumin (OVA, Sigma-
Aldrich) in 500 ul PBS by gavage. Seventeen hours after oral
application of OVA, DC subsets were flow sorted to high purity
(>98.5%). OT-1 CD8™ T cells were enriched from spleens of OT-
I mice by magnetically depleting cells expressing CD4, CD11b,
CD11c, B220, or NK1.1 (Miltenyi Biotec). Preparations of rest-
ing OT-I T cells (confirmed by negativity for CD25 and CD69)
were labeled with CFSE (Molecular Probes, 5 uM, 15 min, 37°C).
For cross-presentation assays, 1 x 10°> CFSE-labeled OT-1 T cells
were co-cultured with titrated numbers (3,750-30,000) of DC

subsets in 200 w1l RPMI medium containing 10% FCS, 50 uM 2-
mercaptoethanol, 1 mM sodium pyruvate, non-essential amino
acids, and 100 pg/ml penicillin/streptomycin in 96-well round-
bottomed plates (Nunc) for 2.5 days. Thereafter, proliferation of
OT-IT cells was determined in the CFSE dilution assay after gating
on CD90.1 cells. For positive control, sorted DC were incubated
with 1 uM of the OVA peptide SIINFEKL, and co-cultured with
CFSE-labeled OT-I T cells for 2.5 days.

RESULTS

PHENOTYPE OF XCR1* DC IN THE LAMINA PROPRIA, PEYER'S
PATCHES, AND MESENTERIC LYMPH NODES

To determine the phenotype of XCR1™ DC in the intestinal
immune system at steady state, mononuclear cells were obtained
from the LP of the small intestine, PP, and MLN. Conventional DC,
defined as lineage-negative, F4/80-negative, CD11c" MHCIIM
cells by flow cytometry, were then gated into four populations
based on the expression of the integrins CD103 (Itgae) and CD11b.
In the LP, essentially all CD103" CD11b™ DC expressed XCR1,
while almost all CD103" CD11b* and CD103~ CD11b™ DC
were negative (Figure 1). Interestingly, a fraction (around 10%) of
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FIGURE 1 | Expression of XCR1 on DC in the lamina propria, Peyer’s
patches, and mesenteric lymph nodes. DC from the LP, PP and MLN of
C57BL/6 mice were enriched by digestion and density gradient centrifugation
of the tissues, stained for CD11b and CD103, and counterstained with
XCR1-specific mAb MARX10. DC from MLN were separated into resident and
migratory DC based on their MHCII expression levels. For analysis, the gates
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were set on live CD45* Lin~ F4/80- CD11ct MHCII* cells. Expression of
XCR1 is shown on CD103* CD11b~ (left upper quadrants), CD103* CD11b*
(right upper quadrants), CD103~ CD11b* (right lower quadrants), and CD103~
CD11b~ (left lower quadrants) DC. The background staining was determined
with homozygous B6.XCR1-lacZ** mice lacking XCR1 (gray). The results
shown are representative of three experiments with three animals each.
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the small population of CD103~ CD11b~ (double-negative) DC
found in the small intestine also expressed XCR1 (Figure 1). In
the PP, a large majority (around 80%) of CD103* CD11b~ DC
expressed XCR1, while all other populations resembled in their
XCR1 expression profile LP cells (Figure 1). In MLN, expression
levels of MHCII were used to further discriminate resident from
migratory DC (10). Migratory DC subpopulations closely resem-
bled in their XCR1 expression pattern LP DC (Figure 1). Different
from LP, PP, and migratory MLN DC, the CD103~ population
in the resident MLN DC contained a substantial proportion of
XCRI1T DC (Figure 1). Taken together, our results, based on the
currently popular subdivision of intestinal DC using CD103 and
CD11b as markers, demonstrated alarge but clearly not full overlap
between XCR1™ DC and CD103+ CD11b~ DC.

To further define the phenotype of XCR1* DC at the exam-
ined locations, expression of XCR1 was correlated to a greater
number of surface molecules known to be expressed on DC in
the intestine. In the steady state, expression of XCR1 was found
to be highly correlated with CD8a on DC in the LP, PP, and MLN
(Figure 2). Only a small population of resident MLN DC expressed
CD8a, but was negative for XCR1 (Figure 2), as earlier found in
the spleen (21). In tissues where expression of Clec9A/DNGR-1
on DC was detectable, it was highly correlated with XCR1. Sur-
face presence of XCR1 corresponded well with CD205 in the LP
and MLN, but less so in the PP. All XCR1* DC were positive for
CD24 and also the majority of XCR1~ DC. XCR1*" DC usually
co-expressed the integrin CD103, which in resident MLN DC was
found to be partly downregulated. XCR1" DC were low/negative
for CX3CR1/fractalkine receptor, and with the exception of a pop-
ulation of resident MLN DG, also negative for CD207/langerin.
In all instances, XCR1T DC were negative for 33D1/DCIR2 and
CD11b, but neither of these molecules was anti-correlated. Finally
and importantly, only CD172a/SIRPa was clearly anti-correlated
with XCR1 and also encompassed all XCR1~ DC.

In summary, none of the surface molecules examined was fully
correlated with XCR1 on DC in all anatomical locations. The
best overall correlation of XCR1 was seen with CD8a and with
Clec9A/DNGR-1 (when detectable), indicating a functional link
between these three receptors. Further, XCR1 was substantially,
but not fully, correlated with CD205 in all tissues. On the other
hand, a perfect anti-correlation could be observed between XCR1
and SIRPa in all anatomical sites, which was not the case between
XCR1 and CD11b.

EXPANSION OF INTESTINAL DC POPULATIONS UNDER THE INFLUENCE
OF Fit3 LIGAND

Flt3 ligand is a growth factor described to play a key role in the
physiological expansion of classical CD8" DC (29). We have previ-
ously observed that Flt3 ligand expanded XCR1" DC in the spleen
around 20-fold, while XCR1™ DC were expanded only around
4-fold (21). In order to determine whether the same phenome-
non can be observed in the intestinal immune system, mice were
exposed to Flt3 ligand and the composition of the various DC
populations was determined by flow cytometry. Under the influ-
ence of Flt3 ligand, both XCR1" CD103" and XCR1~ CD103™
increased in frequency, and this was accompanied by a substan-
tial relative reduction of XCR1~ CD103% DC in all anatomical
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FIGURE 2 | Correlation of XCR1 expression with different DC surface
molecules. DC from the LR PR and MLN of C57BL/6 wt mice, and
heterozygous CX;CR1°™ or Langerin®¢ (CD207) mice were enriched by
digestion and density gradient centrifugation and double-stained for
detection of XCR1 and the indicated surface molecules. For analysis, the
gates were set on live CD45* Lin~ F4/80~ CD11c™ MHCII* cells. The results
shown are representative of three experiments with three animals each.

sites (Figure 3, flow cytometry histograms). In terms of absolute
cell numbers, all DC populations increased under the influence of
Flt3 ligand, with biggest changes in PP and MLN. There, XCR1*
CD103" and XCR1~ CD103~ DC expanded both around 30-fold

Frontiers in Immunology | Mucosal Immunity

July 2014 | Volume 5 | Article 326 | 4


http://www.frontiersin.org/Mucosal_Immunity
http://www.frontiersin.org/Mucosal_Immunity/archive

Becker et al.

Characterization of XCR1* DC in the intestine

FIt3L: - +
498
o i
8|
a
o )
15
600 -
PP A
400
11%.3 82| [17.0 17.9
200 J
Sl |- skl 100 4
ol
O i~ 507
415 03| 1605 4.6 o]
100 -
MLN A
migratory 80
46.1 37.7] [286
60
[ =
e 40 5
[a)
o i 20
156" 0.6 0]
200 -
MLN A
resident o | 150 ]
7.4 25.0] 3.9 278 2
©
P 5 | 100
= T
3 o | s0
8.7 . 0l
XCR1 o,s’*’ o,s“’ 0,\& 0"65
\,(: \xo <o \0
& & & &
R SR

FIGURE 3 | Expansion of intestinal XCR1* DC by the growth factor FIt3
ligand. C57BL/6 mice were exposed to Flt3 ligand for 9 days in vivo.
Thereafter, DC from the LR PR and MLN (CD45" Lin- F4/80- CD11¢c*
MHCII* cells) were analyzed for expression of CD103 and XCR1, and
compared to unexposed controls (flow cytometry histograms). The bar
graphs represent the fold increase in total numbers of the indicated DC
subsets in relation to unexposed controls. The data shown are
representative of two independent experiments (mean + SEM; in each
experiment n=3).

and thus more than XCR1~ CD1031 DC (10-fold), while the most
dramatic change was seen with the usually minute population of
XCRI1* CD103~ DC (up to 400-fold increase). Thus, the effects of
Flt3 ligand on the expansion of intestinal DC subsets were more
complex than in the spleen, with a massive expansion of XCR1"
CD103~ DC, but a similar expansion of XCR1* CD103" and
XCR1™ CD103™ DC.

XCR1+ DC IN THE INTESTINAL IMMUNE SYSTEM ARE
BATF3-DEPENDENT

The development of CD8a™ DC has originally been described to
be dependent on the TF Batf3 (16). However, we recently found
that in the spleen only CD8' XCR1* DC were dependent on this
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FIGURE 4 | Development of intestinal XCR1* DC is dependent on the
transcription factor Batf3. DC (CD45* Lin~ F4/80~ CD11c* MHCIIF) from
LR PR and MLN cells of C57BL/6 wt controls and Batf3-deficient mice
were stained for XCR1 and CD103 (left part of figure). Total numbers of the
indicated DC subsets obtained from wt (black bars) and Batf3-deficient
mice (open bars) are shown (right part of figure). The results shown are
representative of two experiments (mean &+ SEM; in each
experiment, n=23).

TE but not the CD8a™ DC population negative for XCR1, which
has a clearly different gene expression profile and function (21,
23). In order to determine the influence of Batf3 on the devel-
opment of intestinal DC, we analyzed Batf3-deficient animals on
the C57BL/6 background. In all anatomical sites, Batf3 deficiency
essentially resulted in the absence of XCR1* DC, clearly demon-
strating that Batf3 is required for the development of XCR1T DC
in the gut (Figure 4).

POSITIONING OF XCR1+ DC IN THE LAMINA PROPRIA, PEYER'S
PATCHES, AND MESENTERIC LYMPH NODES

Due to the absence of specific markers, an unequivocal localization
of DC subsets in lymphoid tissues or organs was very challenging
in the past. To overcome these difficulties, we attempted to use the
XCRI1-specific mAb MARX10 for histological analyses of gut tis-
sues, but this approach gave a high background preventing a clear
discrimination from false positive signals. In the next approach,
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FIGURE 5 | Positioning of XCR1-expressing cells in the lamina
propria, Peyer’s patches, and mesenteric lymph nodes. Distribution
of XCR1* cells was determined in tissues of homozygous
B6.XCR1-lacZ*** reporter mice using X-gal, a chromogenic substrate for
B-galactosidase. (A) Lamina propria of the small intestine, (B) Peyer’s

patch, and (C) mesenteric lymph node. (D) Represents a staining
control using intestinal tissue from wt C57BL/6 mice containing a
Peyer's patch and adjacent portions of the small intestine. The arrows in
(A,D) indicate false positive signals obtained in the epithelial crypts of
the lamina propria.

we used B6.XCR1-lacZ/* mice, in which both XCR1 genes are
replaced by LacZ reporter genes, to localize XCR1™ DC. Histo-
chemical analysis of B-galactosidase activity in the small intestine
gave signals in the LP of the villi (Figure 5A). The somewhat
smaller multiple signals observed in the epithelial crypts of the LP
(Figure 5A, arrows) were consistently also present in control stain-
ings of wt tissues (Figure 5D, arrows) and have to be considered
as false positive. In PP, cells with B-galactosidase activity could be
found in the T cell zones, with some clustering in the interfollic-
ular region (Figure 5B). Interestingly, no signals for XCR1 were
detectable in the subepithelial dome of the PP, where CD11c™ cells
are also known to localize (30). In the MLN, XCR1 signals were
seen in the T cell zones and apparently in sinuses (Figure 5C),
similar to the results obtained with axillary LN earlier (18). The
positioning of XCR1" DC could thus be determined in the absence
of afunctional XCR1 (which has been replaced by B-galactosidase).
Whether the XCL1 ligand/XCR1 receptor axis influences the sublo-
calization of the XCR1T DC in intestinal tissues has yet to be
analyzed.

NO APPARENT INVOLVEMENT OF THE CHEMOKINE RECEPTOR XCR1 IN

THE MIGRATION OF DC TO MESENTERIC LYMPH NODES

In steady state, intestinal DC constantly migrate from the gut to the
MLN in a CCR7-dependent fashion (31, 32), and this migration
is further increased under inflammatory conditions (9, 33, 34).
Since XCR1 is also a chemokine receptor, we sought to determine
any involvement of XCR1 in the migration of DC from the gut
to the MLN, where the ligand XCL1 is secreted by NK cells at

steady state and at high levels by activated CD8™ T cells, NK cells,
and NKT cells (35, 36) (own unpublished data). In the first step,
expression of XCR1 was correlated with CCR7 under various con-
ditions. At steady state, CCR7 could not be detected on DC in the
LP, PP, or resident DC in the MLN, but could be found on the
majority of migratory DC (Figure 6). After intraperitoneal (i.p.)
administration of LPS, CCR7 became detectable on around 70%
of DC in the PP, but not on LP DC. Under inflammatory con-
ditions, CCR7 was also present on 50-60% of MLN DC, which,
due to their uniformly increased levels of MHCII, no longer could
be subdivided into resident or migratory DC. In all instances in
which CCR7 was detected, essentially all XCR1T DC co-expressed
CCRY7, suggesting that XCR1 could be involved in the migration
of XCR1™ DC into the MLN. We, therefore, performed a series of
analyses comparing wt mice with mice deficient for XCL1 (18), the
unique chemokine ligand of XCRI. In these experiments, absence
of XCL1 did not change the relative representation of the various
DC populations in the MLN at steady state or under inflammatory
conditions, or their CCR7 expression (own unpublished data). The
same observation was made with mice deficient for XCR1 (own
unpublished data). These functional experiments largely excluded
an involvement of the XCL1-XCRI axis in the immigration of DC
into the MLN.

XCR1+ MIGRATORY DC EXCEL IN CROSS-PRESENTATION OF ORALLY
APPLIED ANTIGEN

In order to test the ability of various intestinal DC populations to
cross-present orally applied antigen, mice were fed with 25 mg of

Frontiers in Immunology | Mucosal Immunity

July 2014 | Volume 5 | Article 326 | 6


http://www.frontiersin.org/Mucosal_Immunity
http://www.frontiersin.org/Mucosal_Immunity/archive

Becker et al.

Characterization of XCR1* DC in the intestine

A 10.1 0.2 {11 0.6

LP

124

PP

CCR7

MLN
migratory

136.3 18.4

MLN

resident

40,0

XCR1

FIGURE 6 | XCR1-expressing cells upregulate CCR7 after inflammation
in Peyer’s patches and MLN. C57BL/6 mice were injected i.p. with LPS or
with PBS for control, and the expression of CCR7 and XCR1 was compared
14 h later on DC (CD45* Lin~ F4/80- CD11¢* MHCII* cells) in LR, PR and
MLN. Shown is one representative experiment out of three.

soluble OVA, sacrificed 17 h later, and the various intestinal DC
subsets isolated to high purity (>98.5%). The DC subsets were
then co-cultured at various ratios with OT-I T cells to test their
capacity to cross-present the OVA-derived peptide SIINFEKL to
CD8™ T cells. When the percentage of proliferating OT-1 T cells
was determined after 2.5 days of culture, MLN migratory XCR1%
CD103" DC performed best in activating OT-I T cells in five
out of five experiments, while migratory XCR1~ DC, irrespective
of their CD103 expression, were less effective (Figure 7). Resi-
dent MLN DC also had a low stimulatory effect on OT-I T cells
(Figure 7). Interestingly, when LP DC subsets were tested in the
same experiments and thus directly compared with MLN DC,
essentially no proliferation of OT-I T cells was seen (Figure 7).
Since these LP DC were fully capable to activate OT-I1 T cells
when in vitro loaded with the peptide SIINFEKL, these results
suggested that LP DC did not present sufficient antigen to activate

OT-IT cells. Taken together, in all conditions, in which substan-
tial cross-presentation could be observed, migratory XCR1™ DC
outperformed all other DC populations in the cross-presentation
of orally applied antigen.

DISCUSSION

We have previously extensively characterized splenic XCR1T DC
using a variety of approaches. All results obtained were compati-
ble with the notion that the surface expression of the chemokine
receptor XCR1 characterizes the Batf3-dependent lineage of cross-
presenting DC (21). In the present work, we sought to determine
whether this finding can be extended to the intestinal immune
system.

Several levels of evidence indicate that XCR1™ DC, also in the
intestine, are a separate lineage of DC with a consistent phenotype
and a special ability to cross-present antigen. First of all, in animals
deficient for the TF Batf3 only XCR1" DC were consistently absent,
while DC bearing other surface markers were preserved. In partic-
ular, XCR1* CD103% and XCR1* CD103~ DC were absent, while
XCR1™ CD103" and XCR1™ CD103~ DC remained present.
Thus, in Batf3-deficient animals, only the XCR1" DC population
failed to differentiate from precursors, while the development of
XCR1~ DC remained intact.

Second, expression of XCR1 was in all instances closely corre-
lated with the expression of CD8a and Clec9A/DNGR-1 on DC
in all intestinal compartments and the draining MLN. Both CD8«a
and Clec9A/DNGR-1 have been identified in the past as integral
parts of the gene expression programs of splenic cross-presenting
DC and their putative correlates in the periphery (20). This high
correlation between expression of XCR1, Clec9A/DNGR-1, and
CD8a in various lymphoid tissues strongly suggests a cooperation
of these molecules in the specific function of cross-presenting DC.
While the contribution of CD8a in this process remains unclear,
XCR1 functions as the only receptor for XCL1 (37), a chemokine
mainly released by innate cells (NK, NKT) and CD8" T cells (35,
36), and thus cells involved in the cytotoxic response, and more
generally, in the type 1 immune defense. Clec9A/DNGR-1 has been
described as a receptor of actin filaments expressed by necrotic
cells, and is thought to contribute to the uptake of damaged cells
into cross-presenting DC (38, 39). In spite of this close correlation
between XCR1, CD8a, and Clec9A/DNGR-1 on (intestinal) DC,
it has to be stated that only XCR1 is specifically expressed on con-
ventional (intestinal) DC, while Clec9A/DNGR-1 is also present
on plasmacytoid DC (pDC) (27, 40), and CD8a on pDC, T cells,
NKT cells, and other cells.

Third, our data show that XCR1T DC excel in cross-
presentation also in the intestinal immune system. Only very few
cross-presentation experiments have been performed with intesti-
nal DCin the past, in particular, after application of antigen via the
oral route. Chung et al. (41) reported that only CD11c* DC iso-
lated from the MLN were capable to cross-present orally applied
OVA. At the same time, they somewhat surprisingly found that
CD8~ CD11b™ DC (i.e., XCR1™) rather than CD8% DC (i.e,,
largely XCR17) cross-present intestinal Ag. When Jaensson et al.
(42) re-investigated this issue, only CD103™ DC isolated from
MLN after oral administration of OVA induced proliferation of
OT-I1 T cells in vitro. However, these authors did not further
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or LP were then co-cultured with 1 x 10° CFSE-labeled OT-I T cells, DC loaded
with SIINFEKL peptide in vitro served as positive controls. Shown is the CFSE
dilution profile of the OT-IT cells (CD90.1* CD8*) after 2.5 days of co-culture
with the respective DC subsets (open histograms) or OT-I T cells alone (gray
histograms). The results shown are representative of three experiments with
LP and MLN, and two additional experiments with MLN only (mean £ SD).

Frontiers in Immunology | Mucosal Immunity

July 2014 | Volume 5 | Article 326 | 8


http://www.frontiersin.org/Mucosal_Immunity
http://www.frontiersin.org/Mucosal_Immunity/archive

Becker et al.

Characterization of XCR1* DC in the intestine

[CD45*Lin"F4/807] LP
©
o
o 7
Sirpa* XCR1*
68.9
u /\
;g)- @, 126.9 734 |3.6 96.4
s '/
30.3
XCR1 >
cD103
[Lin"F4/807] MLN
o @: migratory
o f‘ D
S &
7
MHCII
Sirpa*t XCR1*

24.2 75.8)

35.9 __/

XCR1

Sirpa

2
w

N

~

©

N

(]

\J

CD103

FIGURE 8 | Classification of intestinal DC according to their
expression of XCR1 and SIRP«. DC from the LP, PR and MLN of C57BL/6
mice were enriched by digestion and density gradient centrifugation of the
tissues, stained for XCR1 and SIRPa, DC from MLN were further
separated into resident and migratory DC based on their MHCII

[CD45*Lin"F4/807] PP
3] f
£ ‘
o s
G
MHCII
Sirpa* XCR1*

39.2 60.8

Sirpa
(-]
’( Sy
- b
N
(4]
E‘,,
N
0

11.5
XCR1 >
CD103
[LinF4/807] MLN
@ resident
(3
T | =
8 [i r/; ‘
MHCII
Sirpa* XCR1*
54.7 M
=] o
g @& g-,Jv\ 3.0 37.2rA\ 62.8
@
—42.4

\J

XCR1
CD103

expression levels. For analysis, the gates were set on live CD45* Lin~
F4/80- CD11c* MHCII* cells. Expression of CD103 is shown on XCR1*
versus SIRPat DC. The background staining was determined with
homozygous B6.XCR1-lacZ** mice lacking XCR1 (gray). The results shown
are representative of two experiments.

discriminate between CD103" CDI11b~ (“CD8a-like,” “Batf3-
dependent”) and CD103" CD11b™ (“Batf3-independent”) DC
in their study, and therefore their results, from today’s perspec-
tive, did not offer the required DC subset resolution. In our work,
we have separately tested LP and both migratory and resident
MLN DC, and also subdivided these populations into XCR1" and
XCR1~ DC. DC originating from the LP usually did not give
a signal in the cross-presentation assay; possibly the proportion
of DC, which have taken up antigen was too low, or the isola-
tion procedure introduced a bias into the DC population. When
analyzing MLN populations, the migratory DC clearly outper-
formed the resident DC, which still gave a low signal. Within
the migratory DC population, the XCR1" DC consistently per-
formed best in the cross-presentation of orally applied soluble
antigen, but a lower signal was also obtained with XCR1™ DC.
These results were thus comparable to the data we have obtained
earlier with splenic DC subsets. There, XCR1™ DC performed
best, but not in a “unique fashion,” in the cross-presentation of
soluble antigen (applied intravenously), but were “unique” in the
cross-presentation of cell-bound antigen (21). We did not have
the opportunity to test the uptake and presentation of cell-bound
antigen in our current work on intestinal DC. Cerovic et al. (43)
very recently published a study employing a transgenic mouse in
which only intestinal epithelial cells (IEC) express non-secretable

antigen. Using this model system, they could demonstrate that
only CD103% CD11b™ DC (i.e., XCR1" DC) migrating from the
intestinal system, but not any other subset, were capable to cross-
present this cell-associated antigen. Thus, combining the results
of Cerovic et al. on cell-bound antigen with our own results
on the presentation of orally applied antigen, one can clearly
conclude that XCR1T/CD103" CD11b~ are the population of
DC, which excels in antigen cross-presentation in the intestinal
immune system. This stated, one should bear in mind that these
two classification systems define largely overlapping, but not fully
congruent DC populations; essentially all CD103" CD11b~ DC
bear the XCRI1 receptor, but XCR1 is also expressed on 10-15%
of other DC in the CD103/CD11b classification system (compare
Figure 1).

The specific expression of XCR1 allowed us to determine the
anatomical localization of cross-presenting DC in the intestinal
system. In the small intestine, cells expressing XCR1 were found in
the LP of the villi. In PP, XCR1" DC mainly clustered in the inter-
follicular region, and were absent from the subepithelial dome.
The latter results are congruent with the findings of Iwasaki et al.
(44), who, based on double-fluorescence studies using CD11c and
CD8a as markers, described the presence of CD8a DC in the inter-
follicular region. Interestingly, XCR1™ signals were absent in the
subepithelial dome of the PP, where CD11ct CD11b™" cells can
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be found instead (44). This anatomical separation in the PP indi-
cates a division of labor of DC subsets in this lymphoid organ,
which at present is not fully understood. Finally, the distribution
of XCR1" DC in the draining MLN followed the pattern obtained
with peripheral LN obtained earlier (18), with signals present in T
cell zones and apparently sinuses, where incoming (cellular) mate-
rial in the draining lymph can be taken up by DC. One should
bear in mind that all of our results were obtained with homozy-
gous B6.XCR1-lacZ*/* mice lacking XCR1, so they cannot reflect
any potential influence of locally secreted XCL1 on the sublocal-
ization of XCR1™" in intestinal tissues. This aspect needs further
examination in the future.

Our results on the phenotype, differentiation, function, and
localization of DC demonstrate that XCR1* DC are a homoge-
nous population with a specific function in the intestinal immune
system. With this understanding, we sought to determine, whether
there are any surface molecules, which would fully demarcate
XCR1~ DCin a positive fashion. Interestingly, of the many mark-
ers tested, there were only two surface molecules, which in all
instances and in all tissues were not expressed on XCR1™ DC,
namely CD11b and CD172a/SIRPa. When analyzing DC for the
expression of these two integrins, it became apparent that all
of XCR1™ DC express SIRPa, and some of them also express
CD11b (compare Figure 2). Thus, only SIRPa showed a strin-
gent anti-correlation with XCR1 on DC in the intestine, strongly
suggesting that this surface molecule comprehensively character-
izes the XCR1™ DC population. Support for this conclusion comes
from our studies in the spleen, where the same constellation was
found (21), and our preliminary data indicate that this is also true
in other body compartments (own unpublished results). Our data
are fully compatible with earlier findings demonstrating a rather
selective SIRPa expression on CD4" and DN conventional DC
using the older CD4/CD8 DC classification system (45).

SIRPa, an Ig-superfamily transmembrane protein, is in the
immune system abundantly expressed on macrophages, DC, and
neutrophils; outside of the immune system, it is present on neu-
rons and weakly also on fibroblasts and endothelial cells (46, 47).
Although the function of SIRP« is not fully understood, it has
been implicated in the control of cell phagocytosis. Cells express-
ing CDA47, the ligand for SIRPa, appear to be protected from
engulfment by phagocytic cells (46). It is intriguing to note that
Clec9A/DNGR-1 and SIRPa, which on DC are never co-expressed,
both regulate cell phagocytosis. This functional feature possi-
bly contributes to the division of labor between the XCR1" and
SIRPa* DC populations.

Future work will determine whether SIRPa™* DC are a homoge-
nous population or whether they have to be further split up into
functional subsets. For practical purposes, it seems attractive now
to classify DC in the immune system based on the expression of
XCRI and SIRPa, which greatly simplifies any phenotypical and
functional analyses when compared with the DC classification sys-
tems currently in use. Figure 8 illustrates such an approach with
DC populations from the various compartments of the intestine.
Once separated into XCR1%" versus SIRPat positive DC, these
subpopulations can be further analyzed for expression of other
molecules, which are being actively regulated in various tissue
compartments, e.g., CD103 (48, 49). It appears likely that this

approach for the functional subdivision of DC can universally be
applied throughout the murine immune system. Moreover, recent
data indicate that a DC classification system based on the expres-
sion of XCR1 and SIRPa will also be useful in the human (50) and
other species (51).
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