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Cytosolic NOD-like receptors (NLRs) have been associated with human diseases including
infections, cancer, and autoimmune and inflammatory disorders.These innate immune pat-
tern recognition molecules are essential for controlling inflammatory mechanisms through
induction of cytokines, chemokines, and anti-microbial genes. Upon activation, some NLRs
form multi-protein complexes called inflammasomes, while others orchestrate caspase-
independent nuclear factor kappa B (NF-κB) and mitogen activated protein kinase (MAPK)
signaling. Moreover, NLRs and their downstream signaling components engage in an intri-
cate crosstalk with cell death and autophagy pathways, both critical processes for cancer
development. Recently, increasing evidence has extended the concept that chronic inflam-
mation caused by abberant NLR signaling is a powerful driver of carcinogenesis, where
it abets genetic mutations, tumor growth, and progression. In this review, we explore
the rapidly expanding area of research regarding the expression and functions of NLRs in
different types of cancers. Furthermore, we particularly focus on how maintaining tissue
homeostasis and regulating tissue repair may provide a logical platform for understanding
the liaisons between the NLR-driven inflammatory responses and cancer. Finally, we out-
line novel therapeutic approaches that target NLR signaling and speculate how these could
be developed as potential pharmaceutical alternatives for cancer treatment.
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INTRODUCTION
Over the past two decades, immunologists have begun to appre-
ciate the complexity of the innate immune system, its importance
as the first wave of defensive action against perceived harm-
ful microbes or foreign particles and its functions in trigger-
ing antigen-specific responses by engaging the adaptive immune
system. Innate immune responses are orchestrated by germline-
encoded pattern recognition receptors (PRRs) (1). PRRs recognize
conserved pathogen-derived and damaged self-derived molecular
components, commonly referred to as pathogen associated mole-
cular patterns (PAMPs) and danger associated molecular patterns
(DAMPs), respectively (2, 3). PRR superfamilies are broadly clas-
sified based upon structural homology and the requirement of
different adaptor proteins that ensure their function and down-
stream signal transduction (4). The PRRs include members of the
Toll-like receptors (TLRs) (3), nucleotide-binding, and oligomer-
ization domain containing receptors [NOD-like receptors (NLRs)]
(5, 6), retinoic acid-inducible gene (RIG) I-like RNA helicases
(7), C-type lectins (8), and AIM2 like receptors (ALRs) (9). Evi-
dence in the field points to a paramount importance of NLRs in
human diseases with increasing interest in translating this knowl-
edge toward clinical benefits. Due to the active role of NLRs in
regulating pro-inflammatory signals and recruiting the adaptive
arm of the immune system, dysregulation of microbial sensing has
been reported to influence disease outcomes and tumorigenesis

(10). In this review, we will describe the crucial roles of NLRs in
cancer development and progression, and discuss the possibility
of NLRs as targets for tumor therapy.

FACTORS THAT INFLUENCE TUMORIGENESIS
Observations by Rudolf Virchow in the nineteenth century indi-
cated a link between inflammation and cancer, and suggested that
immune and inflammatory cells are frequently present within
tumors. Indeed, chronic inflammation plays critical roles in vari-
ous stages of cancer development and progression (11–13). Many
cancer risk factors are associated with a source of inflamma-
tion or act through inflammatory mechanisms such as those
evoked by bacterial and viral infections (14), tobacco smoke (15),
obesity (16, 17), and aging or cell senescence (18, 19). While
some cancers arise from chronic inflammation or after immune
deregulation and autoimmunity, solid malignancies elicit intrinsic
immune mechanisms that guide the construction of a tumori-
genic microenvironment (12, 13, 20). Although the exact mech-
anism of how inflammation leads to neoplastic transformation
is not fully known, it is suggested that inflammatory immune
cells like macrophages and T cells are the main orchestrators of
inflammation-mediated tumor progression. These cells secrete
cytokines and chemokines that cause DNA damage, generate
mutagenic reactive oxygen species (ROS), and supply cancer cells
with growth factors (13). In addition, inflammatory mechanisms
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were shown to promote genetic instability by impairing DNA
repair mechanisms, altering cell cycle checkpoints, and often facil-
itating epigenetic silencing of anti-tumor genes, thus contribut-
ing to the high degree of genetic heterogeneity in tumors (21).
Oncogenic mutations prompted by an inflammatory microenvi-
ronment frequently cause neoplastic transformation by promoting
excessive proliferation and resistance to cell death (22). Indeed,
impaired expression and activity of proteins that control cell sur-
vival, such as the inhibitor of apoptosis proteins (IAPs) and the
BCL2 family of proteins, is a common occurrence in many cancers
(23, 24). Typically known to exert strong anti-apoptotic functions,
IAPs neutralize pro-apoptotic second mitochondrial activator of
caspases (SMAC) and inhibit activation of apoptotic caspases,
thereby promoting cell survival during both physiological stresses
and pathogenic stimulations (25–29). Owing to their strong pro-
survival potency, enhanced expression of IAPs has been correlated
with several human cancers (22). Unlike IAPs, the BCL2 fam-
ily of proteins consists of both pro- and anti-apoptotic proteins
that control critical checkpoints of intrinsic apoptosis by regu-
lating mitochondrial integrity and release of cytochrome c into
the cytosol (30). Deregulation of the functions of BCL2 pro-
teins, i.e., down-regulation of pro-apoptotic members and over
expression of pro-survival members, has been strongly corre-
lated with tumorigenesis and resistance to chemotherapy (31).
Interestingly, the pro-apoptotic BID, PUMA, and NOXA are tran-
scriptional targets of the tumor suppressor gene p53 and loss of
their expression enhances tumorigenesis and morbidity of MYC
overexpressing transgenic mice (32, 33). It was described that the
transcription factor p53 senses physiological stresses and is critical
for restraining tumor growth. Indeed, loss of p53 expression or
function in both humans and mice has been proven to promote
sporadic tumorigenesis (34, 35). Induction of target genes that
inhibit cancer progression is generally considered to be the canon-
ical mechanism of p53-mediated tumor-suppression. These target
genes directly modulate cellular programs involving induction
of apoptosis, cell cycle arrest, and promotion of cellular senes-
cence and DNA repair (36). Recently, non-canonical functions of
p53 have come to light, like the regulation of cellular metabo-
lism, cell-to-cell communication, autophagy, tumor invasion, and
metastasis, making p53 an attractive pharmaceutical target for
treating cancers [reviewed in Ref. (37)]. Early detection of rogue
tumor cells by the innate immune cells and their rapid removal is a
key host defense strategy for evading tumorigenesis. In particular,
natural killer (NK) cells are primary sentinels that guarantee such
immune surveillance by differentiating normal cells from stressed
or tumor cells via the expression of specific NK receptors (38).
Indeed, increased presence of NK cells at tumor sites has been
reported to improve remission, whereas decreased NK cell anti-
tumor activity has been correlated with a greater likelihood for
developing cancer (39).

NOD-LIKE RECEPTORS IN CANCER
OVERVIEW OF NLRs
NOD-like receptors are a relatively recent addition to the PRR
superfamily (40–42). All NLRs contain a central NACHT domain
that facilitates oligomerization, and bear multiple leucine-rich
repeats (LRRs) on their C-terminal for ligand sensing (5, 43). The

22 human NLRs can be distinguished into five subfamilies by their
N-terminal effector domains that bestow unique functional char-
acteristics to each NLR (43) (Figure 1). NLRs with an N-terminal
acidic transactivation domain are termed NLRA (CIITA) and serve
as transcriptional regulators of MHC class II antigen presentation
(44). NLRB (NAIP) proteins have an N-terminal baculoviral inhi-
bition of apoptosis repeat (BIR) domain and are largely recognized
for their roles in host defense and cell survival. For instance, NAIP5
is known to induce host defense against bacterial infections by cur-
tailing macrophage permissiveness to Legionella pneumophila, the
causative agent of the Legionnaires’ disease (45–47). N-terminal
caspase activation and recruitment domain (CARD) distinguishes
the NLRC subfamily (NLRC 1–5) and allows direct interaction
between members of this family and other CARD carrying adap-
tor proteins. NOD1 (NLRC1) and NOD2 (NLRC2), the founding
members of the NLRs, are key sensors of bacterial peptidoglycan
(PGN) and are crucial for tissue homeostasis and host defense
against bacterial pathogens (48). Notably, single-nucleotide poly-
morphisms (SNPs) in the NOD2 (CARD15) gene are among the
most significant genetic risk factors associated with Crohn’s disease
(CD) susceptibility (49, 50), hence the rising interest in unraveling
the functions of NOD1 and NOD2 receptors in microbial sens-
ing, intestinal homeostasis, and disease. Members of the pyrin
domain (PYD) containing NLRP subfamily (NLRP 1–14) are best
known for their role in inducing the formation of the oligomeric
inflammatory complex “Inflammasome” (51). NLRX1, the only
described member of the NLRX subfamily contains an N-terminal
mitochondria-targeting sequence required for its trafficking to the
mitochondrial membrane (Figure 1). Mechanistically, NLRX1 was
shown to down-regulate mitochondrial anti-viral signaling pro-
tein (MAVS)-mediated type I interferon (IFN) production (52),
interfere with the TLR-TRAF6-NF-κB pathways (53, 54), and
enhance virus induced-autophagy (55, 56). On the other hand,
NLRX1 was implicated in the generation of ROS induced by TNFα

and Shigella infection magnifying the JNK and NF-κB signaling
(57). Interestingly, NLRX1-mediated ROS generation was involved
in promoting Chlamydia trachomatis replication in epithelial cells
(58). However, recent data from Soares et al. revealed that bone
marrow macrophages (BMMs) and mouse embryonic fibroblasts
(MEFs) from Wild type (WT) or Nlrx1−/−mice respond equally to
in vitro infection with Sendai virus or following in vivo challenge
with influenza A virus and TLR3 ligand Poly I:C (59). Additionally,
Rebsamen et al. reported no significant contribution of NLRX1 in
RLR–MAVS signaling both in vitro and in vivo (60). Overall, the
precise role of NLRX1 remains controversial and further research
is required to validate its pro or anti-inflammatory properties.

Dysregulated apoptosis and autophagy pathways, as well as
excessive chronic inflammation are major drivers of carcinogen-
esis. NLRs are innate immune sensors that actively communicate
with a myriad of cell death regulators. Hence, these PRRs are
well-positioned to influence tumor development and progression
particularly at sites with high host-microbiome interactions like
the gut. One of the mysteries of the innate immune system is
how do NLRs sense molecular patterns from both commensal and
pathogenic microorganisms and manage to tolerate one while help
eradicate the other (5, 61). This disparity in NLR functions is par-
ticularly useful in the intestinal epithelia where host cells are in
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FIGURE 1 | Schematic representation of individual NLR domains.
Domain architecture of human NLRs is depicted here. Human NLRs are
sub-classified into five categories: NLRA, NLRB, NLRC, NLRP, and NLRX.
All 22 human NLRs contain a central NACHT domain and a C-terminal ligand
sensing LRR domain, with the exception of NLRP10. The N-terminal
domains ascribe functional properties to the NLRs; however, the function of
some of the domains is still unclear like for the N-terminal domain of
NLRC3 and NLRC5, as well as the C-terminal FIIND in NLRP1. CARD;
caspase association and recruitment domain, ATD; acidic transactivation
domain, FIIND; function to find domain, PYD; pyrin domain, BIR; Baculoviral
inhibition of apoptosis protein repeat domain, LRR; leucine-rich repeats,
MT; targets NLRX1 to the mitochondria but no sequence homology with
traditional mitochondrial targeting sequence has been reported.

constant contact with millions of microbes. Consequently, it came
as little surprise when common variants in the NLR genes were
correlated with the incidence of CD and susceptibility to cancers
(50, 62–64). Due to these correlations, most of the studies have
been focused on understanding the mechanisms by which NODs
and inflammasome NLRs regulate intestinal inflammation and
tumorigenesis.

NOD1 AND NOD2 IN CANCER
NOD-DEPENDENT SIGNALING CASCADES
NOD1 and NOD2 are cytosolic proteins that sense intracellu-
lar bacterial PGN and trigger signal transduction via NF-κB
and MAPK activation. NOD1 is expressed in both hematopoi-
etic and non-hematopoietic cells and responds to intracellular
gamma-d-glutamyl-meso-diaminopimelic acid (iE-DAP) mostly
present on Gram-negative bacteria and only on some select Gram-
positive bacteria, like Listeria and Bacillus species (65–67). Unlike
NOD1, NOD2 expression is largely restricted to hematopoietic
cells and certain specialized epithelial cells such as the small
intestinal Paneth cells (68). NOD2 recognizes cytosolic muramyl
dipeptide (MDP) found in the PGN of all bacteria (69). Besides

providing immunity against intracellular bacteria, NODs were
revealed to be critical for host defense against non-invasive Gram-
negative bacteria like Helicobacter pylori, following delivery of
its PGN into the host cells through the bacterial type IV secre-
tion system (70). Moreover, NOD1 and NOD2 ligands were also
described to gain access to the cytosol by endocytosis with the
help of transporter proteins like SLC15A3 and SLC15A4 (71–
73). Notably, NOD1 and NOD2 have been reported to localize
to the plasma membrane at the sites of infection; however, the
biological relevance of this translocation remains elusive (74, 75).
Interestingly, a recent report accentuated the importance of NOD
proteins in monitoring the activation state of small Rho GTPases
(e.g., RAC1, CDC42, and RHOA) and inducing unusual immune
responses in the host in response to bacterial infection (76).
Upon activation by their cognate ligands both NOD1 and NOD2
self-oligomerize, undergo a conformational change, and through
homotypic CARD–CARD interactions allow the recruitment of
the CARD containing adaptor Receptor-interacting protein kinase
2 (RIP2 or RIPK2) (41, 42, 77, 78) (Figure 2). This event facili-
tates the formation of a multi-protein signaling complex termed
“Nodosome,” which leads to downstream NF-κB and MAPK-
mediated inflammatory and anti-microbial output. Indeed, cells
or mice lacking RIP2 do not respond to NOD agonists and fail to
produce pro-inflammatory and anti-microbial molecules (78–80).
Initially, it was thought that NOD oligomerization initiated RIP2
aggregation and activation by“induced proximity”(81). While this
model still stands true, over the years new body of research has
contributed a wealth of data regarding specific sequence of events
that leads to RIP2 activation. In contrast to the earlier studies (82–
85), recent in vitro data using pharmacological inhibitors as well
as in vivo evidence using a knock-in mouse with kinase-dead RIP2
(K47A) have highlighted the key role of the kinase activity of RIP2
in NOD-mediated immune responses (86, 87).

Lately, it was described that the pathways activated downstream
of NOD proteins are closely related to those activated by death
receptors, notably TNF receptor 1 (TNFR1). For instance, hierar-
chical recruitment of selective TNFR-associated factors (TRAF2,
TRAF5, or TRAF6) facilitates Lys63 poly-ubiquitination and acti-
vation of RIP2 (88–90). Activated RIP2 facilitates ubiquitination
of NEMO (also called IKKγ) leading to the recruitment of tumor
growth factor β-activated kinase 1 (TAK1) and TAK1 binding pro-
teins (TAB) 1, TAB2, or TAB3 (91, 92). Following this complex
formation, IKKs (IKKα and IKKβ) get phosphorylated eventually
driving the phosphorylation and degradation of IκBα and subse-
quent transcription of NF-κB target genes (5, 89, 92) (Figure 2).
RIP2 activation also constitutes a key event that links the NOD–
RIP2 cascade with the p38, extracellular signal-regulated kinase
(ERK), and c-Jun N-terminal kinase (JNK) MAPK pathways (93).

In addition to TRAFs, members of the IAP family including
X-linked IAP (XIAP) and cellular IAP1 (cIAP1) and cIAP2 were
described to physically interact with RIP2 and facilitate NOD-
mediated immunity (94–98). Both in vitro and in vivo studies
suggest a strong role for cIAP1 and cIAP2 in promoting NOD sig-
naling (Figure 2); however, the mechanism for such positive reg-
ulation is still not fully understood (94, 99–101). Similarly, XIAP
was reported to recruit a linear ubiquitin chain assembly com-
plex (LUBAC) for RIP2 ubiquitination and this step was proven
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FIGURE 2 | Model of NOD1 and NOD2 signaling cascades. NOD1 and
NOD2 recognize bacterial PGNs, iE-DAP, and MDP, respectively. Following
ligand sensing the NODs recruit their common adaptor RIP2 by CARD–CARD
interactions and induce RIP2 to undergo phosphorylation. The members of
the TRAF family (TRAF2, TRAF5, and TRAF6), the IAP family (XIAP, cIAP1, and
cIAP2), and the BCL2 family (BID) bind to RIP2 and facilitate its ubiquitination
allowing the recruitment of TAK1 and ubiquitinated NEMO to the Nodosome.
On one hand, NEMO instigates activation of the canonical NF-κB pathway by
phosphorylating IKKα and IKKβ, by inducing IκBα phosphorylation and

proteasomal degradation, and by freeing p50 and p65 NF-κB subunits. On the
other hand, TAK1 recruits TAB1 and TAB2/3 inducing both (p38, ERK, and JNK)
MAPK and NF-κB activation. Stimulation of both arms culminates in the
induction of anti-microbial peptides (AMPs), cytokines, and chemokines. The
formation of the Nodosome promotes autophagy and conversely, a fully
functional autophagy machinery helps in signal transduction through the
Nodosome. ATG16L1 along with ATG5 and ATG12 is required for
autophagosome formation, however, independently of its autophagy
functions, ATG16L1 negatively regulates NOD/RIP2 signaling.

critical for downstream NF-κB regulation (96, 97). Upon micro-
bial sensing another E3 ubiquitin ligase, ITCH, also ubiquitinates
RIP2, and it is speculated that ITCH-mediated ubiquitination acts
like a molecular switch dictating the fate of the signaling circuit
to NF-κB or p38 and JNK activation (102). Pathogen-mediated
NOD1 activation has also been shown to elicit protective immune
responses via RIP2-TRAF3-IRF7-mediated transcription of IFNβ

(79). Overall, it is tempting to speculate that similar to pro-survival
association of RIP1 with cIAP1 and cIAP2 (103), interactions
between RIP2 and the IAPs may also lead to modulation of
cellular apoptosis. However, neither NODs nor RIP2 has been
demonstrated to exploit these associations to affect cell survival.
Similarly, several studies have alluded to NODs as being regulators

of caspase-mediated apoptosis (82, 104, 105); yet, no direct link
has so far been reported. Recently, the pro-apoptotic BH3 only
BCL2 family protein BID (BH3 interacting-domain death ago-
nist) was identified in a genome wide siRNA screen as a positive
regulator of NOD signaling (101). BID was demonstrated to bind
to RIP2 bridging both NOD and IKK complexes to specifically
transduce NF-κB and ERK signaling events (101). Notably, BID
was phosphorylated upon activation with NOD agonists and these
innate immune functions of BID were found to be independent
of its pro-apoptotic processing by caspase-8 (101). The discovery
involving a classical pro-apoptotic protein, such as BID, in NOD–
RIP2 signaling strengthens the concept that inflammatory and cell
death pathways do not function as discrete mechanisms but share
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common adaptors. Such adaptors can exert multiple functions
depending upon the nature of the stimuli (5, 106–108) (Figure 2).
One recent study have reported that BID-deficient mice exhibit a
normal NOD-mediated immunity (109), suggesting that further
investigations are still needed to clearly decipher the implication
of BID in NOD signaling.

Similar to NOD2, a SNP encoding a missense variant in the
autophagy gene ATG16L1 was strongly associated with the inci-
dence of CD, raising a possible common role of both genes in host
defense mechanisms (110, 111). Intriguingly, it has been described
that NOD1 and NOD2 stimulation enhances autophagy, either
directly by interacting with ATG16L1 (112) or indirectly (112–
115). Conversely, pharmacological inhibition of both early and
late autophagy has been proven to down-regulate MDP-mediated
NF-κB and MAPK activation, suggesting that autophagocytic traf-
ficking of MDP may be required for efficient NOD2 signaling
(114). Surprisingly, ATG16L1 was recently shown to negatively
regulate NOD1- and NOD2-mediated inflammatory signaling
by interfering with RIP2 ubiquitination and recruitment to the
Nodosome (116) (Figure 2). Taken together, this information sug-
gests that different NLRs can have opposing regulatory effects on
autophagy and cell death, yet the molecular triggers that dictate
these actions are not fully understood.

NOD PROTEINS AND CANCER
Three mutations within the LRR region of the NOD2 gene have
been associated with increased CD susceptibility. Interestingly,
these same mutations have also been found to directly inter-
fere with NOD2’s bacterial sensing faculties and downstream
NF-κB activation (49, 50). Notably, such inactivation of NOD2
immunity has been indicated to enhance the risk of bacterial
infections following chemotherapy in patients with acute myeloid
leukemia (117). In addition, NOD2 polymorphisms have been
correlated with modifications in gastric mucosa and increased
risk for H. pylori induced gastric cancer (118). Apart from
intestinal disorders, mutations in NOD2 have been linked with
increased prevalence of early onset breast (119) and lung can-
cers (120, 121). However, how NOD2 contributes to the initia-
tion and the progression of cancer remains ill defined. Although
no mutations in the NOD1 gene have been so far associated
with the incidence of intestinal inflammation or even colorectal
cancer (CRC), murine models clearly designate a central anti-
tumorigenic function for NOD1 in the pathophysiology of disease.
For instance, Nod1−/− mice have been described to be suscepti-
ble to dextran sulfate sodium (DSS), a sulfated polysaccharide
highly toxic to enterocytes (122). Upon combination of a sin-
gle hit of the carcinogen, azoxymethane (AOM), with DSS (123),
NOD1-deficient mice were found to develop significantly more
and larger colonic tumors as compared to WT mice (122). This
experimental CRC model is particularly applicable when the focus
is on understanding colitis-driven tumor initiation and progres-
sion. The ApcMin/+ mouse is a N -Ethyl-N -Nitrosourea (ENU)
mutant model carrying the multiple intestinal neoplasia (Min/+)
mutation and recapitulates many aspects of human hereditary or
sporadic CRCs with mutations in the adenomatous polyposis coli
(Apc) gene (124–127). Intriguingly, it has been reported that treat-
ment with low doses of DSS leads to increased colonic tumors in

ApcMin/+Nod1−/−mice suggesting that NOD1 serves as a negative
regulator of the tumor-promoting Wnt/β-catenin cascade (128,
129). Further analysis revealed that absence of NOD1 exacerbated
NF-κB-mediated inflammation early during colitis causing gut
barrier damage and prompted a second wave of microbiota dri-
ven inflammation and intestinal epithelial cell (IEC) proliferation,
thus initiating tumor development. These conclusions are sup-
ported by the observation that antibiotic treatment of Nod1−/−

mice ameliorated DSS-induced CRC (122). While most investi-
gations have been focused on the role of NOD1 in models of
intestinal tumorigenesis, one report provided experimental evi-
dence for the protective role of NOD1 in breast cancer (104).
Herein, it was shown that NOD1-deficient MCF-7 breast cancer
cells were resistant to iE-DAP and cycloheximide mediated cell
death. Interestingly, SCID mice grafted with NOD1 overexpress-
ing cells exhibited rapid tumor regression. In sharp contrast, mice
grafted with NOD1-deficient MCF-7 cells displayed increased and
continued tumor growth (104).

Like Nod1−/−mice, NOD2-deficient mice have been revealed to
be highly susceptible to DSS-induced colitis by inheritance of dys-
biotic microbiota that markedly sensitizes mice to injury (130).
Furthermore, Nod2−/− mice have been found to display worse
disease outcome with increased epithelial dysplasia, heightened
tumor burden, and elevated expression of the pro-inflammatory
cytokine IL-6 when subjected to AOM–DSS treatment. This trans-
missible phenotype was significantly ameliorated upon treatment
with broad-spectrum antibiotics or using the neutralizing IL-6
receptor antibody (130). Altogether, these findings reinforce the
idea that aberrant NOD signaling gives rise to dysbiosis that in an
inflammatory setting ultimately causes mucosal injury and drives
CRC. So far, the translational value of this knowledge is limited
but with the recent technological advances in the microbiome
research it is predicted that modulation of dysbiosis could be used
as a therapeutic strategy for patients with CD as well as CRC.

Contrary to the protective role for NODs in intestinal tumori-
genesis, increased expression of both NOD1 and NOD2 has been
reported in the head and neck squamous cell carcinoma biopsies
as compared to the healthy nasal biopsies. These findings impli-
cate NODs in enhancing head and neck cancers; however, thus
far no corroborating experimental evidence has been reported
(131). Furthermore, iE-DAP stimulation of human pharyngeal
squamous carcinoma cell lines (Detroit 562 and Fadu) has been
determined to augment the production of β-defensins, which can
serve as chemoattractants, thus fostering an inflammatory and
pro-tumorigenic environment (131).

INFLAMMASOME NLRs IN CANCER
INFLAMMASOME NLRs: NLRP3-MEDIATED SIGNALING CASCADES
While NOD1 and NOD2 form the Nodosome, other NLRs assem-
ble macromolecular inflammasome complexes. To date, various
inflammasome platforms have been described (132), but the
NLRP3 inflammasome is the most commonly studied. The rea-
son behind this could be the initial discovery of mutations in
the NLRP3 (CIAS1) gene implicating this PYD containing protein
in both familial cold auto-inflammatory syndrome (FCAS) and
Muckle–Wells Syndrome (MWS) (133). Thus, the NLRP3 inflam-
masome will be described here as a prototype for these NLRs
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(Figure 3). Classically, the inflammasome has been described to
consist of an NLRP, the inflammatory protease caspase-1, and
the apoptosis-associated speck like protein (ASC) (51). ASC con-
tains an N-terminal PYD and a C-terminal CARD making it
uniquely suited for bringing into close proximity the two key
components, caspase-1 and NLRPs (134, 135). Upon activation,
NLRP3 recruits ASC and caspase-1, which is a prerequisite for
the cleavage and maturation of the inflammatory cytokines IL-
1β and IL-18 and consequent inflammatory cell death named
pyroptosis (136–141). Lately, a more complex model for NLRP3-
inflammasome activation has been proposed where two adap-
tors, ASC and mitochondrial MAVS, are required for optimal
inflammasome triggering (142).

Owing to its widespread expression in numerous cell types such
as neutrophils, monocytes, DCs, epithelial cells, and T cells (140,
143, 144), NLRP3 is exposed to a wide array of PAMPs and DAMPs
that instigate the assembly and activation of the inflammasome
[reviewed in Ref. (5, 132, 145–148)]. The NLRP3-inflammasome
formation requires a two-step process (149). The priming step
(or signal 1) involves TLR-NF-κB-driven induction of inflam-
masome components, as basal expression of NLRP3 in resting
cells is insufficient for effective inflammasome activation (149,
150). However, certain cells like the human blood monocytes and
murine macrophages appear to activate the NLRP3 inflammasome
in response to LPS stimulation alone (151, 152). It is notewor-
thy that a transcriptionally silent mechanism for TLR4-mediated
inflammasome priming has been lately discovered (153, 154). This
mechanism involves mitochondrial ROS (mtROS)-driven deubiq-
uitination of NLRP3, suggesting that constitutive ubiquitination
of NLRs may be a homeostatic mechanism to prevent overt inflam-
masome activity (154). The second activation step (or signal 2)
promotes the NLRs to undergo homotypic oligomerization and
assemble the inflammasome.

While several models have been proposed to define the sig-
nals behind NLRP3 activation, the precise mechanisms remain
hitherto unresolved. Various bacterial pathogens induce potas-
sium efflux and activate the NLRP3 inflammasome via the action
of secreted pore-forming toxins (e.g., nigericin from Streptomyces
hygroscopicus, listeriolysin O from Listeria monocytogenes, pneu-
molysin from Streptococcus pneumoniiae, alpha-hemolysin, etc.)
(138, 155, 156) (Figure 3). In addition, NLRP3 inflammasomes
have been known to assemble in response to cytosolic bacterial and
viral RNA both in vivo and in vitro (137, 157–160). Extracellular
adenosine tri-phosphate (ATP) released from dying or damaged
cells also causes NLRP3-inflammasome activation through either
paracrine or autocrine sensing of ATP by the purinergic recep-
tor P2X7 (138, 161–163). Besides, it has been defined that ATP
released from phagocytosed dying cells acts similarly on P2X7 and
prompts pannexin-1 (PANX1) channels to open, thus resulting
in potassium (K+) efflux and allowing other agonists to further
engage and activate NLRP3 (164) (Figure 3).

Monosodium urate (MSU) and calcium pyrophosphate dehy-
drate crystals, alum, amyloid-β fibrils, as well as environmental
pollutants like asbestos and silica strongly activate the NLRP3
inflammasome (139, 165–170). According to one model for this
mode of activation, uptake of the crystalline and particulate mat-
ters into the cell causes lysosomal destabilization and release of

cathepsin B, which is sensed by NLRP3 (168, 169). Interest-
ingly, however, opposing results were obtained when cathepsin
B-deficient BMMs were used to test this hypothesis, as no differ-
ences in IL-1β or caspase-1 cleavage were observed in response
to several inflammasome activators such as hemozoin, MSU, or
alum (171). Another model suggests that these activators prompt
generation of mtROS and mitochondrial DNA, both of which
are responsible for NLRP3-inflammasome activation (172–174).
Evidently, pharmacological inhibition of mtROS production has
been shown to prevent NLRP3-inflammasome formation indi-
cating that ROS generation is an upstream event for NLRP3
activation (165, 166) (Figure 3). Liposomes have been found to
induce mtROS and NLRP3-inflammasome activation by trigger-
ing calcium (Ca2+) influx via the transient receptor potential
melastatin 2 (TRPM2), although the exact mechanism linking
ROS production to TRPM2 channel opening is still not well-
characterized (175). On the other hand, the mitochondrial protein
cardiolipin has been shown to directly bind and activate NLRP3
in a ROS-independent manner suggesting that ROS may not be
the common denominator engaging the NLRP3 inflammasome
(176). Recent advances have put forward additional mechanisms
underlying NLRP3-inflammasome activation. In BMMs stim-
ulated with PAMPs, extracellular calcium has been shown to
activate the calcium sensing receptor (CASR) mediating signal
transduction pathways that culminate in the release of calcium
stores from the endoplasmic reticulum (ER), eventually activat-
ing the NLRP3 inflammasome (177–179). The diverse nature of
the NLRP3-inflammasome agonists allude to the likelihood that,
instead of directly sensing PAMPs and DAMPs, NLRP3 may be
activated by converging pathways with a final common ligand for
NLRP3. Guanylate binding protein 5 (GBP5) has been recently
proposed as one such component that directly participates in
NLRP3-inflammasome activation; however, further investigation
is needed to decipher how the GBP5 is activated and why it is
required for select inflammasome assembly (180). Finally, studies
by Munoz-Planillo et al. suggest that potassium efflux may perhaps
be the sole intracellular event necessary for NLRP3 activation in
response to a wide array of stimuli arguing for a unifying model
for the NLRP3-inflammasome activation (181) (Figure 3).

Production of mtROS often culminates in mitophagy, an
autophagic clearance of dysfunctional mitochondria. It has been
demonstrated that inhibition of mitophagy enhances NLRP3-
caspase-1-mediated secretion of IL-1β and IL-18 in response to
LPS and ATP (172). In addition, deletion of ATG16L1 was found
to promote IL-1β release in response to ATP, MSU, or LPS alone
(182). Moreover, it has been recently suggested that autophagy
may restrict NLRP3 activity by directly sequestering and targeting
inflammasome components for degradation (183, 184). Overall,
it is reasonable to speculate that autophagy could serve as a mech-
anism for preventing excessive NLRP3-inflammasome activation
(172, 173, 183–185).

Mitochondrial dysfunction plays a central role in regulating
the mechanisms involved in both inflammasome and apoptosis
pathways. Loss of mitochondrial membrane potential is a piv-
otal event in intrinsic apoptosis and is tightly regulated by the
BCL2 family of proteins through a system of checks and balances
(30). Interestingly, anti-apoptotic BCL2 and BCL-XL proteins have
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FIGURE 3 | Simplified mechanisms for the canonical NLRP3-
inflammasome activation. Various PAMPs and DAMPs provide the signal
2 required to assemble and activate the NLRP3 inflammasome comprised
of NLRP3, ASC, and caspase-1. Although the precise mechanism leading
to NLRP3 activation is still controversial, it is speculated that K+ efflux may
be the common cellular response that triggers inflammasome activation.
However, this notion has not been fully verified and it is possible that an
unidentified or intermediate adaptor may be required for transmitting
signals between K+ efflux and the NLRP3 inflammasome. Crystals and
particulate DAMPs enter the cell via endocytosis directly inducing K+

efflux and NLRP3-inflammasome formation. In addition, the endo-
lysosomes carrying these DAMPs undergo lysosomal rupture and release
cathepsin B, which acts as an intracellular DAMP and can induce K+ efflux.
However, contradicting studies indicate that lysosomal rupture may cause
K+ efflux and inflammasome activation even in the absence of cathepsin

B. ATP binds to the P2X7 receptor on the cell membrane and causes
opening of the PANX1 channels allowing K+ efflux and influx of any PAMPs
and DAMPs present in the extracellular space. PAMPs such as
pore-forming toxins activate the NLRP3 inflammasome and facilitate K+

efflux. Liposomes instigate Ca2+ influx through opening of the TRPM2
channels. Accumulation of excessive Ca2+ in the cytosol causes
mitochondrial dysfunction and release of mtROS and oxidized mtDNA,
which may activate the NLRP3 inflammasome either directly or by
inducing K+ efflux. Clearance of distressed mitochondria by mitophagy
serves to evade such inflammasome activation. Mitochondrial Cardiolipin
binds to NLRP3 and is required for the NLRP3-inflammasome activation.
Following NLRP3-inflammasome assembly, caspase-1 undergoes
proximity driven proteolytic cleavage and further processes pro-IL-18 and
pro-IL-1β into their mature active forms. Activation of the NLRP3-caspase-1
axis results in inflammation and pyroptotic cell death.
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been reported to directly interact with NLRP1 (CARD and PYD
domain containing NLRP) to negatively regulate caspase-1 acti-
vation (186, 187). Similarly, BCL2 overexpression was shown to
limit NLRP3-inflammasome activation (173, 174). In addition to
BCL2 proteins, cIAP1, cIAP2, and XIAP have also been linked
with inflammasome activation. Unlike their role in NOD signal-
ing, initial studies have proposed that expression of these proteins
might prevent caspase-1-dependent cell death (188). However,
more recently cIAP1 and cIAP2 along with TRAF2 were found
to enhance inflammasome activation seemingly by ubiquitinat-
ing and stabilizing caspase-1 and consequently prompting IL-1β

release (189). In another report, genetic ablation of cIAP1 or
cIAP2 had no effect on NLRP3-inflammasome activation, but con-
current pharmacological degradation of XIAP, cIAP1, and cIAP2
using SMAC mimetics was shown to limit caspase-1 activation
(190). Interestingly, further inquiries revealed that in the absence
of XIAP, cIAP1, and cIAP2, cell death in response to LPS was
primarily incited by RIP3 activation causing NLRP3-caspase-1-
as well as caspase-8-dependent IL-1β secretion (190). Lately, the
concept of non-canonical inflammasome has been defined, which
requires activation of caspase-11 in response to Gram-negative
bacteria to facilitate either caspase-1-mediated IL-1β secretion or
caspase-1-independent pyroptosis (191–194). Interestingly, apop-
tosis mediators FADD and caspase-8 have been involved in canon-
ical and non-canonical NLRP3-inflammasome signaling. Indeed,
FADD and caspase-8 facilitate the priming in “signal 1” by insti-
gating both, LPS-TLR-MyD88-triggered induction of pro-IL-1β

and NLRP3, as well as TLR-TRIF-mediated upregulation of pro-
caspase-11 (195). Upon infection with Citrobacter rodentium or
Escherichia coli, FADD and caspase-8 have been found to promote
the “signal 2” by interacting with the NLRP3-inflammasome com-
plex, thus influencing both canonical (caspase-1-dependent IL-1β

maturation) and non-canonical (caspase-11-dependent pyropo-
tosis) inflammasomes (194, 195). Conversely, it has been exhibited
that caspase-8-deficient murine DCs are hyper-responsive to LPS-
induced NLRP3-inflammasome assembly and activation (196).
Overall, these studies place caspase-11 and caspase-8 at the center
of inflammasome activation; however, a general lack of consen-
sus in the field makes it hard to aptly judge their contribution in
inflammasome-induced inflammation.

INFLAMMASOME NLRs AND CANCER
NLRP3, previously associated with rare and severe auto-
inflammatory disorders, has been lately implicated in CD suscep-
tibility and correlated with decreased NLRP3 expression and IL-1β

production (62). Indeed, mice lacking NLRP3 have been shown
to display exacerbated colonic inflammation upon DSS-induced
colitis characterized by greater gut barrier damage, inflammatory
immune cell infiltration, and cytokine production (197, 198). In
accord, a central role has been ascribed for caspase-1 and ASC
in intestinal epithelial repair after DSS-injury (199). Specifically,
caspase-1, ASC, or NLRP3 deficiency in mice has been shown to
be detrimental in DSS-induced intestinal inflammation, a mech-
anism attributed to the lack of IL-18 production by IECs (198,
199). Concomitantly, the increased colitogenic phenotype was
completely reversed when mice were exogenously administered
with the recombinant IL-18 cytokine (198, 199). The same lack

of inflammatory regulation was found to render Nlrp3−/− and
Casp1−/− mice more susceptible to AOM–DSS carcinogenesis
(197, 200). The heightened tumor growth in the caspase-1 defi-
cient mice was accompanied with drastically low levels of colonic
IL-18. Overall, NLRP3 was shown to be important for IL-18 secre-
tion, which in turn through IFNγ production induces STAT1
(Signal transducers and activators of transcription 1) phosphory-
lation and thus promotes an anti-tumorigenic environment (200).
Moreover, it has been shown that Il18−/− or Il18r−/− mice are
more susceptible to DSS-induced colitis and CRC, mimicking
the increased tumor burdens observed in NLRP3 and caspase-1
deficient mice (201). Recent findings have put forward a novel
concept for the dual function of IL-18 in intestinal inflamma-
tion and colitis-driven CRC (202, 203). For instance, during acute
injury IEC-derived IL-18 triggers repair and restitution of the
ulcerated epithelial barrier, whereas under chronic inflammatory
settings the excessive release of IL-18 both from IECs and lam-
ina propria macrophages and DCs is deleterious (203, 204). A
protective role for NLRP3 has also been described in hepatocel-
lular carcinoma (HCC) (205). This correlation is primarily based
on mRNA and protein expression data showing reduced levels
of NLRP3 and other related inflammasome components seen in
hepatic parenchymal cells derived from HCC tissue specimens as
compared to non-cancerous liver sections (205). On the other
hand, a gain of function SNP (Q705K) within the NLRP3 gene
has been associated with increased mortality in CRC patients
(206). Significantly, the same SNP was also found to be more
prevalent in patients with malignant melanoma (207). Human
monocytic THP-1 cells overexpressing a mutant variant of NLRP3
bearing the Q705K SNP have been reported to greatly respond to
the inflammasome agonist alum and to trigger the production of
IL-1β and IL-18, implying that overt NLRP3 activation could be
detrimental for certain types of cancer (208). Similarly, another
group implicated constitutive NLRP3-inflammasome signaling in
the development and progression of melanomas (209).

Loss of function in the tumor suppressor gene p53 has been
associated with a large number of sporadic cancers (36). One of
the mechanisms for p53-induced clearance of potentially carcino-
genic cells has been found to be via transcriptional up regulation
of cell death activators (210). In light of this knowledge, the dis-
covery of NLRC4 as a downstream transcriptional target of p53
was a promising evidence for the anti-tumorigenic functions of
this NLR (211). Moreover, lack of NLRC4 inflammasome has
been associated with the attenuation of p53-mediated cell death,
indicative of a protective role of NLRC4 during tumor develop-
ment (211). Several groups have investigated the role of NLRC4
in colitis and CRC. However, lack of consensus in the suscepti-
bility of Nlrc4−/− mice to DSS as well as AOM–DSS treatment
makes it difficult to gage the protective effect of NLRC4 in these
models (197, 212). It has been demonstrated that mice deficient
in NLRC4 develop higher tumor burdens than WT mice when
subjected to DSS-induced CRC (212). In addition, bone marrow
chimera experiments verified that NLRC4 expression within the
radioresistant compartment was the major driver of CRC pro-
tection (212). Surprisingly, similar colitic phenotypes have been
observed between WT and Nlrc4−/− mice following DSS admin-
istration, suggesting that tumor regulation by NLRC4 is mostly
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cell intrinsic and not through down-regulation of inflammation
(213). Given the unique capacity of NLRC4 to sense and differ-
entiate between commensal and pathogenic microbes in the gut
(214), it is surprising that the tumor restraining roles of NLRC4
have been ruled to be independent of its immune regulatory func-
tions. One unifying theory addressing these discrepancies could
be that anti-tumor functions of NLRC4 are attributed to the
cells of non-hematopoietic origin, whereas intestinal mononu-
clear phagocytes are the primary source of NLRC4 for microbial
sensing and pathogen clearance (213, 214). Overall, these assump-
tions warrant deeper inquiries to clearly elucidate the mechanisms
by which NLRC4 exerts protective functions during CRC and
to decipher the relevance of p53-mediated role of NLRC4 in
tumorigenesis.

Akin to NLRP3, both NLRP6 and NLRP12 have been recently
described to use ASC-caspase-1 molecular platforms and assemble
inflammasomes. A first hint of NLRP6 being an inflammasome
NLR was gleaned from in vitro experiments showing increased
caspase-1 cleavage when ASC and NLRP6 were co-expressed (215).
Further in vivo evidence emphasized a protective role for NLRP6
in intestinal inflammation and tumorigenesis as Nlrp6−/− mice
showed high susceptibility to DSS-induced colitis and AOM–DSS-
induced CRC (216–218). Unlike NLRC4, dampening of inflamma-
tion is purported to be one of the primary mechanisms for NLRP6-
mediated protection and tissue homeostasis. NLRP6 has been
shown to promote a gut microbiome that limits chronic inflam-
mation. In fact, it has been evidenced that Nlrp6−/−mice display a
distinct transmissible pro-colitogenic microbiome with increased
prevalence of the bacterial genus Prevotellaceae (217). These mice
presented a steady state colitic phenotype and an enhanced sensi-
tivity to DSS colitis (217). Overall, a mechanism has been suggested
wherein dysbiosis in the gut, caused by aberrant NLRP6 inflam-
masome signaling, drives excessive CCL5-mediated IL-6 produc-
tion, barrier damage, and inflammation (217). In agreement with
the findings in Casp1−/− mice (199), NLRP6-deficient mice had
impaired IL-18 production mainly from the intestinal epithelial
compartment further diminishing the capacity of these mice to
recover from colitis. Likewise, overt inflammation and lack of IL-
18 in the Nlrp6−/−mice has been associated with increased colonic
tumor development (216), however, as seen for Nlrp3−/− mice it
is still unknown whether administration of IL-18 is capable of res-
cuing the susceptibility phenotype. Interestingly, gene expression
profiling of colorectal tumors derived from WT and Nlrp6−/−

mice revealed an increased expression of paracrine factors of
the Wnt and NOTCH signaling cascades, underscoring a novel
function of NLRP6 in controlling intestinal proliferation (218).
Sensing of damaged or dying cells by NLRP6 and NLRP3 inflam-
masomes has lately been hypothesized to prevent CRC through
maintaining the balance between IL-22 and IL-22 binding protein
(IL22-BP) (219). It has been speculated that sensing of DAMPs
by both NLRs instigates IL-18-dependent down-regulation of the
inhibitory molecule IL-22BP, thus allowing IL-22 to repair the
injured tissue. However, dysregulated NLRP6 or NLRP3 signaling
could potentially lead to inappropriate IL-22BP expression, thus
creating a pro-tumorigenic environment caused by either exces-
sive cell proliferation or lack of tissue repair (219). Although the
dual function of IL-22 in CRC has been well-described, further

experimental validation is needed to pinpoint the exact mode
by which NLRP3 or NLRP6 regulate IL-22/IL-22BP ratio during
colon tumorigenesis.

NLRP12 was originally defined as an inflammasome NLR due
to its co-localization with ASC and caspase-1, induction of IL-
1β and IL-18 secretion as well as NF-κB activation (220, 221).
SNPs within the NLRP12 gene have been associated with increased
susceptibility to atopic dermatitis and periodic fever syndromes
accompanied mostly with caspase-1 activation and IL-1β release
(222–225). It has been observed that NLRP12 can negatively regu-
late both canonical and non-canonical NF-κB pathways by target-
ing the IL-1R-associated kinase 1 (IRAK1) and NF-κB inducing
kinase (NIK) for proteasomal degradation (226–228). Two inde-
pendent studies proposed that NLRP12 acts as a tumor suppressive
molecule ex vivo and in in vivo animal models of colitis and colitis-
induced CRC (229, 230). Mice lacking NLRP12 have been found
to be more susceptible to DSS-injury with increased body weight
loss, enhanced pathology scores coupled with massive infiltration
of inflammatory cells and high inflammatory cytokine produc-
tion (229, 230). Furthermore, AOM–DSS treatment of Nlrp12−/−

mice has been shown to further provoke colonic tumor develop-
ment and progression (229, 230). In the first study, it was clearly
demonstrated that lack of NLRP12 increases NIK-dependent non-
canonical NF-κB signaling and drives the regulation of cancer
promoting genes like CXCL12 and CXCL13 (230). In the second
report, the enhanced tumorigenicity in knockout mice was traced
to excessive canonical NF-κB activation due to lack of NLRP12
in hematopoietic cells. Indeed, enhanced LPS-induced canoni-
cal NF-κB activation was exhibited in Nlrp12−/− macrophages ex
vivo, suggesting that microbial sensing and negative regulation of
inflammation may account for NLRP12-mediated tumor suppres-
sion (229). Altogether, these results underscore the importance
of anti-inflammatory signals provided by NLRP12 in maintain-
ing colonic homeostasis and protecting from colitis and colon
tumorigenesis.

THERAPEUTIC STRATEGIES AND CONCLUSION
It has been suggested that the strong immunomodulatory prop-
erties of NLRs could be exploited for mounting potent anti-
tumorigenic responses. In fact, mice injected with B16 melanoma
cells or EL4 thymoma cells expressing flagellin from Salmonella
typhimurium were shown to display dramatic resistance to tumor
establishment in NLRC4 dependent manner (231). In addition,
immunization with flagellin expressing cancer cells lead to impres-
sive antigen-specific CD4 and CD8 T cell responses via NLRC4
and NAIP5 signaling and bestowed anti-tumor immunity against
a secondary inoculation with tumor cells (231). Similarly, acti-
vation of NODs, in particular NOD2, to elicit robust cell-based
anti-tumor immunity has been under scrutiny for several years.
Indeed, instillation of MDP in patients with lung cancer has been
reported to enhance expression of inflammatory cytokines and
neutrophils in the pleural fluid (232). Relatedly, it has been sug-
gested that the local immune-modulatory activity of MDP helps
improve prognosis in hamsters suffering from osteosarcoma (233)
and significantly reduces tumor metastasis in several murine can-
cer models, such as B16–BL6 melanoma, colon 26-M#1 carcinoma,
and L5178Y-ML25T T lymphoma (234, 235).
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Overt activation of the NLRP3 inflammasome has been demon-
strated to elicit cancer progression. For instance, in mouse mod-
els of methylcholanthrene (MCA, a highly potent carcinogen)
induced fibrosarcoma, NLRP3 was demonstrated to promote can-
cer progression. Moreover, NLRP3 expression in myeloid cells
was shown to interfere with the suppression of cancer metasta-
sis by inhibiting recruitment of anti-tumor NK cells to the site of
carcinogenesis (236). Besides interfering with natural tumor con-
trol, NLRP3 inflammasome-mediated IL-1β has been described
to attenuate anti-tumor effects of chemotherapeutic agents, gem-
citabine (Gem), and 5-fluorouracil (5FU) (237). Mice lacking
NLRP3 were far more receptive to thymoma regression upon
treatment with Gem or 5FU as compared to WT mice. Further-
more, enhanced NLRP3-driven IL-1β release was linked with the
induction of T helper 17 (Th17) cells that promoted chemo-
resistance in WT mice (237). Keeping these observations in view,
several studies support the use of specific inhibitors, antagonists,
and monoclonal antibodies against components of the inflamma-
some, e.g., caspase-1, IL-1β, and IL-18, as therapeutic approaches
beneficial for controlling inflammation and improving cancer
prognosis (238).

An early phase clinical study suggests that administration of
the IL-1R antagonist, Anakinra, alone or in combination with dex-
amethasone could potentially impede human multiple myeloma
progression (239). Furthermore, it was demonstrated that IL-
18 derived from tumor cells had the ability to subvert the NK
cell-mediated tumor immunosurveillance and to promote tumor
progression in a programed death receptor 1 (PD1)-dependent
manner (240, 241). These findings suggest the potential of using
IL-18 as well as PD1 neutralization for cancer immunother-
apy. Overall, selective attenuation of the activities of certain
NLRs could potentially boost regression and improve respon-
siveness to chemotherapy. The variability in NLRP3- and IL-
18-mediated effects in different cancers highlights the complex-
ity in NLR circuits and suggests that any broad implications
regarding NLR intervention in tumorigenesis should be carefully
investigated.

Microbial environment, diet, mouse strain, tumor ontogeny,
etc. are all part of the complex network that dictates how an
NLR influences inflammation and tumorigenesis. Sensitivity to
these factors has lead to conflicting disease phenotypes in genet-
ically modified mice lacking specific NLRs. Furthermore, NLR
expression in hematopoietic or non-hematopoietic cellular com-
partments appears to have distinct influence on inflammatory
regulation and tumorigenesis. Due to such discrepancies, it is
still uncertain how dysregulation of these innate immune sensors
incites inflammation that leads to carcinogenic transformation
of cells. Although several mechanisms have been suggested like
control of NF-κB signaling, regulation of tissue repair factors,
and IL-18 secretion, no unifying hypothesis exists. In addition,
interaction of NLRs with different members of the TNFR pathway,
BCL2 family of proteins, IAPs, apoptotic caspases, and autophagy
regulators point toward more intricate mechanisms for NLR reg-
ulation than currently acknowledged. Future studies focusing on
the biochemistry of interactions between cell death regulators
and NLRs are required to delineate the co-integration of NLR-
cell death mechanisms so as to facilitate implementation of NLR

modifying therapeutic strategies for inflammatory diseases and
cancer.
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