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Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the only treatment with
curative potential for certain aggressive hematopoietic malignancies. Its success is lim-
ited by acute graft-versus-host disease (GVHD), a life-threatening complication that occurs
when allo-reactive donor T cells attack recipient organs. There is growing evidence that
microbes and innate pattern-recognition receptors (PRRs) such as toll-like receptors (TLR)
and nod-like receptors (NLR) are critically involved in the pathogenesis of acute GVHD.
Currently, a widely accepted model postulates that intensive chemotherapy and/or total-
body irradiation during pre-transplant conditioning results in tissue damage and a loss of
epithelial barrier function. Subsequent translocation of bacterial components as well as
release of endogenous danger molecules stimulate PRRs of host antigen-presenting cells
to trigger the production of pro-inflammatory cytokines (cytokine storm) that modulate
T cell allo-reactivity against host tissues, but eventually also the beneficial graft-versus-
leukemia (GVL) effect. Given the limitations of existing immunosuppressive therapies,
a better understanding of the molecular mechanisms that govern GVHD versus GVL is
urgently needed.This may ultimately allow to design modulators, which protect from GvHD
but preserve donor T-cell attack on hematologic malignancies. Here, we will briefly sum-
marize current knowledge about the role of innate immunity in the pathogenesis of GVHD
and GVL following allo-HSCT.

Keywords: graft-versus-host disease, allogenic hematopoietic stem cell transplantation, pattern-recognition
receptors, inflammsome, microbiota, danger molecules

INTRODUCTION
Allo-HSCT is an established treatment modality for aggressive
hematological malignancies and is performed in more than 30,000
patients annually worldwide (1). Donor-derived T cells in the
graft can maintain remission after induction therapy by attacking
residual tumor cells in a process known as graft-versus-leukemia
(GVL). Unfortunately, beneficial GVL effects are tightly associated
with the pathogenesis of acute graft-versus-host disease (GVHD).
Allogeneic donor T cells recognize mismatches in major or minor
histocompatibility antigens present in non-malignant host tis-
sues and subsequently induce immune-mediated damage to target
organs such as the gastrointestinal tract, skin, liver, and lungs (2).
Acute GVHD occurs in 40–50% of all allo-HSCT patients and
accounts for considerable morbidity and mortality (3). Deple-
tion of T cells from the allograft can decrease the incidence of
acute GVHD, but comes at the cost of greater risk of graft failure,
reduced GVL activity, and increased incidence of leukemic relapse
(4). As a current standard of care for GVHD, glucocorticoids and
other immunosuppressive drugs are used to inhibit T-cell acti-
vation and proliferation, which similarly affects GVL activity. A
better understanding of the underlying molecular mechanisms
may help to design measures to prevent GVHD but preserve donor
T-cell responses and GVL activity, thus allowing for a broader

application of allo-HSCT in the future. Here, we discuss how
the innate immune system and its environmental triggers shape
the clinical course and outcome of allo-HSCT in patients and
corresponding animal models.

The biology and function of pattern-recognition receptors
(PRRs) is reviewed in detail within this research topic issue (5,
6). In brief, PRRs are germ line-encoded receptors that detect con-
served molecular structures that are specific to invading microbes
but are absent on host cells under homeostatic conditions. Ligation
of such pathogen-associated molecular patterns (PAMPs) leads
to activation and maturation of antigen-presenting cells (APCs),
release of pro-inflammatory cytokines and, eventually, the initi-
ation of an adaptive immune response. PRRs are expressed on
different cell types of the innate and adaptive immune systems as
well as non-hematopoietic cells such as endo- and epithelial cells.

IMPORTANCE OF HOST MICROBIOTA AND THE EMERGING
ROLE OF INNATE IMMUNITY IN GVHD
Primary target organs of acute GVHD such as the gastrointestinal
tract, skin, liver, and lungs all form epithelial linings that con-
stantly interact with commensal and pathogenic bacteria, either
through the epidermis, intestinal, or airway mucosa or the portal
circulation. Consistently, there is growing evidence that bacteria
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and innate PRRs are critically involved in the pathogenesis of acute
GVHD. Landmark studies by van Bekkum and colleagues in mice
demonstrated that bacterial decontamination or utilization of
germ-free mice lead to less severe intestinal GVHD (7, 8). Reduc-
tion of intestinal microbiota by antibiotic treatment not only
mitigated intestinal but also skin GVHD, suggesting a systemic
effect of gut decontamination (9). Similarly, antibiotic decont-
amination in patients undergoing allo-HSCT seemed to confer
robust protection from acute GVHD (10, 11). Lipopolysaccharide
(LPS) derived from Gram-negative bacteria was identified as a dri-
ver of GVHD pathogenesis. In experimental models, allo-HSCT
recipients that were treated either with anti-endotoxin neutral-
izing antibodies (12, 13) or an oral LPS inhibitor (14) showed
reduced GVHD severity associated with preserved GVL effects and
improved overall survival. These findings launched widespread use
of prophylactic antibiotic treatment to reduce the bacterial burden
prior to allo-HSCT, now routinely performed in many transplan-
tation centers worldwide (15). Interestingly, modification of the
intestinal microbiota using the probiotic microorganism Lacto-
bacillus rhamnosus resulted in reduced translocation of enteric
bacteria to the mesenteric lymph nodes, associated with improved
survival and reduced acute GVHD in mice (16). Furthermore,
intestinal inflammation during GVHD in mice and humans is
associated with major shifts in the composition of the intesti-
nal microbiota. In one report, GVHD-associated loss of paneth
cells resulted in reduced production of antimicrobial peptides and
a loss of microbial diversity with outgrowth of Escherichia coli.
Antibiotic treatment prevented outgrowth of E. coli and amelio-
rated the course of GVHD (17). Another study showed a marked
expansion of Lactobacillales in murine GVHD. Elimination of
this species from the flora of mice before allo-HSCT aggravated
GVHD, whereas its reintroduction mediated significant protec-
tion, indicating that the microbiota can modulate the severity
of intestinal inflammation (18). A recent study suggested that
not only bacteria but also host fungal communities (mycobiome)
can critically shape acute GVHD (19). Patients colonized with
candida species suffered from more severe GVHD and showed
more frequent intestinal involvement (33 versus 19%). Interest-
ingly, candida colonization was more frequent in patients bearing
a loss-of-function single nucleotide polymorphism (SNP) that is
associated with impaired function of the innate PRR Dectin-1, a
member of the C-type lectin family of receptors that detect carbo-
hydrates constituent of fungal cell walls, thus playing an important
role in the initiation of antifungal immunity (20).

With increasing knowledge on how PRRs detect conserved
microbial and danger-associated molecular patterns (DAMPs) and
initiate adaptive immune responses, their role in the pathogen-
esis of acute GVHD has become a focus of intense research.
A widely accepted model (depicted in Figure 1) postulates that
intensive chemotherapy and/or total-body irradiation (TBI) dur-
ing pre-transplant conditioning results in tissue damage and loss
of epithelial barrier function. Bacterial components translocated
across the barrier as well as endogenous danger molecules released
from damaged cells are sensed by PRRs on host and/or donor APCs
such as dendritic cells (DCs), which produce pro-inflammatory
cytokines and prime allo-reactive donor-derived T cells (21). This
model is supported by mouse studies, which demonstrate that

intensified TBI increases epithelial damage and is associated with
more severe GVHD (14, 22). Intriguingly, innate lymphoid cell-
derived IL-22 protects both the intestinal stem cell compartment
and the mature intestinal epithelium from inflammatory tissue
damage (23) in line with the general concept that IL-22 can main-
tain epithelial integrity under inflammatory conditions (24). The
enhanced intestinal barrier function thus may limit LPS translo-
cation and subsequent PRR activation. Consistently, genetic defi-
ciency for IL-22 results in impaired gut epithelial integrity and
increased tissue damage and mortality from acute GVHD (23).
Along these lines, prophylactic treatment with recombinant ker-
atinocyte growth factor protected mice from the development of
lethal acute GVHD, presumably via reduction of intestinal epithe-
lial apoptosis and diminished LPS-mediated pro-inflammatory
cytokine release (25). However, administration of the recombi-
nant human keratinocyte growth factor palifermin before and after
allo-HSCT in a phase I/II placebo-controlled clinical trial had no
significant effect on the incidence and severity of acute GVHD and
short-term survival (26), presumably due to pleiotropic effects of
palifermin.

TOLL-LIKE RECEPTORS IN GVHD PATHOGENESIS
Toll-like receptors (TLRs) constitute a family of transmembrane
PRRs that are broadly expressed in hematopoietic and non-
hematopoietic cells (27). TLR ligation by a variety of micro-
bial components leads to activation of APCs, production of
pro-inflammatory cytokines, and release of chemokines. One
of the best-studied TLRs in the context of GVHD is TLR4,
which detects LPS in the cell wall of Gram-negative bacteria.
The importance of LPS translocation and subsequent release of
pro-inflammatory cytokines such as TNF-α for the pathogenesis
of acute GVHD have been clearly documented (14). Moreover,
genetic deficiency for TLR4 in either donor or recipient cells
resulted in reduced DC activation, dampened allogenic T-cell
proliferation, and less severe acute GVHD (28). However, signal-
ing through TLR4 seems not to be absolutely required for the
development of GVHD in all cases. Accordingly, in another study
TLR4-deficient recipient mice showed GVHD severity compara-
ble to wild-type mice (29), suggesting that alternative pathways
in the absence of TLR4 signaling can lead to the activation of
host APCs and subsequent donor T-cell stimulation. Genetic asso-
ciation studies in patients undergoing allo-HSCT have shown
inconsistent results concerning the role of TLR4 in the patho-
genesis of GVHD. Patients showed reduced frequency of severe
GVHD when they or their sibling donors carried at least one
of two SNPs that are associated with reduced TLR4 responsive-
ness to LPS (odds ratio of 0.63 and 0.88, respectively) (30).
A second study showed that if both patient and donor carry
the SNP Thr399Ile, the incidence of severe acute GVHD was
significantly increased but overall survival was not influenced
(31). These contrasting results may be attributable to differ-
ences in patient cohorts, conditioning regimens and antimicrobial
treatment routines.

Other members of the TLR family have been associated with
immunomodulatory capacities and suppression of GVHD. Pre-
treatment of mice with the TLR5 ligand flagellin resulted in
reduced GVHD and improved overall survival (32). Interestingly,
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FIGURE 1 | Schematic overview of the initiation phase of acute graft-
versus-host disease. During the toxic conditioning regimen with total-body
irradiation and/or chemotherapy, the destruction of intestinal epithelial cells
leads to the loss of the epithelial barrier function. The subsequent
translocation of luminal bacteria as well as the release of endogenous danger
molecules such as adenosine triphosphate (ATP) and uric acid result in the

production of pro-inflammatory cytokines. Activated host and/or donor
antigen-presenting cells then prime allo-reactive donor T cells, which
perpetuate acute GVHD. TLR, toll-like receptor; APC, antigen-presenting cell;
DAMP, danger-associated molecular pattern; TNF, tumor necrocis factor; IL,
interleukin; NOD2, nucleotide-binding oligomerization domain; NLRP3,
NACHT, LRR, and PYD domains-containing protein 3.

in a clinical study of adoptively transferred immunosuppres-
sive regulatory T cells to allo-HSCT recipients, patients who
developed GVHD showed significantly increased TLR5 mRNA
expression in peripheral blood mononuclear cells (33), whereas
patients that did not show GVHD had reduced TLR5 mRNA
expression. These results in the human system are difficult to
interpret but may indirectly suggest a pro-inflammatory role of
TLR5 in allo-HSCT recipients, contrary to the mouse study cited
above.

Furthermore, it was shown that tissue inflammation induced
by TLR ligation can modulate the development of GVHD at a local
level (34). In this regard, the authors created mixed chimeras by
transplanting B6 bone marrow cells into lethally irradiated BALB/c
mice. After establishment of the B6 allograft, they transferred addi-
tional B6 donor T cells, which mimic the clinical use of donor
lymphocyte infusions. Transplantation of donor T cells into estab-
lished mixed chimeras did not induce GVHD, as donor T cells did
not enter target tissues despite undergoing allo-activation, expan-
sion, and up-regulation of homing molecules. Strikingly, topical
application of R-848, a synthetic TLR7 agonist, unleashed massive

skin infiltration of donor T cells, and development of localized
GVHD. Using a different TLR7 ligand (3M-011), another group
demonstrated that the timing of TLR activation has important
consequences for the pathogenesis of GVHD. While repetitive
applications of 3M-011 after allo-HSCT aggravated GVHD sever-
ity (35), a single treatment timed between TBI and allo-HSCT
induced expression of the immunoinhibitory enzyme indoleamine
2,3-dioxygenase (IDO) in host APCs, which resulted in reduced
lethal intestinal GVHD (36).

In addition, signaling via TLR9 that detects microbial CpG-
DNA motifs has been implicated in the pathogenesis of acute
GVHD. Studies in TLR9 deficient mice showed reduced GVHD
and improved survival (29, 37). Repetitive application of CpG-
DNA following allo-HSCT results in increased GVHD mortality
(35). This effect was dependent on TLR9 signaling and subsequent
IFN-γ release in host hematopoietic cells. Less consistent results
come from human studies: Transplant patients who carry gene
variants associated with reduced TLR9 expression showed GVDH
occurrence similar to control patients (38). A recent report ana-
lyzed two alternative SNPs that have been described to interfere
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with the TLR signaling pathway (39). While patients receiving
stem cells from an unrelated donor with the A1174G variant expe-
rienced severe acute GVHD more frequently (49.5 vs. 20.7%), the
T1635C variant in donor cells was associated with protective effect
against severe acute GVHD (16.7 vs. 49.1%).

Taken together, TLR signaling can both aggravate and attenuate
the development of local and systemic GVHD; critical factors seem
to be the cell type primarily affected (e.g., hematopoietic versus
non-hematopoietic) and the time point of TLR ligation. Thus, the
role of TLRs in the pathophysiology of GVHD remains controver-
sial. Recipient mice that are genetically deficient for either the TLR
signaling adaptor molecules MyD88 or TRIF were found to show
less severe intestinal GVHD (37). In a contrasting report, bone
marrow chimeric recipient mice deficient for MyD88 and/or TRIF
only in hematopoietic cells developed GVHD comparable to wild-
type controls (40). Other than by differences in the experimental
setting between institutions (e.g., microbiota and conditioning
regime), these differences might be explained by alternative (non-
TLR) pathways in APCs or epithelial cells, leading to allo-activation
and proliferation of donor T cells in the absence of TLR signaling.

NOD-LIKE RECEPTORS IN GVHD
Another family of PRRs with relevance to GVHD is the cyto-
plasmic NOD-like receptors (NLRs). NOD1 and NOD2 detect
peptidoglycans as components of the bacterial cell wall (6). Both
receptors have been extensively studied in the context of Crohn’s
disease, a chronic inflammatory bowel disease that shares sev-
eral immunopathogenic features with intestinal GVHD. Reduced
NOD2 activity was found to be associated with impaired epithe-
lial barrier function and aggravated intestinal inflammation (41).
Similarly, following allo-HSCT, NOD2-deficient mice showed
signs of exacerbated GVHD (42). Another study with bone mar-
row chimeric mice that lacked NOD2 activity only in hematopoi-
etic cells showed that NOD2 negatively regulates the development
of GVHD through its inhibitory effect on host APCs. The presence
of different SNPs in the NOD2 coding region resulting in impaired
downstream signaling via the pro-inflammatory transcription fac-
tor NF-κB in either the patient, donor or both was associated with
more severe GVHD (43). Two follow-up reports confirmed NOD2
mutations as independent risk factor for transplant-related mor-
tality (44, 45). However, several studies proposed contrasting data
as they could not find an impact of NOD2 polymorphisms on
GVHD severity and outcome after allo-HSCT (46–48).

Several members of the NLR family not only detect microbial
invaders but also survey cellular homeostasis and sense endoge-
nous danger signals (6). Examples of such DAMPs are adeno-
sine triphosphate (ATP), uric acid crystals, and double-stranded
DNA released from dying cells. Activation of specific members
of the NLR family by DAMPs results in the formation of cytosolic
multi-protein complexes called inflammasomes, whose exact com-
position depends on the activator initiating their assembly (49).
Inflammasome activation leads to the cleavage of pro-caspase-1
and the subsequent processing of the bioactive form of IL-1β and
IL-18. These downstream effector molecules have been shown to
modulate GVHD as antibody-mediated neutralization of IL-1β

resulted in less severe acute GVHD in mice (50, 51). In a phase I/II
clinical trial, blockade of IL-1 signaling attenuated GVHD in 8 out

of 14 patients with glucocorticoid-refractory disease (52). In con-
trast, a larger randomized study showed no effect of a recombinant
IL-1 receptor antagonist on GVHD severity and overall survival
(53). However, timing and way of administration of IL-1 recep-
tor blockade may be critical. Novel IL-1β specific antibodies await
clinical testing in the setting of allo-HSCT.

The NLRP3-inflammasome is an essential platform for
caspase-1 activation in response to multiple distinct exogenous
and endogenous danger signals (6) and its function can be
regarded as a guardian of intracellular homeostasis. NLRP3 utilizes
the adapter protein ASC for activation of caspase-1 and subsequent
cleavage of the precursor protein pro-IL-1β into its active form.
Binding of the endogenous danger molecule ATP to the purinergic
receptor P2X7 leads to potassium efflux and subsequent activation
of the NLRP3-inflammasome. In mice and humans undergoing
allo-HSCT, increased extracellular levels of ATP were found after
TBI and during the development of GVHD (54). ATP released
from damaged or dying cells induces activation of host APCs and
priming of allo-reactive donor T cells. Pharmacological metabo-
lization of ATP using apyrase resulted in less severe GVHD (54).
Chimeric mice that were genetically deficient for the purinocep-
tor P2X 7 in hematopoietic cells were partially protected from
GVHD. Reconstitution with wild-type DCs resulted in restored
GVHD development, demonstrating a critical role for host DCs
in sensing ATP and the subsequent induction of GVHD. However,
significantly reduced overall survival but no alterations in GVHD
severity were found in patients or corresponding donors with a
loss-of-function SNP in the P2X7 receptor gene (55). After con-
ditioning therapy in mice, intestinal commensal bacteria and uric
acid contribute to NLRP3-inflammasome-mediated IL-1β pro-
cessing, and gastrointestinal decontamination or enzymatic uric
acid depletion led to reduced GVHD severity (51). NLRP3 and
the adapter protein ASC, which are both required for pro-IL-
1β cleavage, were critical for the full manifestation of GVHD. In
transplanted mice, IL-1β exerted its effects on both DCs and T
cells, which preferably differentiated into IL-17A-producing Th17
cells (51), a CD4+ T-cell subpopulation that has been causally
linked to instances of aggravated GVHD after allo-HSCT (56).
Donors carrying one of two genetic alterations in the non-coding
regions of the NLRP3 gene are associated with increased disease
relapse and reduced overall survival but no alterations in GVHD
severity in allo-HSCT patients (57). Thus, directed therapies tar-
geting the NLRP3-inflammasome or depletion of specific DAMPs
remain promising therapeutic options to reduce the level of sys-
temic inflammation in the setting of allo-HSCT, but data reported
so far are somewhat controversial and await further clarification.

In summary, NOD2 signaling in hematopoietic cells appears to
protect from acute GVHD. Conflicting data from genetic associa-
tion studies in humans are most likely attributable to differences
in frequency of NOD2 SNPs between patient cohorts, and dif-
ferences with conditioning, immune suppression, and antibiotic
protocols (44). We refer to Ref. (58) for a more detailed discussion
of NOD2 in GVHD. Data on inflammasomes in allo-HSCT are
not yet abundant, but NLRP3 and possibly other inflammasomes
that sense endogenous danger signals such as ATP and uric acid
and induce IL-1β release seems to have a role in the pathogenesis
of acute GVHD.

Frontiers in Immunology | Tumor Immunity July 2014 | Volume 5 | Article 337 | 4

http://www.frontiersin.org/Tumor_Immunity
http://www.frontiersin.org/Tumor_Immunity/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Heidegger et al. Pattern-recognition receptors in GVHD

INNATE PATTERN-RECOGNITION RECEPTORS AND THE
GRAFT-VERSUS-LEUKEMIA EFFECT
Many studies have highlighted the fact that innate PRRs con-
tribute to the inflammatory processes that lead to activation of
allo-reactive T cells and the pathogenesis of GVHD. In contrast,
the molecular details that shape the beneficial GVL effect remain
poorly understood. Yet, only a detailed molecular understanding
of the GVL effect will allow for the discrimination between GVL-
pathways and allo-immune reactions that drive clinical GVHD, a
prerequisite for broader application of allo-HSCT in the future.
Unspecific depletion or proliferative inhibition of donor T cells is
believed to come at the cost of increased relapse of the underlying
malignant disease (59). However, recent data challenge that view,
since T-cell depletion via selection of CD34+ cells in the allograft
was found to be associated with markedly reduced GVHD but
no differences in the rate of leukemic relapse (60, 61). Yet, data
on the role of PRRs in GVL remain scarce. Studies that showed
an association between loss-of-function SNPs in the NOD2 gene
and the severity of GVHD found no impact on the relapse rate
by these same mutations (43, 45). Thus, NOD2 would seem to
be an attractive pharmacological target to attenuate GVHD with-
out interfering with the GVL effect. However, other studies that
investigated the same NOD2 SNPs in transplant patients and
corresponding donors could not confirm their effect on GVHD
pathogenesis (52), or showed an increased risk of relapse and death
if recipients and/or donors were carrying such an alteration in the
NOD2 gene (62, 63). These contrasting results emphasize that data
on differential regulation of GVHD versus GVL by PRRs on a sys-
temic level are still premature and do not yet allow for systemic
modulation of PRRs as a general treatment approach. In contrast,
as PRRs can control the development of GVHD at a local level (34),
their pharmacological manipulation in specific immune compart-
ments seems to be a more promising approach. Interfering with
PRR signaling in GVHD target tissues, such as intestine and skin,
but sparing lymphoid organs and bone marrow, where residual
hematologic malignancies reside, may allow to efficiently target
GVHD but leaving GVL intact.

CONCLUSION AND FUTURE DIRECTIONS
Toll-like receptors and NLRs respond to a variety of microbial and
endogenous danger signals and there is increasing evidence that
they influence the development of acute GVHD. Yet, the role of
TLRs in the pathophysiology of GVHD remains controversial, as
studies with TLR4- and MyD88-deficient mice demonstrated that
TLR signaling may not be absolutely required for the development
of GVHD. Loss-of-function mutations in the NOD2 gene, on the
other hand, correlated in some studies with adverse allo-HSCT
outcome in humans, suggesting a protective role of NOD2. Fur-
thermore, activation of the NLRP3-inflammasome during early
conditioning in mice contributes to the development of acute
GVHD. Other receptors involved in the local control of microbiota
will be the focus of future studies. Type I interferon has been shown
to play an important role in defining the balance between GVHD
and GVL responses (64). Thus, PRRs that detect cytosolic nucleic
acids and lead to the production of large amounts of type I inter-
feron such as the family of RIG-I-like helicases (5) or the recently
discovered cytosolic DNA receptor cyclic GAMP synthase (cGAS)

and its adapter STING (65) are of particular interest. Unraveling
their role in acute GVHD will not only boost our understand-
ing of this major complication after allo-HSCT, but may allow for
novel therapeutic approaches to GVHD and related disorders like
inflammatory bowel disease.

In light of the contradicting data regarding the role of some
PRRs in acute GVHD, we would like to point out some of the major
obstacles in the field of allo-HSCT research. Mouse models of
GVHD are heterogeneous, with different subsets of immune cells
being the main drivers of respective GVHD pathologies. In addi-
tion, innate and adaptive immunity are influenced by intestinal
microbiota, which can vary critically between different breeding
facilities. The effect of a given genetic alteration or therapeutic
intervention may therefore differ between models and breeding
facilities, and interpretation of such data must be undertaken with
caution. Parts of the existing data may have to be revised in light of
these new perceptions. Awareness of these difficulties together with
increasing knowledge of graft and host immune and microbial
physiology will, however, make this task easier in the future.
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