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Galectins are glycan-binding proteins that regulate innate and adaptive immune responses,
and some confer maternal-fetal immune tolerance in eutherian mammals. A chromosome
19 cluster of galectins has emerged in anthropoid primates, species with deep placentation
and long gestation. Three of the five human cluster galectins are solely expressed in the
placenta, where they may confer additional immunoregulatory functions to enable deep
placentation. One of these is galectin-13, also known as Placental Protein 13 (PP13). It has a
“jelly-roll” fold, carbohydrate-recognition domain and sugar-binding preference resembling
other mammalian galectins. PP13 is predominantly expressed by the syncytiotrophoblast
and released from the placenta into the maternal circulation. Its ability to induce apoptosis
of activated T cells in vitro, and to divert and kill T cells as well as macrophages in the
maternal decidua in situ, suggests important immune functions. Indeed, mutations in the
promoter and an exon of LGALS13 presumably leading to altered or non-functional protein
expression are associated with a higher frequency of preeclampsia and other obstetrical
syndromes, which involve immune dysregulation. Moreover, decreased placental expres-
sion of PP13 and its low concentrations in first trimester maternal sera are associated
with elevated risk of preeclampsia. Indeed, PP13 turned to be a good early biomarker to
assess maternal risk for the subsequent development of pregnancy complications caused
by impaired placentation. Due to the ischemic placental stress in preterm preeclampsia,
there is increased trophoblastic shedding of PP13 immunopositive microvesicles starting
in the second trimester, which leads to high maternal blood PP13 concentrations. Our
meta-analysis suggests that this phenomenon may enable the potential use of PP13 in
directing patient management near to or at the time of delivery. Recent findings on the
beneficial effects of PP13 on decreasing blood pressure due to vasodilatation in pregnant
animals suggest its therapeutic potential in preeclampsia.

Keywords: actin cytoskeleton, biomarker, danger signal, evolution, extracellular vesicles, glycans, lectins,
maternal-fetal interface

PREFACE
Many authors of this review have collaborated with Dr. Hans Bohn,
the discoverer of Placental Protein 13 (PP13), who passed away on
January 25, 2014. We dedicate this manuscript to his memory. His
scientific legacy and enormous contribution to placental protein
research have strongly influenced placentology and inspired our
studies on PP13 (1).

Hans Bohn was born in Munich on October 18, 1928. He gradu-
ated in 1954 and completed his doctoral thesis in 1956 in chemistry

at the University of Würzburg. A research fellowship starting in
1963 in the Protein Research Laboratory at the University of Pitts-
burgh was critical in directing his interest in protein research.
After two years, Dr. Bohn returned to Germany to work on pro-
teins in Behringwerke in Marburg/Lahn (Figure 1A). He was the
first to isolate factor XIII from human placenta for the treatment
of patients with factor XIII deficiency and wounds after injury or
surgery, and a side-fraction of this experiment yielded human
placental lactogen. This experience strongly influenced him to
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focus his research on the systematic isolation and characterization
of placental, endometrial and pregnancy serum proteins. These
studies have greatly supported our knowledge on pregnancy-
related proteins and their application in the diagnosis of pregnancy
complications (1).

Dr. Hans Bohn processed large amounts of human placental,
amniotic fluid and serum specimens and utilized combinations of
classical fractionation techniques to isolate more than 50 proteins,
which he named sequentially. He characterized these proteins for
their physico-chemical characteristics, and then developed specific
rabbit antisera against them for further protein purification and
for the development of immunoassays to determine these proteins’
diagnostic significance. In collaboration with scientists around the
world, Dr. Bohn also determined the amino acid sequence as well
as biological functions of many of these. Among the proteins he
isolated were Placental Protein (PP) 4 (annexin-V), PP5 (tissue
factor pathway inhibitor-2, TFPI-2), PP10 (plasminogen activa-
tor inhibitor-2, PAI-2), PP12 (insulin-like growth factor binding
protein-1, IGFBP-1) and PP13 (galectin-13), which were subse-
quently identified to be important regulators of the fundamental
processes in pregnancy (1).

Dr. Bohn’s collaboration with Professor Gábor N. Than (Uni-
versity of Pécs, Pécs, Hungary) had a fundamental impact on the
cloning, sequencing, structural, and molecular biological charac-
terization of a large number of PPs including PP13, and their pio-
neering collaborative research significantly improved our under-
standing on the biological role and diagnostic significance of these
proteins in pregnancy complications and malignancies. Beyond

these scientific discoveries, their friendship and close collabora-
tion strongly inspired a new generation of scientists. The existing
knowledge and advancements in the field were summarized in
their book entitled Advances in Pregnancy-Related Protein Research,
co-written with Dr. Dénes G. Szabó in 1993 (2) (Figure 1B).

For Dr. Bohn’s founding research and discovery of PP14 (gly-
codelin), he shared the prestigious Abbott Award in 1997. His
remarkable contributions to placental and pregnancy-related pro-
tein research were published in 198 research articles. Dr. Bohn
continued to contribute to placental protein research after his
retirement, and closely followed the studies implementing novel
molecular and cellular biological techniques on the proteins he iso-
lated, leading to further discoveries and improvements in clinical
diagnostics and patient care (1).

Dr. Hans Bohn was an exceptional scientist, an enthusiastic cat-
alyzer of collaborations and friendships who inspired many peers
and followers. He was a wonderful, kind and charismatic person,
a silent giant, who will be greatly missed.

THE DISCOVERY AND MOLECULAR CHARACTERIZATION
OF PP13
ISOLATION, PURIFICATION AND PHYSICO-CHEMICAL
CHARACTERIZATION OF PP13
Dr. Bohn’s scientific vision combined with his thorough work
using state-of-the-art methods of the 70’s and 80’s yielded the dis-
covery of 26 soluble placental tissue proteins, among which PP13
was purified, physico-chemically characterized and described in
1983 (3). Dr. Bohn homogenized term placental tissues and

FIGURE 1 | Dr. Hans Bohn and his scientific legacy in
pregnancy-related protein research. (A) Dr. Hans Bohn is depicted in
his Protein Laboratory at Behringwerke (Marburg/Lahn, Germany), where
he discovered and isolated more than 50 placental, endometrial and
pregnancy serum proteins including Placental Protein 13 (PP13), and

developed specific antisera and immunosassays for them between 1965
and 1989. The photo was obtained as a courtesy from Gabriele Bohn.
(B) A book co-written by Hans Bohn, Gábor N. Than and Dénes G. Szabó
published in the USA summarized the existing knowledge in the research
field in 1993.
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fractionated the protein extracts by a step-wise process that
included Rivanol and ammonium sulphate fractionation, gel-
filtration, ethanol precipitation, and immunoabsorption tech-
niques. The resulting PP13 protein was >99% pure, and SDS-
polyacrylamide gel electrophoresis found it to be composed of
two identical ~16 kDa subunits held together by disulphide bonds.
The carbohydrate content of PP13 was found negligible, a feature
that later became important in understanding its functions (2,
3). Utilizing the purified PP13-specific rabbit antiserum, an elec-
troimmunoassay and an Ouchterlony’s gel-diffusion test found
an average amount of 3.7 mg PP13 in human term placentas and
detected PP13 solely in the placenta among fetal and adult tissues.
The sensitivity of a radioimmunoassay (0.8 ng/ml) that utilized
this rabbit antiserum was insufficient to detect PP13 in maternal
and fetal serum or in amniotic fluid (2–4). Indeed, this is in accord
with the 0.1–0.4 ng/ml concentration range of PP13 in maternal
blood as was discovered with sandwich ELISA techniques using
mouse monoclonal antibodies a decade later (5).

CLONING, SEQUENCING AND INITIAL MOLECULAR BIOLOGICAL
ANALYSIS OF PP13
Professor Gábor N. Than’s team in Hungary isolated the full-
length cDNA (GenBank Acc. No.: AF117383) encoding PP13 from
a human placental cDNA expression library using Dr. Bohn’s rab-
bit anti-PP13 antiserum. Sequence analysis revealed a 578 bp insert
with a 417 bp open reading frame encoding a 139 amino-acid pro-
tein (6). The predicted molecular mass and amino-acid composi-
tion of the cloned protein corresponded with Dr. Bohn’s estimate
of the purified PP13 protein. A BLAST search of nucleotide and
protein sequences showed PP13 to be homologous to members of
the beta-galactoside binding galectin family, and computer analy-
sis detected 8 out of 16 invariant residues in galectins conserved
in PP13, suggesting its place in the galectin family (6). The high-
est sequence similarity of PP13 was found with the eosinophil
Charcot–Leyden Crystal (CLC) protein, which forms crystals
at sites of eosinophil-associated inflammation (7), a phenome-
non similar to that found with PP13 immunostainings on first
trimester decidual tissue sections (8). Interestingly, using a func-
tional assay and highly sensitive NMR measurements, the native
and recombinant PP13 was observed to have weak lysophopholi-
pase activity (6, 9) similar to CLC protein. This lysophopholipase
activity was also inferred from the release of free fatty acids from
cultured primary trophoblasts exposed to PP13 (5). However, it
was later revealed that this enzymatic activity of CLC protein
is caused by an associated lysophospholipase (10), and further
research is required to understand whether the lysophospholipase
activity of PP13 is intrinsic or indeed related to an associated
protein.

DETAILED STRUCTURAL AND FUNCTIONAL CHARACTERIZATION OF
PP13 AS A GALECTIN
The homology of PP13 to members of the galectin family inspired
further structural and functional investigations. Homology mod-
elling based on the “jelly-roll” fold of galectins observed by
X-ray crystallography revealed the 3D model of PP13, which
was deposited into the Protein Data Bank (Acc. No.: 1F87)
(11). This fold consists of five- and six-stranded β-sheets

FIGURE 2 |The structural and functional basis for renaming of PP13 as
galectin-13. (A) The figure depicts the “jelly-roll” fold of PP13, which
consists of five- and six-stranded β-sheets linked by two α-helices.
(B) In vitro assays revealed haemagglutinating activity of placenta-purified
(PP13-B) and recombinant (PP13-R) PP13. In non-reducing conditions, both
PP13-B and PP13-R agglutinated human erythrocytes at ≥50 µg/ml protein
concentrations. The haemagglutinating ability of PP13-R was inhibited by
dithiothreitol or sugars at ≥1 mM concentrations. (C) The strength of
PP13-R binding to sugar-coupled agarose beads increased from
lactose-agarose to glucose-agarose (left to right). PP13 bound to
sugar-coupled agarose beads was competitively eluted by sugars (1 M)
listed back to front. PP13 had the best eluting capacity (sugar affinity) for
N -acetyl-lactosamine, mannose and N -acetyl-galactosamine.
Figure (A) was published in Ref. (11), and Figures (B,C) in Ref. (9). Kind
permission for the reuse of figures was obtained from Oxford University
Press (A) and John Wiley and Sons (B,C).

linked by two α-helices characteristic for “prototype” galectins
(Figure 2A). Out of the eight consensus residues in the galectin
carbohydrate-recognition domains (CRDs), four identical and
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three conservatively substituted residues were found in PP13.
Computational docking simulations showed that the PP13 CRD
may bind sugars, e.g. N -acetyl-lactosamine and lactose, simi-
lar to most galectins (Figure 2A). Since these lines of evidence
demonstrated that PP13 is a novel galectin, it was designated as
galectin-13 (11).

Galectins constitute a subgroup among the superfamily of
lectins, carbohydrate-binding proteins that are important in the
regulation of cellular interactions with cells, the extracellular
matrix and pathogens. They bind to glycans residing on glyco-
proteins, glycolipids and other glycoconjugates that constitute a
complex array coined the“glycome”, which stores orders of magni-
tude larger biological information than nucleic acids and proteins
store. For example, the numbers of 4,096 hexanucleotides and
64 million hexapeptides are far surpassed by the 1.44× 1015 iso-
mer quantity of hexasaccharides (12). Galectins can bind to a
diverse set of glycoconjugates, and therefore, they have pleiotropic
functions in a variety of key biological processes including sig-
nal transduction, cell differentiation, apoptosis, or cell adhesion.
Moreover, galectins are positioned at the cross-roads of adaptive
and innate immune functions as they are key determinants of acute
and chronic inflammation, immune tolerance and host-pathogen
interactions (12–18).

Triggered by the recognition that these galectin functions are
important determinants of healthy pregnancies (19), the detailed
molecular characterization of PP13 allowed greater insight into
its function in the placenta during pregnancy. Similar to other
galectins, PP13 also hemagglutinated human erythrocytes in vitro
(Figure 2B). Furthermore, sugar-binding assays showed the affin-
ity of PP13 for carbohydrates widely expressed in the human
placenta (Figure 2C), particularly for N -acetyl-lactosamine, man-
nose and N -acetyl-galactosamine (9) as already predicted by mol-
ecular modelling (11). Assay performance in reducing conditions
decreased the hemagglutinating (Figure 2B) and sugar binding
activity of PP13, suggesting that homodimerization of PP13 sub-
units by disulphide bridges are important for these functions (9).

Through placental immunostaining, PP13 was found in the
cytoplasm and brush border membrane of the syncytiotro-
phoblast. Using affinity chromatography and mass spectrometry,
annexin II and beta/gamma actin were identified as ligands of
PP13, a finding that was also supported by high colocalization
of PP13 with annexin II in the syncytiotrophoblast brush border
membrane. These results suggested the galectin-like externaliza-
tion of PP13 to the cell surface by extracellular vesicles containing
actin and annexin II (9). It has to be elucidated whether, similar
to other galectins (20), PP13 may bind to glycoconjugates on cell
surfaces and form “galectin-glycan lattices” that are important in
cellular interactions and signaling.

THE INTERACTIONS OF PP13 WITH ABO BLOOD GROUP ANTIGENS
As an indirect sign of PP13 binding to glycoconjugates on
cell surfaces, placental immunostainings showed PP13 positiv-
ity of maternal and fetal erythrocytes, confirming the in vivo
erythrocyte-binding of PP13 (21). These results were consistent
with the tendency of PP13, similar to other galectins, to bind beta-
galactosides that are present at terminal positions on ABO blood-
group antigens (9, 11, 22, 23). Flow cytometry measurements

further demonstrated the binding of PP13 but not its CRD-
truncated variant to erythrocytes, proving that PP13 binding is
mediated by its CRD (Figure 3A). PP13 binding was similar in
intensity to blood group A and O erythrocytes, while PP13 had
the weakest binding intensity to blood group B and the strongest
binding intensity to blood group AB erythrocytes (Figure 3A).
Similar to other galectins (24, 25), PP13 binding to various ABO
blood group erythrocytes changed dynamically with increasing
PP13 concentrations (Figure 3C).

Computational studies have indicated that the structural basis
for ABO blood group antigen binding includes the following: (1)
three out of four residues in the core galectin CRD involved in
disaccharide-binding are conserved in PP13 (11, 23); (2) PP13
has a similar “B-site” involved in ABO antigen binding as human
galectins that exhibit ABO blood group antigen binding (21, 25);
and (3) PP13 accommodates blood group H trisaccharide in its
CRD similar to a fungal galectin’s CRD (21) (Figure 3B).

It is interesting to note that ABO blood group antigens
are oligosaccharides attached to cell-surface glycoconjugates on
epithelia, endothelia and erythrocytes, which might have been
evolutionarily advantageous in conferring resistance against cer-
tain pathogens (26). The gene encoding for the enzymes that
catalyze the transfer of these oligosaccharides to cell-surface gly-
coconjugates emerged in primates (22, 27). If the evolution of
the ABO blood group system and genes encoding for PP13 and
closely related galectins was somehow associated, that would sug-
gest a potential functional relevance of PP13 binding to ABO blood
group antigens.

THE EVOLUTION AND HUMAN DISEASE-RELATED
POLYMORPHISMS OF LGALS13
EVOLUTIONARY ANALYSES OF GENES ENCODING FOR PP13 AND
CLOSELY RELATED GALECTINS
An evolutionary study presented compelling evidence that a cluster
of galectin genes, including LGALS13 that encodes PP13, emerged
on chromosome 19 in anthropoid primates, which differ from
other primates by having larger brains and longer gestations (23).
The analysis of this galectin cluster in the available genome assem-
blies revealed frequent gene duplication, inversion and deletion
events characteristic of repeat-mediated “birth-and-death” evolu-
tion, a process that leads to novel phenotypes in species adapting
to their changing environment (28). Detailed analysis showed
that transposable long interspersed nuclear elements (LINEs) were
positioned at the majority of boundaries of large inversions and
gene duplication units, suggesting that LINEs had mediated the
rearrangements within this cluster. Genes in this cluster have four-
exon structures as other “prototype” galectin genes. Of the two
major clades in the cluster, one contains genes with predominant
placental expression including LGALS13 and related pseudogenes.
Of note, LGALS13 was only found in Old World monkeys and
apes. Sequence analyses of 24 newly determined sequences and
69 annotated sequences in 10 anthropoid species indicated func-
tional diversification among PP13 and related galectins during
evolution as can be inferred from the amino acid replacements in
their CRDs (23).

Sequence comparison showed a strong conservation of
more than half of the residues of PP13 and cluster galectins
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FIGURE 3 |The differential binding of PP13 to ABO blood group antigens
in vitro and in vivo. (A) Flow cytometry showed that recombinant PP13
binding to erythrocytes was specific and mediated by its carbohydrate-
recognition domain (CRD) since recombinant truncated PP13 (TrPP13) bound
negligibly similar to bovine serum albumin (BSA). PP13 had the strongest
affinity to blood group AB erythrocytes and weakest affinity to blood group B
erythrocytes. (B) Surface representation of PP13 complexed with blood group
H trisaccharide (green). Blue and red colors indicate positive and negative

electrostatic potentials on the molecular surface, respectively. The binding
groove of the CRD contains a central positive channel flanked by negative
regions. (C) The relative binding of PP13 (lower panel) to different ABO blood
group erythrocytes dynamically changed and inversely mirrored the relative
serum PP13 concentrations (upper panel) in women with different ABO blood
groups with advancing gestation from the first to third trimesters. All figures
were published in Ref. (21). Kind permission for the reuse of figures was
obtained from the Public Library of Science.

predominantly located in the protein cores that determine
their overall structure, whereas residues on their surface, espe-
cially in the loop regions, have undergone rapid evolution (23)
(Figure 4A). From the eight conserved residues in the galectin
CRD, four (positions: 53, 65, 72, and 75) that are key in the overall
sugar binding form a pocket in one side of the CRD and were
under purifying selection in PP13 and cluster galectins. The other
four residues (positions: 55, 57, 63, and 77) on the opposite side
of the CRD had more variability among cluster galectins, with
frequent replacements in several lineages following gene duplica-
tions including K>T77 in PP13 (Figure 4B). As these latter four
residues are crucial for galactose or glucose binding, the structural
differences might have resulted in differing functions between
PP13 and other cluster galectins. Indeed, functional experiments
with human recombinant PP13 and five other galectins proved the
different sugar-binding profiles of these investigated proteins (23).

A large number of pseudogenes in the studied species were
found in the cluster (23). These emerged by the deletion of exons,
mutations of the exon–intron boundaries, and by the introduction
of one or more in-frame premature stop codons. As a strik-
ing observation, 18 out of the identified 38 pseudogene variants

contained the “163C>T” DNA variant leading to the introduc-
tion of a premature stop codon at the site encoding residue 55,
which may result in truncated proteins of 54 amino acids that
lack the entire CRD. In fact, functional experiments proved that
this “163C>T” DNA variant results in the expression of a trun-
cated PP13 that cannot bind carbohydrates (23). The question
why nature utilized the same process to silence so many galectin
genes in certain lineages, including LGALS13 in baboon, Bornean
orangutan and Sumatran orangutan, remains unanswered.

DNA VARIANTS IN HUMAN LGALS13
Somewhat related to evolutionary selection, a total of 933
LGALS13 DNA variants have been already identified in the
genomes of 1,092 individuals from 14 populations by the “1000
Genomes Project”1. These included mostly upstream (n= 277),
downstream (n= 261) or intron (n= 240) variants. Besides these,
non-coding transcript (n= 98) or exon (n= 56) variants and mis-
sense variants (n= 56) were frequently detected. Nevertheless, the

1www.1000genomes.org
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FIGURE 4 |The evolution of PP13 and closely related galectin genes in
the chromosome 19 cluster. (A) Evolutionary changes leading to structural
diversification in chromosome 19 cluster galectins are depicted on the
molecular backbone of PP13 (left). The width and color of the ribbon varies in
proportion with site-specific ω values (dN/dS; ω < 1, purifying selection; ω > 1,
positive selection) for chromosome 19 cluster galectins. ω, indicated by the

color spectrum on the bar, is the smallest along β-strands and highest in loop
regions. (B) The same color coding shows that four residues in the PP13 CRD
(residues: 53, 65, 72, 75) have been conserved in chromosome 19 cluster
galectins, while the other four residues on the opposite side of the CRD
(residues: 55, 57, 63, 77) show more evolutionary changes among these
galectins.

“1000 Genomes Project” has not provided information regarding
the association of LGALS13 DNA variants with disease suscep-
tibility. In search of LGALS13 DNA polymorphisms by targeted
genotyping studies, the association of certain LGALS13 DNA vari-
ants with severe complications of pregnancy has been identified.
These studies utilized whole blood DNA samples obtained from
pregnant women and their neonates in a South African cohort of
the Black and Coloured population, and the following DNA vari-
ants were revealed for LGALS13: (1) variants in Exon 3 including
single nucleotide polymorphisms (SNPs) and a single nucleotide
deletion, which latter causes a frame-shift in the open reading
frame, leading to the formation of a premature stop codon and a
truncated protein (221delT); (2) SNPs in Introns 2 and 3 including
an intron boundary polymorphism that is associated with alter-
native splicing and the deletion of Exon 2; and (3) an SNP in the
promoter region (29–34).

Of interest, in a prospective cohort of 450 low-risk primigravid
women of Black and Coloured origin, carrying the naturally occur-
ring “221delT” mutation conferred a 2.27-fold relative risk for
preterm labor (34). The frequency of heterozygous carriers of
this mutation was higher in the group of women with preterm
preeclampsia (5.7%) than in controls (2.4%), and no individuals
were found to be homozygous. In another study conducted on the
same population, there was a significant association for this muta-
tion and preeclampsia, particularly among Coloured women (33).
These results suggest that the placental expression of a function-
ally impaired, truncated PP13 may put women at increased risk
for severe pregnancy complications. However, so far no polypep-
tide derived from the “221delT” DNA polymorphism could be
identified in placental or body fluid samples, most likely due to
the rapid degradation or insufficient immunodetection of such a
protein because of the anticipated major misfolding (35).

The “-98A/C” promoter polymorphism was also associated
with the risk of preeclampsia (31, 33, 34). In a prospective cohort of
low-risk pregnant women, controls were in the Hardy-Weinberg
equilibrium, while cases deviated from that, and the heterozy-
gous A/C genotype appeared to be protective against preeclampsia

(31). Another study comprising the same population found a sig-
nificant difference between “-98A/C” genotype distributions in
patients with placental abruption and controls among Coloured
women (33). These results suggest that the “-98A/C” promoter
polymorphism may negatively affect LGALS13 expression and
PP13 functions.

THE EXPRESSION PATTERN OF PP13 IN HUMANS
WIDE-SCALE EXPRESSION PROFILING OF PP13 IN HUMAN TISSUES
Besides the studies on LGALS13 DNA variants, the investiga-
tions on the expression patterns of PP13 have revealed interesting
insights. The study describing the cloning of PP13 also presented
compelling evidence for the predominant placental expression of
PP13 in the human body (6). In fact, the expression profiling of
human adult and fetal, normal and tumorous tissues by West-
ern blot (26 tissues) and Northern blot (16 tissues) detected a
16kDa PP13 immunopositive band in extracts of human term
placentas, and unique placental PP13 mRNA expression, respec-
tively. These findings were supported by GenBank evidence of only
placental expressed sequence tags for LGALS13. Later, the wide-
scale expression profiling of LGALS13 and related chromosome
19 cluster galectin genes using qRT-PCR on a human 48-tissue
cDNA panel confirmed the predominant placental expression of
LGALS13 (Figure 5A) (23).

PLACENTAL EXPRESSION PROFILING OF PP13 IN NORMAL
PREGNANCIES
In human villous placental tissues at term, immunohistochemistry
and immunofluorescence consistently found predominant PP13
positivity of the syncytiotrophoblast and villous capillary endothe-
lium but not the cytotrophoblasts (8, 9, 21, 23, 36, 37). In situ
hybridization (23) detected PP13 mRNA expression in the same
placental cells, further confirming the specificity of the immunos-
tainings (Figure 5B). The same PP13 expression pattern was found
in the placentas of Old World monkeys, suggesting the conserva-
tion of PP13 expression during evolution (Figure 5C). Moreover,
in situ hybridization revealed LGALS13 expression in the amnion
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FIGURE 5 | PP13 expression profiling. (A) qRT-PCR on a human 48-tissue
cDNA panel uncovered that LGALS13 is predominantly expressed by the
placenta. The y axis shows gene expression levels [2(−∆Ct)]. (B) In situ
hybridization revealed LGALS13 expression in the amnion (arrow) and
chorionic trophoblasts (arrowhead) in the fetal membranes in normal term
pregnancy (left). In normal term placenta, LGAL13 is predominantly
expressed by the syncytiotrophoblast (arrow) and endothelium (arrowhead)
(right). Scale bars: 20 µm. (C) PP13 immunostaining is conserved in the
syncytiotrophoblast, its apical membrane (arrows), and the endothelia
(arrowheads) of human and anthropoid primate placentas. (Scale bars:
20 µm.) (D) (Upper panel) Serial sections of a 15 week junctional complex
stained for PP13 and low molecular weight cytokeratin (LCK). LCK
immunostained epithelial cells, including cytotrophoblasts (arrowheads),
anchoring trophoblasts (*), early infiltrating trophoblasts [ ], and invasive
trophoblasts (arrows) in the decidua (D). Mesenchymal villous core cells (V)

and decidual cells were negative. PP13 immunostaining was found in the
syncytiotrophoblast. The cytotrophoblasts (arrowheads), anchoring
trophoblasts (*), early infiltrating trophoblasts [ ], and the invasive
trophoblasts (arrows) in the decidua (D) were negative. (Lower panel) Serial
sections of 8 week maternal spiral arterioles immunostained for PP13 and
human placental lactogen (hPL). All the decidual invasive, intravascular and
endovascular trophoblasts (arrowheads), and a single luminal (A)
syncytiotrophoblast (arrow) were stained for hPL. The monoclonal anti-PP13
antibody did not stain decidual invasive trophoblasts, lightly stained
endovascular trophoblasts (arrowheads), and it intensely stained luminal
syncytiotrophoblasts (arrow). Figure (A) represents data published in Ref.
(23). Figures (B,C) were published in Ref. (23). Figure (D) was published in
Ref. (8). Kind permission for the reuse of the figures was obtained from the
National Academy of Sciences of the United States of America (A-C) and
SAGE US (D).

and chorionic trophoblasts in the fetal membranes. These find-
ings showed PP13 expression predominantly in locations where
maternal-fetal immune interactions occur.

In the first trimester, PP13 was immunolocalized to the syn-
cytiotrophoblast and multinucleated luminal trophoblasts within
converted decidual spiral arterioles (8). Villous cytotrophoblasts
and invasive extravillous trophoblasts in the anchoring tro-
phoblastic columns were immunonegative (Figure 5D). The syn-
cytiotrophoblastic staining intensity declined with gestational age,

being the strongest between 6 to 8 weeks of gestation. This study
also confirmed previous findings in term placental tissues on pre-
dominant, diffuse cytoplasmic and also nuclear immunopositivity
of the syncytiotrophoblast.

EXPRESSION PROFILING OF PP13 DURING VILLOUS TROPHOBLAST
DIFFERENTIATION AND FUSION
Based on this immunohistochemical evidence, it was hypoth-
esized that PP13 expression is related to the biochemical and
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morphological differentiation and syncytialization of the villous
trophoblast (36). These processes are primarily governed by cyclic
adenosine monophosphate (cAMP) and protein kinase A (PKA),
which regulate the resetting of the transcriptional program dur-
ing the shift from cytotrophoblast into the syncytiotrophoblast
(38–40). The resulting unique transcriptome of the syncytiotro-
phoblast (41) controls the production of placental hormones,
immune proteins and other proteins predominantly expressed by
the placenta, which support pregnancy. Besides the exchange of
feto-maternal gas, nutrients and waste, and the hormonal regula-
tion of fetal development, the syncytiotrophoblast is also active
in generating immune tolerance between the mother and her
semi-allogeneic fetus (2, 42, 43).

In vitro assays with trophoblast-like BeWo cells demon-
strated that indeed LGALS13 expression is related to trophoblast
fusion and syncytium formation induced by the cAMP-analogue
Forskolin, and that a PKA inhibitor could block BeWo cell syncy-
tialization and LGALS13 expression (44). A recent study confirmed
these findings in BeWo cells, and demonstrated the syncytializa-
tion and differentiation-related LGALS13 expression in primary
villous trophoblasts (45). The evolutionary and functional inves-
tigations of the trophoblastic regulatory mechanisms of LGALS13
expression showed that promoter evolution and the insertion of an
anthropoid-specific LINE element into the 5′ untranslated region
(UTR) of an ancestral gene introduced binding sites for several
transcription factors (e.g. ESRRG) key in villous trophoblastic
gene expression, leading to the gain of placental expression of
LGALS13 and related chromosome 19 cluster galectin genes (43,
45). Glial cell missing-1 (GCM1), the transcription factor that
governs villous trophoblast fusion and syncytialization (46), was
shown to facilitate the expression of ESRRG and other key villous
trophoblastic transcription factors, and thus, to indirectly pro-
mote the placental expression of LGALS13 and cluster galectin
genes. In addition, DNA methylation was also observed to reg-
ulate developmental expression of LGALS13 and cluster galectin
genes (45).

PLACENTAL ASPECTS OF PREECLAMPSIA
It is important that the impairment of villous trophoblast syncy-
tialization characterized by the decreased trophoblastic expression
of GCM1 and syncytin-1, a fusogenic protein regulated by GCM1,
has been observed in preeclampsia (47, 48), an obstetrical syn-
drome originating from impaired early placentation (49, 50).
Preeclampsia is diagnosed by new-onset hypertension and pro-
teinuria after 20 weeks of gestation, and it is a major cause of
maternal, fetal and neonatal morbidity and mortality (51). More-
over, this syndrome consists of various subtypes defined by gesta-
tional age (e.g.: early-onset:<34th weeks; preterm:<37 weeks; and
term: ≥37 weeks) (52, 53). Early-onset and preterm preeclampsia
are severe subtypes of the disease that require premature delivery
and are more often associated with intrauterine growth restriction
(IUGR), hemolysis, elevated liver enzymes, and low platelet count
(HELLP) syndrome, and fetal death, while term preeclampsia may
be severe or mild in its clinical presentation (51–55). Although the
molecular pathways of preeclampsia are incompletely understood,
it appears to be associated with impaired placentation as the only
definite therapy of preeclampsia is still the delivery of the fetus

and the removal of the placenta (50, 51, 53). It is also evident that
heterogeneous causes can trigger early placental pathologic events,
and that these are followed by the onset of the terminal pathway
of preeclampsia in a later stage, leading to the subsequent clinical
onset of the symptoms (50, 51, 56).

Several studies providing histopathologic or transcriptomic
evidence have suggested that the placental pathogenesis of
preeclampsia may differ in its subtypes as more pronounced differ-
ences could be observed in early-onset than late-onset preeclamp-
sia when compared to gestational age-matched controls (57–61).
In line with these findings, the extent of histopathologic changes in
the placental bed was most extensive in early-onset preeclampsia,
especially in cases associated with IUGR. These abnormal find-
ings were consistent with impaired trophoblast invasion into the
uterine tissues and the consequent abnormal remodelling of the
maternal spiral arterioles, placental pathologic events that occur
in the first trimester (62, 63).

Previously it was thought that impaired early placentation is
associated with placental hypoxia (64); however, it has recently
become evident that the resulting fluctuation in uterine blood
supply leads to placental ischemic injury, causing oxidative stress,
pro-inflammatory conditions, and apoptosis (65–67). In response,
the placenta expresses and releases increased amounts of anti-
angiogenic factors, pro-inflammatory cytokines and aponecrotic
syncytiotrophoblast microvesicles. The latter might induce mater-
nal anti-angiogenic and exaggerated systemic pro-inflammatory
states, hypertension and proteinuria (50, 51, 53, 66, 68–70).

DECREASED PLACENTAL PP13 EXPRESSION IN PREECLAMPSIA
In this context, LGALS13 expression was found to be down-
regulated in villous placental tissues in preeclampsia. This was first
described for preterm preeclampsia compared to gestational age-
matched controls at the time of disease, and this phenomenon was
suggested to be associated with problems in trophoblast syncytial-
ization (36) (Figures 6A,B). Since then, other studies confirmed
these findings in the third trimester, including one that investi-
gated placental LGALS13 expression at the time of disease (71) and
another that looked for syncytiotrophoblastic LGALS13 expres-
sion in laser captured specimens in the first trimester (72). The
latter study detected decreased LGALS13 expression in the syncy-
tiotrophoblast from chorionic villus samples obtained at 11 weeks
of gestation in women who subsequently developed preeclampsia
compared to controls. Such first trimester down-regulation of pla-
cental LGALS13 expression may be one of the earliest pathological
indications for the subsequent development of preeclampsia.

A recent study has revealed the possible molecular mechanisms
leading to decreased placental LGALS13 expression in women with
severe preterm preeclampsia. It was found that in this subform of
preeclampsia there is a decreased placental expression of GCM1
and ESRRG, genes encoding transcription factors that regulate tro-
phoblastic LGALS13 expression (45). Moreover, functional exper-
iments showed that the knock-down of GCM1 in BeWo cells led
to the down-regulation of ESRRG and other transcription factors
that regulate LGALS13 expression. Accordingly, it was concluded
that there is a decreased GCM1-mediated trophoblast fusion
and trophoblastic gene expression in severe preterm preeclamp-
sia that leads to the down-regulation of LGALS13. Furthermore,
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FIGURE 6 | Decreased placental LGALS13 expression and increased
trophoblastic PP13 shedding in preterm preeclampsia. (A) Relative
LGALS13 expression decreases with advancing gestational age in controls
(open triangles), while it is constantly low in patients with preeclampsia
(diamonds). (B) Relative LGALS13 expression is lower in women with
preterm preeclampsia than in controls. (C) Syncytiotrophoblastic PP13
immunostaining is decreased in preterm preeclampsia compared to
controls. PC: preterm control, 35 GW (weeks of gestation); TC: term control,
GW38; PPE: preterm preeclampsia, GW29; TPE: term preeclampsia, GW37.
The endothelium (arrows) is also PP13 immunopositive in all sections. The
microvillous membrane (open arrowheads) stains moderately for PP13 in
controls, while it is strongly PP13 immunopositive in preeclampsia. 500×

(left) or 700× (right) magnification. (D) The immunohistochemical score of
the syncytiotrophoblast is higher in preterm controls than in preterm
preeclampsia, with or without HELLP syndrome, while it is not different
between cases and controls at term. (E) Maternal serum log10 PP13
concentrations increase as a function of gestational age in control women
(open rectangle), while these do not correlate with gestational age in
patients with preeclampsia (filled circle). The regression line for log10 PP13
concentrations is significantly different in the two groups. (F) Median
maternal serum PP13 concentrations are higher in women with preterm
preeclampsia, with or without HELLP syndrome, than in controls. All the
figures were published in Ref. (36). Kind permission for the reuse of figures
was obtained from Springer Science+Business Media.

the differential methylation of LGALS13 was also found in the
villous trophoblast in preterm preeclampsia, which may inter-
fere with LGALS13 expression, suggesting that potential additional
disease-mechanisms may account for the trophoblastic pathology
in preterm preeclampsia (45).

ALTERED PLACENTAL LOCALIZATION AND INCREASED SHEDDING OF
PP13 IN PREECLAMPSIA
In accord with gene expression data, immunostainings revealed
that cytoplasmic PP13 positivity of the syncytiotrophoblast was
weaker in preeclampsia compared to controls, particularly in
preterm cases. Similar changes were also observed at the time
of disease in preterm HELLP syndrome (36) (Figures 6C,D).
Paradoxically, PP13 immunostaining of the syncytiotrophoblast
microvillous membrane was stronger in preeclampsia and HELLP
syndrome compared to controls (Figures 6C, 7A). Syncytial cyto-
plasmic protrusions and membrane microvesicles shed from the
syncytiotrophoblast stained strongly for PP13 in preeclampsia

(Figure 7A). It was suggested that the increased release of PP13
positive microvesicles from the syncytiotrophoblast may lead
to elevated maternal serum PP13 concentrations in preterm
preeclampsia and HELLP syndrome before or at the time when the
clinical symptoms of preeclampsia appear (Figures 6E,F) (36, 37).

The subcellular redistribution of PP13 in the syncytiotro-
phoblast was further observed by confocal imaging of placental
samples from patients with preeclampsia and HELLP syndrome
compared to gestational age-matched controls (73). In all study
groups, PP13 highly colocalized with placental alkaline phos-
phatase, a glycophosphatidylinositol-anchored lipid raft-resident
protein. However, there was also a high degree of colocalization
of PP13 with CD71, a non-raft plasma membrane protein, which
decreased in preterm preeclampsia and HELLP syndrome. In con-
trast, the colocalization of PP13 with cytoskeletal actin, a protein
earlier found to bind to PP13 with high affinity (9), was increased
in all patient groups compared to controls. These results indicated
that the translocation of PP13 to the juxta-membrane region of
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FIGURE 7 | Subcellular relocalization of PP13 in preeclampsia and
HELLP syndrome. (A) Representative images show uniformly moderate
cytoplasmic and brush border membrane PP13 immunostaining of the
syncytiotrophoblast in a preterm control placenta (left), while its weak
cytoplasmic and strong membrane immunostaining in a placenta from a
woman with preterm preeclampsia (PE) associated with HELLP syndrome
(right). Cytoplasm protrusions, membrane blebs and shed membrane
microvesicles immunostained intensely for PP13 (right). 800 x
magnification. (B) Representative confocal images show the subcellular

relocalization of PP13 (green) near to placental alkaline phosphatase
(PLAP) immunopositive (red) lipid rafts in the juxtamembrane regions of
the syncytiotrophoblast in term preeclampsia and preterm preeclampsia
associated with HELLP syndrome compared to controls. (C) Line scan
intensity distributions of PP13 and PLAP in representative confocal images
shown in subfigure (B). Figure (A) was published in Ref. (36).
Figures (B,C) were published in Ref. (73). Kind permission for the reuse of
the figures was obtained from Springer Science+Business Media (A) and
Elsevier (B,C).

the syncytiotrophoblast in preeclampsia and HELLP syndrome is
associated with actin (Figures 7B,C) (73). Supporting these obser-
vations in the placenta, subsequent in vitro experiments revealed
that Latrunculin B, a selective blocker of actin polymerization,
decreased PP13 release from BeWo cells and led to its intracellular
accumulation (Figure 8A) (73).

This result may also explain how PP13 is released from the
syncytiotrophoblast since the actin cytoskeleton and associated
motor proteins drive intracellular and plasma membrane traf-
ficking amongst a wide variety of cellular processes (74, 75). In
this regard, galectins predominantly utilize unconventional traf-
ficking routes, either vesicular or direct translocational, avoiding
the endoplasmic reticulum (ER) and Golgi apparatus, since they
are synthetized on free ribosomes and lack an N -terminal signal
sequence for the translocation to the ER/Golgi system (76–78).
However, other vesicular transport mechanisms for PP13 can-
not be excluded, such as the “kiss and run” exocytosis, which
was described for many hormones and neurotransmitters and was
proved to be an actin- and calcium-dependent process (79, 80).

The role of actin cytoskeleton in the release of extracellular vesi-
cles (EV; e.g. microvesicles/microparticles and exosomes), which
also carry various galectins, has also been demonstrated (81–83).
In addition, annexin II, another protein that specifically bound
to PP13 (9), has also been found in various types of EVs along
with actin (84, 85). Similar to galectin-9, which was shown to be

associated with many different types of EV fractions (86), PP13
may also translocate with different EVs through the syncytiotro-
phoblast membrane. This type of release is supported by evidence
on the PP13 release from BeWo cells mediated by exosomes
(73) and the observed PP13 immunopositivity of microvillous
membrane microvesicles shed from the syncytiotrophoblast (36).

THE ROLE OF CALCIUM AND ISCHEMIA IN TROPHOBLASTIC PP13
RELEASE
Recent in vitro experiments with BeWo cells transfected with
LGALS13 to enable high PP13 expression (73) also showed an
increased PP13 release from calcium ionophore-treated cells, evi-
denced by decreased cellular PP13 content and elevated amounts
of PP13 in cell culture supernatants (Figure 8B). This finding is in
accord with a previous report showing that galectin-3 is secreted
by exosomes from monocytes upon calcium ionophore treatment
(87). Calcium serves as a ubiquitous second messenger responsi-
ble for controlling numerous cellular processes including exosome
secretion (88). Since calcium regulates the actin cytoskeleton at
multiple levels including the organization of actin monomers into
actin polymers and the super-organization of actin polymers into
a filamentous network (89), it is not surprising that stimuli result-
ing in the elevation of intracellular calcium concentration can
induce microvesiculation and membrane shedding of exposed
cells (90, 91). As a mechanism, the dynamics of actin assembly and
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FIGURE 8 | Blocking of actin polymerization inhibits while calcium
and ischemia promotes trophoblastic PP13 release. (A) PP13 content
of BeWo cell culture supernatants of non-transfected controls, as well as
LGALS13-transfected, untreated or Latrunculin B-treated cells were
measured by ELISA (left). LGALS13-transfected, untreated or Latrunculin
B-treated cells were stained with anti-PP13 (green) and nuclei were
counterstained with DRAQ5 (blue) followed by confocal microscopic
analysis (right; 40x magnifications). The disruption of the actin
cytoskeleton with Latrunculin B treatment decreased PP13 release from
BeWo cells. (B) LGALS13-transfected BeWo cells were treated with
calcium ionophore to increase intracellular calcium level, or kept under

ischemic stress to mimic placental milieu in preterm preeclampsia. (Left)
PP13 content of BeWo cells and cell culture supernatants of
non-transfected controls, as well as LGALS13-transfected, untreated,
calcium ionophore-treated or ischemia exposed cells were measured by
ELISA. (Left) Representative confocal images of LGALS13-transfected
control, calcium ionophore-treated or ischemia exposed BeWo cells
immunostained with monoclonal anti-PP13 antibody (green) and
counterstained with DRAQ5 (red) nuclei dye. Either ionophore treatment
or ischemia induced the release of PP13 from BeWo cells. Figures were
published in Ref. (73). Kind permission for the reuse and modification of
the figures was obtained from Elsevier.

disassembly is regulated by certain actin-binding proteins such as
annexin II in a calcium-dependent manner (92–96).

The release of PP13 from BeWo cells appears to be similar to the
in vivo release when comparing the effect of calcium ionophores
and ischemic stress (Figure 8B) (73). Ischemic stress of the pla-
centa is a major component of the pathophysiology of preterm
preeclampsia (97). In accord, higher PP13 release was observed
in placental villous tissue explants obtained from women with
preeclampsia compared to gestational age-matched controls in
the third trimester (98). A possible explanation is that ischemic
stress causes elevation in intracellular calcium levels, which leads
to actin depolymerization supported by findings of separate stud-
ies (99, 100). All of these results indicate that different kind of
actin- and calcium-dependent release mechanisms exist side by

side for PP13, and most probably the dominant sort depends on
the cell type and also on the nature of the received stimuli.

As a functional aspect of the increased PP13 release from the
placenta in preeclampsia, ischemic and other stress conditions
pose danger to the organism, which is signaled to the immune
system by endogenous danger signals called “alarmins” (101, 102).
Indeed,“danger signals” in the placenta have also been proposed to
create an abnormal placental cytokine milieu and link the activa-
tion of the innate immune system and preeclampsia (8, 103–105).
In this context, some galectins with cytokine-like properties (106,
107) may act as alarmins, since they are increasingly secreted from
inflamed or damaged tissues, and they may elicit effector responses
from innate and adaptive immune cells (19, 102, 108). Although
direct evidence for the role of PP13 as an alarmin has not yet been
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established, these findings suggest that PP13 may function in such
way in the placenta in preeclampsia (19, 73).

IN VITRO AND IN VIVO FUNCTIONAL STUDIES ON PP13
IN VITRO PARACRINE EFFECTS OF PP13 ON HUMAN IMMUNE CELLS
PP13 released from the trophoblast into the extracellular space
may have various functions similar to other galectins, which may
exert their pleiotropic extracellular functions in an autocrine and
paracrine manner. Since PP13 is secreted by the trophoblast to the
maternal circulation from where it gets into the decidual extra-
cellular matrix (8), PP13 may affect various types of circulating
and tissue-resident maternal leukocytes throughout pregnancy.
Thus far only a couple of functional experiments were carried out,
focusing on the examination of potential extracellular effects of
PP13. As several members of the galectin family regulate adap-
tive immune responses by the induction of apoptosis of activated
T lymphocytes (19, 109–111), the apoptosis-inducing effects of
PP13 and other chromosome 19 cluster galectins were investi-
gated on activated T cells freshly isolated from healthy donors (23).
Among the studied recombinant galectins, PP13 had the strongest
apoptosis-inducing effect (Figures 9A,B), stronger than galectin-
1, a protein that has central role in maintaining maternal-fetal
immune tolerance in eutherian mammals (16, 19, 112). A subse-
quent study also investigated the effect of PP13 on the secretion of
cytokines and chemokines from mononuclear cells isolated from

peripheral blood of pregnant women (8). The treatment with
placenta-purified PP13 slightly increased the secretion of inter-
leukin (IL)-1α and IL-6 into the culture medium. These in vitro
experimental evidences suggest various effects of PP13 on immune
cells, which may also be largely dependent on the type, activation
and differentiation status of the affected cells, the microvesicle-
bound or free nature and concentration of PP13, and the redox
status of the environment, similarly to other galectins (19).

As with galectins that bind ABO blood group antigens, the
paracrine effects of PP13 may also be affected by this phenomenon
(21). In this context, large cohort studies showed that preeclampsia
is more frequent among patients with AB blood group compared
to those with non-AB blood groups (113, 114). Thus, recently it
has been hypothesized that the higher susceptibility to preeclamp-
sia among AB blood group women may be related to the decreased
bioavailability and paracrine effects of PP13 on maternal immune
cells (21). As a similar phenomenon, the ABO blood group anti-
gens linked to the protein backbone of coagulation factor VIII
and von Willebrand factor significantly affect the bioavailability
of these blood clotting factors and coagulation (115–118). These
findings altogether further underline the important immunoreg-
ulatory functions that PP13 may have in early pregnancy and
warrant further investigation of the effect of ABO blood group
system on PP13 bioavailability and functions. In summary of all
of the above, PP13 may have a complex role in the regulation

FIGURE 9 | Extracellular PP13 induces apoptosis in vitro and in vivo.
(A) The in vitro apoptosis-inducing effect of PP13 on activated CD3+T
cells was comparable or stronger than that of galectin-1, whereas
truncated PP13 did not have such effect when proteins were applied in
8µM concentration. Numbers in quadrants indicate the percentage of
CD3+T cells. (B) The in vitro apoptosis-inducing effect of PP13 on
activated CD3+T cells was stronger than that of galectin-1. Apoptosis
rate was calculated as the percentage of Annexin V and propidium iodide
double-positive cells. Gal: galectin; Trunc: truncated galectin-13;
*P < 0.05; **P < 0.01. (C,D) Serial sections of decidua basalis samples in
the first trimester. A spiral arteriole (“A” and white arrows) is surrounded

by decidual veins (“V” and black arrows). (C) PP13 immunostainings
revealed areas of intense PP13 depositions consistent with early and
active zones of necrosis (“ZONE”) formation (Ø), and areas with weak
PP13 immunoreactivity consistent with end-stage “ZONEs” (*). (D) CD15
immunostainings revealed neutrophil accumulation showing an inverse
pattern with PP13 depositions. The least intense staining was observed in
early “ZONEs” (Ø), while the most intense staining in end-stage
“ZONEs” (*). Figures and data (A,B) were published in Ref. (23).
Figures (C,D) were published in Ref. (8). Kind permission for the reuse
and modification of figures was obtained from the National Academy of
Sciences of the United States of America (A,B) and SAGE US (C,D).
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of adaptive and innate immune functions at the maternal-fetal
interface depending on the changing environment.

THE IN VIVO PARACRINE EFFECTS OF PP13 ON HUMAN IMMUNE CELLS
This latter study also described an interesting finding in placental
tissue specimens obtained from elective terminations of pregnan-
cies between 6 to 15 weeks of gestation (8). In addition to the PP13
immunopositivity of the syncytiotrophoblast, crystal-like PP13
deposits in the decidual extracellular matrix and phagocytosed
PP13 immunopositive material in immune cells were also doc-
umented. These deposits were always adjacent to decidual veins
but not to arteries, and they were coincident with unique zones of
necrotic and apoptotic immune cells (“ZONEs”) (Figures 9C,D)
(8), a phenomenon that may be consistent with previous find-
ings on zones of decidual necrosis in the first trimester (119). In
addition, immunostainings demonstrated the expression of IL-
1α and IL-6 within and around macrophages in these “ZONEs”,
suggesting the potential pro-inflammatory effect of PP13 (8).
The highest number of “ZONEs” appeared to be between 7 to
8 weeks of gestation, and their occurrence declined by the end of
the first trimester in parallel with the completion of the spiral
artery remodelling and the establishment of the blood circulation
to the placenta. This study also revealed that spiral artery trans-
formation by invasive trophoblasts and “ZONEs” were rarely seen
in specimens obtained from women with low maternal serum
PP13 concentration compared to those with normal PP13 val-
ues. In summary, these findings prompted the authors to sug-
gest that syncytiotrophoblast-secreted PP13 reaches the decidual
veins, crosses their wall, deposits into the extracellular matrix
and forms perivenous crystal-like aggregates near the veins. The
lysophospholipase activity associated with PP13 was implicated in
this process, but no evidence yet exists to prove it. These PP13
deposits were suggested to serve as “diversion sites” to attract,
activate and kill maternal immune cells, drawing these away
from sites where the semi-allogeneic fetal trophoblasts invade and
remodel maternal spiral arteries. It was also hypothesized that
decreased PP13 expression may lead to deficient “ZONE” forma-
tion, decreased trophoblast invasion, and the subsequent failure
of spiral artery transformation (8). Functional and causal evi-
dence for these in situ observations needs to be provided in the
future.

PP13 AND UNIQUE ASPECTS OF DEEP PLACENTATION IN ANTHROPOID
PRIMATES
These in vivo findings are important from an evolutionary point
of view since PP13 evolved in Old World monkeys and apes (23),
species that have endovascular trophoblast invasion and spiral
artery remodelling different from lower primates (120–123). In
fact, a growing body of evidence suggests that PP13 may belong
to primate-specific molecules (e.g. human leukocyte antigen C,
killer-cell immunoglobulin-like receptors), which are involved in
the regulation of immune mechanisms related to invasive placen-
tation (124). The findings on PP13 and “ZONE” formation may
be mostly related to the pro-apoptotic effect of PP13, similar to the
effect of galectin-1 on activated decidual T cells, which is critical
in the down-regulation of maternal adaptive immune responses at
the maternal-fetal interface in early pregnancy (111). However, the

pro-inflammatory action of extracellular PP13 may also fit with
early placentation events.

In fact, the early pregnancy decidua is infiltrated by a
large number of leukocytes, mainly natural killer (NK) cells
(70%), macrophages (20–25%), and T cells (10%) (125–127).
These leukocytes, especially decidual natural killer (dNK) cells,
macrophages and T regulatory cells, are indispensable for the suc-
cess of pregnancy since they produce a large variety of chemokines,
cytokines, matrix metalloproteinases and angiogenic molecules
that regulate maternal-fetal interactions, trophoblast invasion and
spiral artery remodelling (127–130). On one hand, these immune
cells are involved in the establishment of a delicate immune toler-
ance between the mother and the fetus, and on the other hand they
promote local pro-inflammatory responses that facilitate implan-
tation, trophoblast invasion and placentation events (126, 127).
These complex immune interactions between the mother and the
fetus are conveyed by cell membrane- and vesicle-bound as well
as soluble molecules. Among the best studied molecular mech-
anisms are the effect of progesterone-induced blocking factor
(PIBF) on the shift towards Th2 over Th1 cytokine production
(131), the anti-inflammatory role of decidual macrophages (132),
the immunosuppressive effects of decidual galectin-1 (16), tro-
phoblastic indoleamine 2,3-dyoxignease (IDO), FAS/FAS ligand
and galectin-1 (133, 134), and the roles of human leukocyte anti-
gen (HLA)-C and HLA-G in protecting fetal cells from NK- and
cytotoxic lymphocyte (CTL)-mediated cytolysis (135, 136). It is a
question for future studies how the actions of PP13 are related
to this complex, dynamically changing cellular and molecular
network during placentation.

As the result of these complex interactions at the maternal-fetal
interface, aggregates of extravillous endovascular trophoblasts
plug the openings of uterine spiral arteries; therefore, they inhibit
intervillous circulation at the beginning of gestation (49, 120, 128).
This is suggested to be a protective mechanism to keep the devel-
oping embryo in a relatively low oxygen environment, minimizing
oxidative stress that would lead to developmental defects during
organogenesis (137). Of importance, the observed “ZONE” for-
mation peaks when placental circulation is not yet established (8),
and the low flow of endometrial gland secretions around the pla-
centa allows the increased transport of PP13 from decidual veins
into the decidua. This is also the period when extravillous tro-
phoblast invasion starts into the decidua (128, 137). Remarkably,
after the start of the placental intervillous circulation at around
8–10 weeks of gestation (49, 128, 137, 138) PP13 deposits and
“ZONE” formation rapidly declines and diminishes by the time
intervillous circulation is fully established at about 10–14 weeks
of gestation (8). This suggests that PP13 transport is reduced to
the decidual extracellular matrix due to the continuously increas-
ing blood flow in spite of the increasing total production of PP13
by the placenta. Importantly, if trophoblastic plug formation is
incomplete, placental circulation starts earlier, which leads to the
oxidative stress of the placenta, the subsequent development of
preeclampsia, and early pregnancy loss in more severe cases (49,
137, 138). In this context, the earlier start of placental blood
flow would theoretically restrict PP13 transport into the decidua
and “ZONE” formation, providing another mechanism to hamper
normal placentation.
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THE IN VITRO AUTOCRINE EFFECTS OF PP13 ON HUMAN TROPHOBLAST
An in vitro study showed the autocrine effect of PP13 measured by
its ability to depolarize the membrane of primary trophoblasts iso-
lated from normal and preeclamptic placentas (5). For these exper-
iments, either the patch-clamp technique or a voltage-sensitive
fluorescence dye was used, and PP13 was transiently added to the
cells. PP13-induced trophoblastic membrane depolarization was
increased with extracellular calcium concentrations according to
the Nernst equation, and it was blocked in the presence of EGTA, a
calcium chelator (5). Furthermore, a two-minute exposure of cells
to PP13 resulted in linoleic acid release and subsequent prosta-
cyclin liberation in a calcium-dependent manner. Galectin-1 did
not elicit a similar response, indicating the specific effect of PP13.
It is interesting that, in contrast, galectin-1 has various effects on
trophoblasts including the regulation of hCG and progesterone
production (139), proliferation (140), and syncytium formation
(141). Based on these results, it would be interesting to further
investigate additional autocrine signaling effects of PP13 on the
trophoblast at various stages of syncytialization.

THE IN VIVO PARACRINE EFFECTS OF PP13 IN PREGNANT ANIMALS
Besides in vitro experiments, the in vivo effects of PP13 in an ani-
mal model have also been investigated. Initially, non-pregnant rats
were exposed to a single bolus of intravenous PP13 injection fol-
lowed by immediate hypotension and heart rate increase resulting
from generalized vasodilatation (142). PP13 was also adminis-
tered to pregnant rats subcutaneously via osmotic pumps that
slowly released PP13 over a period of five days starting from day
15 of pregnancy. In these animals, the hypotension and increased
heart rate lasted through the five days of PP13 administration. Fur-
thermore, isolated uterine and mesenteric arteries responded with
dilatation to in vitro PP13 treatment as measured by angiography
(142). In subsequent studies, the effect of PP13 on uterine vascu-
lature was investigated between days 8 and 15 of pregnancy during
a prolonged intraperitoneal exposure through a slow release from
osmotic pumps (35, 143). Again, PP13 treatment led to a gen-
eral hypotension that lasted throughout the treatment period,
and then blood pressures returned to normal. PP13 treatment
affected uterine vasculature with the main effect elicited on uter-
ine veins. These veins had an increased diameter on day 15, while
their size returned to normal by day 20. Interestingly, PP13-treated
rats delivered slightly larger pups and placentas than saline-treated
controls, possibly because of the increased uterine blood flow in
these animals (143). These findings may be related to the in vitro
prostacyclin liberalization ability of PP13 (5).

PP13 is a primate-specific protein, and thus, certain differ-
ences exist between the set of potential “receptors” to which PP13
may bind in rats and primates. Moreover, various differences exist
between primate and rodent gestations regarding the length of
gestation, uterine anatomy, placentation, litter size, immune regu-
lation, and other aspects. Therefore, the most appropriate context
for the in vivo investigations of PP13 effects would be in a preg-
nant primate model; however, there are ethical limitations for such
studies. While there could be major differences between the effects
of PP13 in rats compared to humans due to the reasons described
above, the effect of PP13 on hypotension and vasodilatation are
novel and have not previously been described in regard to any

other galectins. In the future, these in vivo effects of PP13 need to
be further investigated in humans, presumably on placental bed
arteries in hysterectomy specimens and also on placental derived
in vitro decidual models in order to evaluate the potential ther-
apeutic use of PP13 to prevent preeclampsia, along with many
additional considerations.

FUNCTIONAL CONSIDERATIONS REGARDING THE PP13 CRD
In vitro experiments on activated T cells also included their treat-
ment with a truncated,54-residue PP13 variant that lacks the entire
CRD. This truncated protein was expressed from a mutated cDNA
that contains the “163C>T” DNA variant frequently observed in
cluster galectin pseudogenes in primates (23). Compared to the
strong apoptosis inducing effect of PP13, this truncated PP13 had
no effect on T cell apoptosis, confirming the crucial role of the CRD
in this function (23). In addition, in vivo experiments included
the administration of a different truncated PP13 (35), which con-
tains the first 73 amino acids of PP13 similar to the “221delT”
native mutant (34). Although this truncated PP13 variant con-
tains 6 out of 8 amino acids from the CRD, its in vivo functional
properties were different from PP13 since it caused hypotension
in pregnant animals throughout the period of its active release
between days 8 to 15 of pregnancy, while it did not increase the
birth weight of the pups. Since an increased misfolding of this
truncated protein was observed during the isolation from bacteria
and the monoclonal anti-PP13 antibodies could not recognize it,
it was concluded that its functional properties are different from
those of the full length PP13 because of the misfolded structure
(35). Further studies are warranted with these truncated PP13
variants to reveal their structural characteristics and effects.

THE EVALUATION OF PP13 IN THE DIAGNOSIS
OF PREECLAMPSIA
LOW CIRCULATING PP13 mRNA IN MATERNAL BLOOD
IN PREECLAMPSIA
The discovery of fetal DNA and RNA in maternal blood stimu-
lated the experimental assessment of free and cellular PP13 mRNA
species in pregnant women’s blood in the first half of pregnancy. In
accord with the previously discussed placental LGALS13 expres-
sion data in preeclampsia, recent studies showed a lower PP13
mRNA content in the maternal blood in the first half of preg-
nancy in preeclampsia compared to matched controls (144, 145).
The source of these PP13 mRNA species in maternal blood is only
the placenta since no other human tissue expresses PP13 (23),
and PP13 mRNA is not detectable in the blood of non-pregnant
controls (146). These findings combined with those from pla-
cental studies have indicated that pathophysiological changes in
PP13 expression appear very early in pregnancy. However, the
predictive value of PP13 mRNA species in maternal blood is cur-
rently limited, which is most likely associated with varying and
low amounts of trophoblastic mRNA reaching the maternal cir-
culation. It is possible that advanced RNA processing techniques
and sensitive detection methods like deep sequencing may enable
a more robust PP13 mRNA detection in maternal blood for a bet-
ter performance in preeclampsia prediction in early pregnancy.
This aim is currently being supported by the European Union FP7
funded “ASPRE” project.

Frontiers in Immunology | Inflammation August 2014 | Volume 5 | Article 348 | 14

http://www.frontiersin.org/Inflammation
http://www.frontiersin.org/Inflammation/archive


Than et al. PP13 in health and disease

FIRST TRIMESTER MATERNAL BLOOD PP13 FOR PREDICTING THE RISK
OF THE DEVELOPMENT OF PREECLAMPSIA
The evaluation of PP13 as a protein biomarker for the first
trimester prediction of preeclampsia was analyzed with a recent
meta-analysis based on studies performed with two immunoas-
say platforms (147). This meta-analysis explored 68 studies
and included 19 into the final analysis, which were published
between 2006 and 2013 (21, 37, 148–164). The analysis pooled
the results from only singleton pregnancies of low or high risk
women or all-comer cohorts, which were included in prospec-
tive or nested case-control studies, or fully prospective studies.
A total of 16,153 pregnant women were tested for PP13 in the
first trimester (between gestational weeks 6 and 14), among
whom 1,197 developed subsequently preeclampsia. Out of these
cases there were 19% who developed early-onset preeclamp-
sia (<34 weeks) and 45% who developed preterm preeclamp-
sia (<37 weeks).

Ten studies used the ELISA platform developed in Israel (21,
37, 148–152, 154, 160, 164), one study used the ELISA platform
recently developed in China (161), and the remaining studies
used the DELFIA platform. In all studies, PP13 blood concen-
trations were converted into gestational week-specific multiples
of the medians (MoMs) (165), and then were further adjusted
to maternal weight in two studies (156, 164) or to body mass
index (BMI). In 10 studies, the PP13 MoMs were further adjusted
to smoking, ethnicity, maternal age and parity. Interestingly, one
study also adjusted PP13 MoMs to conception by in vitro fertil-
ization (IVF) (164), and another study, which yielded the highest
sensitivity and specificity, further adjusted PP13 MoMs to ABO
blood groups (21).

All studies in the meta-analysis utilized algorithms that cal-
culated the receiver operating characteristics (ROC) curves to
detect the sensitivity and specificity, and logistic regression analy-
sis to predict the risk of preeclampsia (147). When all cases of
preeclampsia were included in the meta-analysis, the mean detec-
tion rate (DR) for predicting preeclampsia was 47% (95% confi-
dence interval, CI: 43–65) at a 10% false positive rate (FPR). The
DR of PP13 for preterm preeclampsia was higher, 66% (95% CI:
48–78), and for early-onset preeclampsia it was 83% (95% CI:
25–100). The assessment of likelihood ratios (LRs) for all cases
of preeclampsia revealed a positive LR [sensitivity/(1-specificity)]
of 5.82, a negative LR [(1-sensitivity)/specificity] of 0.46 and an
overall LR (positive LR/negative LR) of 26.35, while the positive,
negative and overall LRs for preterm preeclampsia were 6.94, 0.34,
and 40.07, respectively.

The median PP13 MoMs and 95% CIs varied considerably
between the different studies. Comparison of the DELFIA and
ELISA studies showed that the DR for all preeclampsia cases at
10% FPR was 78.75% (95% CI: 68.44–88.22) with the ELISA
platform and 40.29% (95% CI: 0–61.19) with the DELFIA plat-
form. The positive, negative and overall LRs were 8.25, 0.19 and
53.26 with the ELISA platform and 5.03, 0.55 and 13.29 with the
DELFIA platform, respectively. It has also been demonstrated that
the ELISA assay of the same samples provides better segregation
of PP13 values between preeclampsia cases and controls than the
DELFIA assay (166). Among the eight DELFIA assay based stud-
ies, good preeclampsia prediction was achieved in two (156, 157),

no prediction was achieved in three (155, 159, 162), while vary-
ing, moderate prediction was achieved in the rest of the studies.
The DELFIA platform differs from the ELISA platform since it
includes the capture and detection antibodies in an inverted order,
and it utilizes Europium amplification compared to the use of
the biotin-extravidin-horse radish peroxidase amplification in the
ELISA. These differences may account for some of the differences
detected in assay performances (166). However, recent results may
suggest that batch differences in the Fab domain of one of the anti-
bodies also play a role in this phenomenon, which is now under
examination with the new generation of PP13 kits developed by
the “ASPRE” project.

In view of the differential binding of PP13 to cell surfaces con-
taining ABO blood group antigens, and its varying bioavailability
in maternal blood depending on the ABO blood type, the adjust-
ment of PP13 MoMs to ABO blood groups further improved their
predictive value for preeclampsia as well as for IUGR and the
two combined (21). For example, Caucasian and Hispanic women
with blood group AB had the lowest, and those with blood group B
had the highest first trimester maternal serum PP13 MoMs, while
individuals with blood group A or O had intermediate MoMs (21).
After adjustment of PP13 MoMs to ABO blood groups, the over-
all LR for predicting IUGR increased from 2.2 to 5.32, the overall
LR for predicting preeclampsia increased from 6.9 to 18.1, and
the overall LR for predicting preeclampsia associated with IUGR
increased from 5.6 to 27.9.

Earlier studies have shown increased accuracy for the prediction
of severe cases of preeclampsia over the mild ones (152, 154, 157).
Based on these findings, the large differences in prediction accu-
racy demonstrated in the meta-analysis can probably be attributed
to the differences in the severity of the included cases. This phe-
nomenon as well as the observation on the reduced first trimester
PP13 MoMs after IVF (164) are under further examination by
the “ASPRE” project, which targets the longitudinal, multi-center
examination of 33,000 maternal blood specimens.

PERFORMANCE OF FIRST TRIMESTER PP13 AS PART OF A MULTIPLE
MARKER PANEL
A growing body of evidence suggests that the prediction
of preeclampsia can be improved using multi-parametric
approaches, combining data derived from multiple biomarkers
(153, 165). Initially, PP13 was evaluated as a single marker with
MoMs adjusted to various pregnancy features as detailed above.
It was then evaluated over a background risk calculated accord-
ing to preeclampsia in a previous pregnancy, medical history of
gestational diabetes, kidney and cardiovascular diseases, mater-
nal age, ethnicity, BMI and conception by assisted reproduction
techniques. This analysis showed that the sensitivity of PP13 for
predicting all cases of preeclampsia increased from 52 to 59% at
10% FPR after combining with background risk factors (167). Sub-
sequently, PP13 and background risk factors were also combined
with the mean arterial pressure (MAP), which further increased
the detection rate to 93% for all cases of preeclampsia at 10% FPR
(167). Combining PP13 with placental growth factor (PlGF) (156)
or with additional biochemical markers [i.e. pregnancy associated
plasma protein A (PAPP-A), PlGF and ADAM metallopeptidase
domain 12 (ADAM12)] were also accompanied by an increased
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DR for preeclampsia in spite of the varying predictive values of the
individual biomarkers (165). In seven studies, the risk prediction
was based on combining PP13 and uterine artery Doppler pulsatil-
ity index (PI), which also showed increased prediction accuracy
(148, 150, 154, 157, 165, 168, 169). Comprehensive risk algorithms
were further developed based on a combined multi-marker analy-
sis that took into consideration the background risk (as detailed
above), MAP, Doppler PI, and a panel of serum biomarkers. This
approach yielded much higher predictive value and accuracy than
individual markers (157), especially for early-onset (<34 weeks)
and preterm (<37 weeks) preeclampsia. This is consistent with
the results of several other studies that used combined biomarker
panels and various types of risk prediction algorithms to obtain
better risk prediction (170–172). It was therefore concluded that
the introduction of a broad biomarker panel for the evaluation
of preeclampsia and other maternal and fetal pregnancy disorders
could present a change in deploying antenatal care as formulated
by the inverted pyramid model of perinatal evaluation in preg-
nancy (173). In agreement with these, the combination of PP13,
Doppler PI, MAP (or maternal artery stiffness) increased the DR of
preeclampsia to 93% for early-onset preeclampsia and to 86% for
all preeclampsia cases at 10% FPR (174). This preeclampsia pre-
diction accuracy satisfies the World Health Organization (WHO)
requirements for the clinical introduction of a disorder predicting
procedure in terms of clinical usefulness in disease management
and disorder prevention (175, 176).

LONGITUDINAL ASSESSMENT OF PP13 IN MATERNAL BLOOD
A repeated measure of a marker level was identified as a better
method to get a more accurate prediction of the risk to develop
pregnancy disorders, initially for Down syndrome (177) and also
for preeclampsia (178, 179), or for IUGR and preeclampsia com-
bined (180). A large study on PP13, which utilized repeated mea-
sures in the first, second and third trimesters, provided increased
prediction accuracy compared to the first trimester test alone,
either when a contingent or a combined model was used (151).
This was further confirmed in a smaller study using repeated
measures of PP13 every 2–4 weeks (37, 147).

The significance of the repeated measure of PP13 is also high
since gestational age-related changes in maternal blood PP13 con-
centrations are very different between normal pregnancy and those
with preeclampsia. While in patients who develop preeclamp-
sia PP13 concentrations are lower in the first trimester than in
normal pregnant women, the use of repeated measures of PP13
in longitudinal or cross-sectional studies showed that PP13 con-
centrations sharply increase in preeclampsia patients between the
first and third trimesters compared to the moderate change that
can be observed in women with normal pregnancy. The most
prominent increase is seen when preeclampsia enters into the
clinico-pathological stage. For example, between the first and third
trimesters, maternal PP13 MoMs were detected to increase by
~1.5 to 3-fold in normal pregnancy compared to the 3.5 to 7.7-
fold increase in preeclampsia, and occasionally even more (21, 36,
37, 98, 151, 181). Interestingly, the slope of increase was different
among individuals, and it seemed to be related to patient character-
istics like obesity, ethnicity, maternal age, parity, and particularly
the severity of the disease.

Of importance, when taking into account the effect of ABO
blood groups on the longitudinal changes in PP13 across the three
trimesters, the regression slope of PP13 concentrations and MoMs
were steeper in blood group B than in blood groups A and O,
but not in blood group AB. The characteristic changes during
gestation in serum PP13 concentrations in women with differ-
ent ABO blood groups inversely mirrored the relative binding
of PP13 to various ABO blood group erythrocytes, suggesting a
dynamic change in PP13 sequestration on erythrocyte surfaces
depending on gestational age and actual PP13 concentrations
(Figure 3C) (21).

As described before, there is an increased shedding of PP13-
rich syncytiotrophoblastic microvesicles from placental villi when
women enter into the clinico-pathological stage of preterm
preeclampsia (36, 37). Importantly, it was proposed that these
microvesicles release their PP13 content, leading to the increased
maternal blood PP13 concentrations in these cases (36, 37, 73).
Since the extent of microvesicle shedding is related to the extent
of placental ischemic stress and it is significantly more pro-
nounced in severe cases of preeclampsia, particularly with preterm
than with term onset (182), the longitudinal slope of changes
in PP13 could be used as an additional parameter to predict
case severity (36, 151). This phenomenon explains why so much
difference was found in early-onset or preterm preeclampsia in
PP13 compared to gestational-age matched controls in the third
trimester.

META-ANALYSIS FOR THE PREDICTION OF THE RISK FOR
PREECLAMPSIA WITH THIRD TRIMESTER PP13
METHODS AND INCLUDED STUDIES
Because of the increased PP13 concentrations in preeclampsia in
the third trimester, it was hypothesized that PP13 testing can be
further utilized for the prediction and diagnosis of preeclampsia
during this period. To address this question, we have conducted a
meta-analysis on third trimester datasets and found studies that
utilized the PP13 ELISA but not DELFIA platform. The PP13
ELISA utilizes a pair of anti-PP13 mouse monoclonal antibod-
ies (27-2-3 and 215-28-3 MAbs) that were selected based on their
high (10–9 M) affinity to native and recombinant PP13 (5, 71). As
a result, the detection limit of the ELISA was 3–8 pg/ml, the linear
detection range was between 12.5–400 pg/ml, and the kit-to-kit,
operator-to-operator and batch-to-batch variations were between
3–12% (5).

From the 71 studies published on PP13, the current meta-
analysis identified eight clinical studies published between August
2008 and March 2014 that contained third trimester maternal
blood PP13 data. These had an international scope involving Israel
(71, 98, 151), Hungary (36), Austria (37, 181) and the USA (21).
These studies were either performed as part of longitudinal clinical
trials or cross-sectional studies that focused on the ELISA-based
evaluation of PP13 between 26 and 40 weeks of gestation. In all
studies, the ROC curves were based on PP13 adjusted to gestational
week specific MoMs, which were further adjusted to BMI, smok-
ing, ethnicity, maternal age as well as parity. In one study, PP13
values were further adjusted to the ABO blood groups (21). In a
very recent study the adjustment was further made to conception
by IVF (167).
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FIGURE 10 | Meta-analysis of PP13 in predicting preeclampsia in the
third trimester. (A) A Forest plot analysis was performed including 11 studies
based on unaffected and all preeclampsia cases. The detection rate (DR) at
10% False Positive Rate (FPR) of all cases of preeclampsia is shown in
case-control and prospective cohort studies using all-comers. The DR was
extracted from Receiver Operation Characteristics (ROC) curves based on the
adjusted multiple of the medians (MoMs) of PP13.The final analysis took into
consideration the total study size and the size of the preeclampsia group.
Number 1 on the study list reflects the results of the meta-analysis depicted
with a dark filled diamond compared to individual studies depicted with blue

diamonds. The relative weight of a certain study in the analysis is reflected by
the relative size of the diamonds. (B) The table lists all studies used to
perform the Forest plot for the meta-analysis. Weight represents the relative
impact of the study in the meta-analysis. DR for 10% FPR is shown along
with the 95% confidence interval (95% CI). The Likelihood ratio (LR) was
calculated for positive LR [sensitivity/(1-specificity)], negative LR
[(1-sensitivity)/specificity] and overall LR (positive LR/negative LR). For the
meta-analysis, the values were adjusted to the relative weight of each study
in the meta-analysis. The numbers on the left side of the table correspond to
the graph numbers in (A). PE, preeclampsia; GA, gestational age in weeks.

The meta-analysis was performed by a Forest plot method
(183). There were three occasions in which the determination of
PP13 in maternal blood was extracted from studies performed in
separate time points, which were included as separate studies (36,
181, 184). Accordingly, the dataset for the analysis was based on
11 cohorts. The DR at 10% FPR was extracted from the published
ROC curves or by communicating with the authors and obtaining
complementary data. The 95% CI of the DR was extracted or cal-
culated from ROC curves of the published study or by using the
web-calculator2. The analysis pooled clinical results from all sin-
gleton pregnancy studies, irrespective whether these were prospec-
tive cohort studies or case-control studies that enrolled low- or
high-risk patients or all-comers. The pooled dataset included all

2http://www.causascientia.org/math_stat/ProportionCI.html

preeclampsia cases and then a sub-analysis was performed for
preterm and early-onset preeclampsia cases. Preeclampsia asso-
ciated with IUGR and/or HELLP syndrome was compared to
all preeclampsia cases, but there were too few cases with these
additional complications to enable a true meta-analysis.

Regarding the detection level, the meta-analysis has also eval-
uated the overall LR of developing preeclampsia by dividing the
positive LR with the negative LR as described earlier. The overall
LR calculation took into consideration the relative weight of each
of the cohorts in terms of study size and the number of women
with preeclampsia.

RESULTS OF THE META-ANALYSIS
In total, 2,750 third trimester pregnant women were tested. 193
women subsequently developed preeclampsia out of whom 30.7%
had preterm preeclampsia and 7.6% had early-onset preeclampsia.
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All but one study enrolled all-comers, and only one study enrolled
high-risk patients. In this latter study the correlation between hav-
ing prior risk of preeclampsia based on major risk factors and
a high level of PP13 in the third trimester was low (R= 0.13),
indicating that the two are independent evaluators (167).

In all studies, maternal blood PP13 MoMs were higher in
women who subsequently developed preeclampsia compared to
unaffected women although the variation between individual
data-points within a study or between studies was large. There-
fore, the sensitivity of using PP13 as a biomarker for predicting the
risk of the subsequent development of preeclampsia had a broad
range (14–100%). The mean DR at 10% FPR for all preeclamp-
sia cases was 59.4% (95% CI: 49.7–64.5) (Figures 10A,B).
The DR of PP13 for preterm preeclampsia (which included all
early-onset preeclampsia cases) was 71.7% (95% CI: 60.3–75.3)
(Figures 11A,B). Since there were few studies with data from
patients with early-onset preeclampsia, this separate analysis had
insufficient power for statistical analysis.

The time of detection ranged between 28–32 to 36–40 weeks,
and the evaluation of the DR per gestational week yielded a regres-
sion line of Y= 1.3986X+ 100.58, where X was the gestational
week and the regression coefficient (R) was 0.2. These results have

indicated that the variations are indeed independent of the gesta-
tional week at testing. When evaluated according to the correlation
with MAP or urine protein, the DR appeared to be related to the
severity of the cases in a given study, with regression coefficient val-
ues of 0.61 and 0.73, respectively. This means that the higher the
hypertension and proteinuria, the higher the third trimester PP13
MoMs in maternal blood, and the better the prediction. A com-
bined algorithm of PP13, MAP and proteinuria, which was avail-
able for nine out of the 11 studies, yielded a 95% DR for preterm
preeclampsia and 85% for all preeclampsia at 5% FPR, showing the
value of combining all parameters (data not shown). In conclu-
sion, the meta-analysis indicates that higher third trimester mater-
nal blood PP13 among women who will subsequently develop
preeclampsia reaches the clinical diagnostic level.

The positive LR for all cases of preeclampsia in the meta-
analysis was 5.94 and the negative LR was 0.45, providing an
overall LR of 26.24 (Figure 10B). The positive LR for preterm
preeclampsia in the meta-analysis was 7.17 and the negative LR
was 0.31, providing an overall LR of 37.99 (Figure 11B). These
LRs are lower compared to the overall LRs of first trimester PP13,
but these can still be considered respected LRs by the criteria of
the WHO (176).

FIGURE 11 | Meta-analysis of PP13 in predicting preterm preeclampsia
in the third trimester. (A) Forest plot analysis was performed including
seven studies based on unaffected and preterm preeclampsia cases. The
detection rate (DR) at 10% False Positive Rate (FPR) of cases of preterm
preeclampsia is shown in case-control and prospective cohort studies using
all-comers. The DR was extracted from Receiver Operation Characteristics
(ROC) curves based on the adjusted multiple of the medians (MoMs) of
PP13. The final analysis took into consideration the total study size and the
size of the preeclampsia group. Number 1 on the study list reflects the
results of the meta-analysis depicted with a dark filled diamond compared
to individual studies depicted with blue diamonds. The relative weight of a

certain study in the analysis is reflected by the relative size of the diamonds.
(B) The table lists studies used to perform the Forest plot for the
meta-analysis of cases of preterm preeclampsia <37 weeks), including early
onset preeclampsia (<34 weeks). Weight represents the relative impact of
the study in the meta-analysis. DR for 10% FPR is shown along with the
95% confidence interval (95% CI). The Likelihood ratio (LR) was calculated
for positive LR [sensitivity/(1-specificity)], negative LR [(1-sensitivity)/
specificity] and overall LR (positive LR/negative LR). For the meta-analysis,
the values were adjusted to the relative weight of each study in the
meta-analysis. The numbers on the left side correspond to the graph
numbers in (A). PE, preeclampsia; GA, gestational age in weeks.
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Reduced blood concentrations of PIGF in the third trimester
have been suggested for predicting the symptoms of preeclampsia
within 14 days of the test. This fast and quantitative TRIAGE test,
measuring the decreased PlGF concentrations in maternal blood,
also predicts the anticipated disease severity (185, 186). Of inter-
est, the combination of anti-angiogenic factors and PlGF (or their
ratio) increase the prediction rate of severe late-onset preeclampsia
in the third trimester (179). Combining low PIGF with high PP13
maternal blood concentrations may generate an even better test.
Thus, it is essential to investigate the PP13/PIGF ratio as a better
diagnostic tool for preeclampsia in the third trimester. This will
be further explored by the “ASPRE” project, in which at least 1,500
high-risk patients out of the 33,000 enrolled pregnant women will
be tested longitudinally in the first, second and third trimesters of
pregnancy.

SUMMARY AND CONCLUSIONS
Galectins are glycan-binding proteins that regulate innate and
adaptive immune responses, and some galectins confer maternal-
fetal immune tolerance in eutherian mammals. A chromosome

19 cluster of galectin genes has emerged in anthropoid primates,
species with deep placentation and long gestation, in which this
galectin network may confer additional immunoregulatory func-
tions to enable deep placentation. These cluster galectins, includ-
ing PP13, have a conserved structure, CRD and sugar-binding
preference resembling other mammalian galectins. PP13 is solely
expressed by the human placenta, predominantly by the syncy-
tiotrophoblast, from where it is released into the maternal blood.
PP13 expression and release from the individual placental villi is
highest in the first trimester when maternal immune cell infiltra-
tion into the decidua is at its peak (Figure 12) to promote suc-
cessful placentation including embryo implantation, trophoblast
invasion, repair of the uterine epithelium and removal of cellular
debris. Of interest, PP13 released from the villi is deposited around
uterine veins and contributes to the formation of “ZONEs” of
apoptotic and necrotic immune cells, which peak parallel with the
start of spiral artery remodelling in the first trimester. Because
PP13 is capable of inducing the apoptosis of activated T cells
and the cytokine production of macrophages, it was postulated
that these PP13 deposits in the decidual extracellular matrix may

FIGURE 12 | PP13 expression is related to inflammatory changes at the
maternal-fetal interface and in maternal circulation. This summary figure
consolidates the results of numerous studies related to various facets of
PP13 in normal pregnancies and in preeclampsia. The placental expression of
LGALS13 and PP13 is strong in the first trimester, and the secreted protein
can be detected in maternal blood from gestational weeks 5 to 6 in normal
pregnancies. From the decidual veins PP13 gets into the decidua, where it is
deposited extracellularly or phagocytosed, coincident with maternal immune
cell infiltration and the formation of the “Zones of Necrosis” (ZONEs)
adjacent to the decidual veins. Although maternal serum PP13 concentrations
do not change, the relative placental expression and decidual deposition of
PP13 declines until the end of the first trimester in parallel with the decrease
in the number of ZONEs. In the second and third trimesters, maternal serum
PP13 concentrations rise due to the growing number of villi and trophoblast

volume in the placenta, paralleling the escalation in maternal systemic
inflammation. In preeclampsia, especially in early-onset cases, there are
lower placental expression and maternal serum concentrations of PP13 in the
first trimester, coincident with impaired trophoblast invasion and spiral artery
remodelling. Starting from the second trimester, ischemic placental stress
and pro-inflammatory changes at the maternal-fetal interface are also
reflected by the increased shedding of aponecrotic microvesicles, which carry
a considerable amount of PP13, elevating maternal blood PP13
concentrations. PP13 expression in the first trimester is associated with
inflammation at the maternal-fetal interface. Similarly, maternal blood PP13
concentrations in the second and third trimesters parallel maternal systemic
inflammation. As a consequence, PP13 has a good diagnostic value for the
prediction and diagnosis of preeclampsia in the first and third trimesters. NP:
normal pregnancy.
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attract maternal immune cells away from the sites of maternal
spiral artery formation to the decidual veins, and may promote
a tolerogenic environment that facilitates trophoblast invasion
and placentation. How important the roles of PP13 are during
early placentation may be well reflected by observations showing
decreased placental expression and maternal serum concentra-
tions of PP13 in the first trimester in preeclampsia (Figure 12),
a syndrome originating from severely impaired trophoblast inva-
sion and placentation. Moreover, mutations in the promoter and
in the exons of LGALS13 presumably leading to altered, misfolded
or non-functional protein expression are associated with a higher
frequency of preeclampsia and also other obstetrical syndromes
which involve immune dysregulation.

PP13 maternal blood concentrations steeply increase in
preeclampsia compared to normal pregnancy starting in the sec-
ond trimester, with the steepness correlated to disease severity.
This phenomenon is closely related to the ischemic placental stress
and the consequent increase in trophoblastic shedding of PP13
immunopositive microvesicles (Figure 12). Because of the pro-
inflammatory nature of these aponecrotic trophoblast microvesi-
cles and other “toxins” released from the placenta, preeclampsia,
especially its early-onset subform, is characterized by an exagger-
ated maternal systemic inflammation and generalized endothelial
dysfunction, leading to kidney damage, proteinuria and hyper-
tension. It is interesting that reduced placental PP13 expression
in preeclampsia correlates with altered immune-interactions at
the maternal-fetal interface. Similarly, maternal blood PP13 con-
centrations in the second and third trimesters are elevated in
relation to the increased placental stress and maternal systemic
inflammation (Figure 12). These phenomena have already been
utilized for developing a PP13 blood test for predicting preeclamp-
sia, and indirectly for impaired placentation, in the first trimester.
The analysis provided here shows that this test may be further used
for preeclampsia diagnosis in the third trimester.

Functional studies have just started to assess the in vitro and
in vivo effects of PP13 during pregnancy, showing various func-
tions that PP13 may have at the maternal-fetal interface. In vitro
studies need to take into account the pleiotropic actions of PP13,
which may depend on the activation and differentiation status
of the affected cells, the way PP13 is released from the placenta
(e.g. free or extracellular vesicle-bound), the redox status of the
environment, and the interaction of PP13 with various small mol-
ecules. In vivo studies, while starting in rodents, may eventually
need to be extended to other models, optimally to primates. Nev-
ertheless, the results of the first studies support the importance of
PP13 in the regulation of blood pressure and vascular remodelling
at the maternal-fetal interface.
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