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Prostate cancer is the second leading cause of cancer-related death in men after lung can-
cer. Immune responses clearly play a critical role in the tumorigenesis and in the efficacy of
radiation therapy and chemotherapy in prostate cancer; however, the underlying molecular
mechanisms are still poorly understood. Toll-like receptors (TLRs) are a well-known family
of pattern recognition receptors that play a key role in host immune system. Recent studies
demonstrate that there are links betweenTLRs and cancer; however, the function and bio-
logical importance ofTLRs in prostate cancer seems complex.To elucidate the role ofTLRs
and innate immunity in prostate cancer might provide us with a better understanding of
the molecular mechanisms of this disease. Moreover, utilizing the agonists or antagonists
of TLRs might represent a promising new strategy against prostate cancer. In this review,
we summarize recent advances on the studies of association between TLR signaling and
prostate cancer, TLR polymorphisms and prostate cancer risk, and provide some insights
about TLRs as potential targets for prostate cancer immunotherapy.
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INTRODUCTION
Based on the latest cancer statistics, prostate cancer predictably
ranks first among all the cancers in men and second in cancer-
related deaths in the United States in 2014 (1). Treatments against
prostate cancer, including chemotherapy and radiotherapy, could
improve survival; however, many patients will endure relapse and
metastasis, which eventually leads to death. These treatments also
destroy cancer cells and normal cells alike. Therefore, a more effec-
tive and less toxic therapy needs discovery. A promising strategy for
dramatically preventing cancer development and improving can-
cer treatment might rely on immunotherapy. Immune evasion is a
hallmark of cancer pathogenesis. Cancer cells escape from immune
attack through a variety of mechanisms. A compromised immune
system and chronic inflammation increase the incidence of can-
cer development. Inflammation has been proposed as the seventh
hallmark of cancer (2) and an excellent review has elegantly sum-
marized the role of inflammation in prostate cancer development
and potential underlying mechanisms (3). Immunotherapy, which
utilizes host immune system to fight cancer, has been recently
highlighted with several advantages including specificity, less side
effects, and less likely to develop resistance. It could be achieved
in two ways: stimulating immune system to attack cancer cells or
taking away the inhibitory machinery to the immune system in
cancer. One potential approach to modulate immune system is
targeting pattern recognition receptors (PRRs) in innate immune
system, among which toll-like receptors are most well studied.

TOLL-LIKE RECEPTOR: A WELL-KNOWN FAMILY OF PATTERN
RECOGNITION RECEPTORS IN INNATE IMMUNITY
Toll-like receptors are a family of transmembrane receptors that
play a key role in the innate immunity. TLRs prevent invading
pathogens by recognizing pathogen-associated molecular patterns
(PAMPs), which are highly conserved components derived from

bacteria, viruses, fungi, and parasites (4, 5). It can also recog-
nize endogenous damage-associated molecular patterns (DAMPs)
in different disorders and diseases such as cancer (4, 5). At
present, 10 TLRs have been identified in human. TLR1s, TLR2,
TLR4, TLR5, and TLR6 are expressed on cell surface; however,
TLR3, TLR7, TLR8, and TLR9 are found exclusively within endo-
somes (Figure 1). Different TLRs exhibit specificity for ligand
recognition. TLR2 recognizes bacterial lipoproteins, TLR3 recog-
nizes double-stranded RNA/polyinosinic–polycytidylic acid [poly
(I:C)], TLR4 recognizes lipopolysaccharides (LPS), TLR5 recog-
nizes flagellin, TLR7 recognizes single-stranded RNA, and TLR9
recognizes CpG-containing DNA (CpG-ODN) (6–11). TLR10 is
so far an orphan receptor and highly expressed in the human
spleen (12) and B cells (13). Upon activation,TLRs transmit signals
through one or more of four adaptor proteins: myeloid differenti-
ation factor 88 (MyD88), TICAM1 (also known as TRIF), TIRAP
(also known as MAL), and TICAM2 (also known as TRAM and
TIRP). All TLRs (except for TLR3) and IL-1 receptor family mem-
bers signal through MyD88. TLR3 signals through TRIF pathway;
TLR4 signals through both the MyD88 and the TRIF pathways
(4). Stimulation of TLRs leads to activation of NF-κB, MAPKs,
Jun N-terminal kinases (JNKs), p38, and ERKs, as well as inter-
feron regulatory factor (IRF3, IRF5, and IRF7) signaling pathways,
which results in the production of inflammatory cytokines (14).
Activation of TLRs in antigen-presenting cells (APC) also triggers
adaptive immunity. TLRs have also been shown to regulate cell
death and increase expression of the anti-apoptotic proteins Bcl-
2-related protein A1 (BCL2A1), inhibitor of apoptosis 1 (cIAP1),
cIAP2, XIAP, and Bcl-2 family members (15).

TLR EXPRESSION AND FUNCTION IN PROSTATE CANCER
Toll-like receptors are predominantly expressed in innate immune
cells such as dendritic cells, macrophages, and natural killing
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FIGURE 1 |Toll-like receptors andTLR-mediated signaling
pathway. TLR1 and TLR6 recognize their ligands as heterodimers
with TLR2. For TLR4, MD2, and CD14 are required for LPS recognition
and signaling. TLR3, TLR4, TLR5, TLR7, and TLR9 are currently thought
to deliver their signal by forming homodimers after interacting with

their ligands. TLR3, TLR7/8, and TLR9 are intracellular TLRs and are
involved in the recognition of nucleic acids. Most TLRs, except for
TLR3, signal through MyD88 pathway to activate NF-κB and AP1. TLR3
and TLR4 can signal through MyD88-independent pathway (TRIF
pathway) to activate INF-β.

(NK) cells. Activation of TLRs in these cells leads to the acti-
vation of innate immunity and results in the production of
pro-inflammatory cytokines, chemokines, as well as adhesion mol-
ecules, and then facilitates the activation of adaptive immunity
(16). Intriguingly, growing evidence has demonstrated that TLRs
are also expressed in tumor cells. TLR activation in tumor cells and
its activation in tumor microenvironment such as in typical innate
immune cells lead to a complex scenario (Figure 2); therefore, the
activation of TLRs might play a “double-edged sword” role in the
influence of tumor progression.

In most cases, it is difficult to figure out a specific pathogen
to activate TLR signaling in prostate cancer. An endogenous TLR
ligand, DAMPs released from damaged and/or necrotic tissues,
might play a pivotal role. In term of endogenous TLR ligands in
cancer, HMGB1 can activate TLR2 and TLR4 (17), and versican
acts as a TLR2 agonist (18). Peroxiredoxin 1 (Prx1) appears to be
an agonist of TLR4 in prostate cancer development (19). Perhaps,
there are more endogenous TLR ligands that need to be further
identified and verified.

The activation of some TLRs might prevent the tumor growth
of prostate cancer (Figure 2). It has been shown that TLR3
is expressed in prostate cancer cells (20–25). TLR3 mRNA is
detected in three prostate cancer cells lines including LNCaP,
PC3, and DU-145. TLR3 mRNA level was clearly enhanced in
prostate cancer cells by stimulating with poly (I:C), which sug-
gests a functional role of TLR3 in prostate cancer (20). TLR3

protein was also expressed at similar levels in LNCaP and DU-
145 cells, with a slightly lower expression in PC3 cells. Treat-
ment with poly (I:C) rapidly triggered NF-κB-dependent expres-
sion of inflammatory molecules. Condition medium from poly
(I:C)-treated LNCap and DU145 cells recruited leukocyte sub-
population, indicating that TLR3 activation might influence early
immune responses in tumor microenvironment (25). Stimula-
tion with poly (I:C) strongly suppressed prostate tumor growth
in vivo, perhaps due to increased infiltration of T lymphocytes
and NK cells in a type I IFN-dependent manner (24). In human
prostate cancer patients, 85 in 112 prostate carcinomas samples
showed positive expression of TLR3. High TLR3 expression level
was significantly associated with high probability of the recur-
rence of prostate cancer (23). Paone and colleagues found that
TLR3 could regulate the process of angiogenesis and apoptosis in
prostate cancer cells through hypoxia-inducible factor 1α (HIF-
1α) and PKC-dependent mechanism (21, 22). TLR5 is expressed
in LNCap and DU-145 by which stimulation triggers the produc-
tion of chemokines that recruit immune cells, including NK cells
and cytotoxic CD8 cells, which most likely contribute to tumor
inhibition (25).

The activation of other TLRs might play a different role in the
tumor growth of prostate cancer (Figure 2). The expression of
TLR4 in prostate cancer has been demonstrated in several ani-
mal models. Studies revealed a constitutive expression of TLR4
in the epithelial cells of rat ventral prostate as well as in a rat

Frontiers in Immunology | Tumor Immunity July 2014 | Volume 5 | Article 352 | 2

http://www.frontiersin.org/Tumor_Immunity
http://www.frontiersin.org/Tumor_Immunity/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Zhao et al. TLRs in prostate cancer

FIGURE 2 |Toll-like receptors and prostate cancer. TLR activation in
tumor cells and its activation in tumor microenvironment such as in typical
innate immune cells lead to a complex scenario, which determines the role
of TLRs in prostate cancer development. The activation of TLRs in
antigen-presenting cells, such as DCs, macrophages, and B cells, can lead
to either Th1 and T cytotoxic responses or Th2 and Treg responses. The
activations of TLR2, 4, and 9 in prostate cancer cells appear to promoter
tumor growth, but the activation of TLR3, 4, 5, and 7 might inhibit prostate
cancer.

adenocarcinoma cell line and in prostate primary culture cells
(26, 27). TLR4 is also expressed in DU-145, PC3, and normal
prostate gland in both stroma and epithelium (28, 29). In addi-
tion, TLR4 has also been shown to be expressed in clinical sam-
ples of prostate cancer. Initially, TLR9 expression was thought
to be restricted to immune cells, but recent studies have showed
that a variety of tumor cell types including prostate cancer also
express functional TLR9 (23, 30, 31). A clinical study demon-
strated that TLR9 is expressed in prostate cancer specimens (23).
Joanna et al. found that TLR9 is expressed in human prostate
cancer cell lines LnCaP, C4-2B, Du-145, PC3, and in clinical
samples of prostate cancer through immunohistochemistry and
western blotting, but not in MDA Pca2b and stromal cells of the
clinical adenocarcinoma samples (32). TLR9 expression was also
statistically significantly increased in prostate cancer epithelium
and stroma, compared with the same cellular compartments in
benign hyperplasia, especially in the most poorly differentiated
forms (30).

The function and biological importance of TLRs in prostate
cancer seems complex (Figure 2). Perhaps the distinct and uniden-
tified TLR signaling pathways are activated in cancer cells or innate
immune cells during tumor progression; or, the first activation of
TLR in cancer cells or innate immune cells markedly affect the
subsequently activation and induced effectors. The mystery will be
further investigated and will affect the potential of TLR agonists
or antagonists as anti-tumor therapeutic agents.

MicroRNA REGULATE TLRs IN PROSTATE CANCER
MicroRNAs (miRNAs) are a class of small non-coding RNAs
(~22 nt in length), which negatively regulate gene expression at
the post-transcriptional level (33). By binding to target sequences
within the 3′ UTR of mRNA, miRNAs induce gene silencing by
either inhibiting translation or leading to degradation of mRNA.
MiRNA alterations are shown to be involved in both initiation
and progression of human cancer (34–39). Deregulation of miR-
NAs is implicated as an important mechanism in tumorigenesis
and several miRNAs have been proposed as oncogenes or tumor
suppressors (40–42).

MicroRNAs are emerging as a fundamental mechanism in the
regulation of TLR signaling (43–47). Recent works have linked
miRNAs and TLRs in prostate cancer. MiR-29a has been shown as
a potential tumor suppressor miRNA to regulate TRAF-4 expres-
sion in metastatic prostate cancer (48). TLR3 activation by poly
(I:C) induces upregulation of miRNAs including miR-29b, -29c,
-148b, and -152, which target DNA methyltransferases and leads
to reexpression of oncosuppressor RARβ in prostate cancer cells
(49). TLRs activation facilitates either prostate cancer inhibition
or progression. MiRNAs are likely to act as important regulators to
control TLRs expression and signaling, thus contribute to prostate
cancer development.

TLR SIGNALING IN PROSTATE CANCER
Toll-like receptor signaling pathway has been well defined in innate
immune cells. TLR ligation recruits one or more adaptor proteins
such as MyD88, TRIF, Mal, and TRAM though TIR domain inter-
actions. Most TLRs except TLR3 go through a MyD88-dependent
signaling pathway. MyD88 engagement activates IL-1 receptor
associated kinase (IRAK), which interacts with tumor necrosis
factor receptor associated factor 6 (TRAF6), resulting in the acti-
vation of MAPK and NF-κB signaling. TLR3 and TLR4 activate
a MyD88-independent signaling pathway. TRIF is recruited upon
stimulation and leads to the activation of NF-κB and type I IFN
signaling.

Although TLR3 can be activated in prostate cancer cells, the
molecular signaling pathway has not been fully elucidated. A recent
study in human prostate cancer cells suggests that TLR3 signal-
ing triggers apoptosis and growth arrest of LNCaP cells partially
through inactivation of the PI3K/Akt pathway. CyclinD1, c-Myc,
p53, and NOXA are indicated to play a role in poly (I:C)-treated
LNCaP cells (20). In other studies, HIF-1α facilitates apopto-
sis through a PKC-dependent mechanism in poly (I:C)-treated
prostate cancer cells. TLR3 activation by poly (I:C) activates JNK
and p38 through PKC-α and triggers apoptosis in a caspase-8
dependent manner (21, 22). In LNCap cells, poly (I:C) treat-
ment upregulates a pattern of chemokines, including CCL3, CCL4,
CCL5, CCL8, CXCL9, and CXCL10, which could induce mas-
sive NK cell and CD8 T cell chemotaxis. Moreover, poly (I:C)
induced the expression of inflammatory molecules such as IL-6
and IL-12, which are NF-κB signaling dependent (25). In TRAMP
tumor model, poly (I:C) treatment recruits NK cells and T lym-
phocytes through a type I IFN dependent mechanism, resulting
in suppression of tumor growth (24). TLR5 agonist flagellin can
activate NF-κB signaling in LNCaP and DU145 cells, and lead to
the production of pro-inflammatory molecules (25).
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Stimulation of TLR4 in DU145 by LPS activates NF-κB sig-
naling pathway, which leads to production of pro-inflammatory
cytokines such as IL-6 and IL-1β through MyD88-dependent path-
way (29). In addition, TLR4 activation increases expression of
VEGF and TGF-β1 in PC3 cells, which promote tumor develop-
ment (28). Also, knockdown of TLR4 using siRNA in PC3 cells
reduces tumor cell migration and invasion (50). TLR9 stimulation
by CpG-ODN plays an important role in prostate cancer invasion.
This effect is mediated by activating NF-κB and upregulation of
COX-2 (31). TLR9 expression in prostate cancer cells has simi-
larly been found to enhance invasiveness via induction of MMP-13
in vitro (32). In both studies, CpG-ODN stimulation did not affect
cellular proliferation, which suggests TLR9 signaling plays a role
in cancer progression and metastasis.

These defined TLR signaling pathways seem difficult to help
understand why the activation of some TLRs such as TLR3 inhibits
tumor growth but the activation of other TLRs such as TLR2
promotes tumor growth (Figure 2). Some distinct TLR signal
pathways must exist to determine the specific effectors in the
different TLR activations leading opposite consequences.

TLR GENE POLYMORPHISMS AND PROSTATE CANCER RISK
Polymorphisms in TLR genes are reportedly related to suscepti-
bility of a large spectrum of infectious and inflammatory diseases.
Growing evidence suggest that chronic intra-prostatic inflamma-
tion contribute to prostate cancer progression. It was suggested
that TLR gene polymorphisms might alter TLR signaling, thus
affecting inflammation and prostate cancer risk. A number of
studies have been done to investigate whether there is a connection
between TLR gene polymorphisms and prostate cancer risk, and
the results are controversial (51, 52).

Single nucleotide polymorphisms (SNPs) in TLR4 were
reported to be associated with prostate cancer risk in several studies
(53–58). Sequence variants in TLR gene cluster (TLR6-TLR1-
TLR10) were also reported to be associated with prostate cancer
risk (51, 52). However, controversial results were also obtained.
Shui and colleagues investigated 10 SNPs in TLR4 and found
no significant correlation between TLR4 genetic variation and
prostate cancer risks (59). Chen et al. reported that sequence vari-
ants of gene cluster TLR6-TLR1-TLR10 were not associated with
the risk of prostate cancer (60). A meta-analysis by Lindström et al.
did not show clear correlation between TLR gene polymorphisms
and prostate cancer risks.

The discrepancies among these results might be due to mul-
tiple factors including detection method, the race of population,
and sample size. It is important to clarify this issue because it
will determine not only whether the TLR polymorphisms can be
used as a diagnosis/prognosis marker but also whether we can
develop a novel strategy to treat prostate cancer by targeting TLRs
and their signaling pathway. A more comprehensive study includ-
ing a sufficient sample size should be performed to investigate
the association between TLR gene polymorphisms and prostate
cancer risk.

TARGETING TLRs FOR PROSTATE CANCER IMMUNOTHERAPY
The ability of TLRs to manipulate prostate cancer development has
raised the interests in developing immunotherapy against prostate

cancer with the TLR agonists or antagonists. Actually, three drugs
targeting TLRs have been approved by FDA for use in cancer
patients: the bacillus Calmette–Guérin (BCG), monophosphoryl
lipid A (MPL), and imiquimod (61). BCG is prepared from an
attenuated strain of Mycobacterium bovis and activates TLR2/4.
BCG is used as a vaccine in prevention of tuberculosis, but also
for treatment of in situ bladder carcinoma. Derived from LPS
as a potent TLR4 agonist, MPL is an active component of Cer-
varix, which is used against cancer-causing human papillomavirus
(HPV) (62, 63). Imiquimod, one of the most successful drugs tar-
geting TLRs, is a synthetic imidazoquinoline that signals though
TLR7 and is commonly used in the treatment of skin cancer such
as basal cell carcinoma and Bowen’s disease (64–66). Imiquimod
induces the proinflammatory cytokines including IFNα, IL-6, and
TNF-α (67). The activation of TLR7/8 leads to a Th1 response
and an anti-tumor activity, which depends on IFNγ (68). In
prostate cancer, to support this concept, Han et al., reported that
Imiquimod can inhibit both human and mouse prostate cancer
growth by inducing apoptosis (69, 70).

A number of preclinical and clinical studies are ongoing
to investigate the immunotherapeutic potency utilizing TLRs
against prostate cancer. TLR3 activation directly triggers apop-
tosis of human prostate cancer cells (21); therefore, TLR3 agonists
have potential to be developed as anti-tumor therapeutic agents.
Indeed, Ampligen, composed of poly (I:C) (a TLR3 agonist), has
been shown to inhibit a variety of tumor growth in early clinical
trials (71, 72). Hiltonol, a particular formulation of poly (I:C), is
currently in Phase I/II clinical trial to evaluate its safety and efficacy
(71). Meanwhile, a phase 2 clinical study (NCT00514072) utilizing
a BCG vaccine to treat prostate cancer is ongoing. A multi-peptide,
dual-adjuvant telomerase vaccine (GX301) in which Imiquimod is
an active component showed less toxic and highly immunogenic in
prostate cancer patients, but requires future studies to determine
its clinical efficacy (73). Furthermore, TLR4 stimulation by LPS is
shown to contribute to chemoresistance to docetaxel in prostate
cancer cells (74).

CONCLUDING REMARKS
Toll-like receptors play a critical role in innate immunity. TLRs
are expressed not only in innate immune cells, but also in non-
immune cells including cancer cells. Functional expression of
TLRs has been linked to prostate cancer development. TLRs may
serve as a double-edged sword in prostate cancer tumorigene-
sis by promoting malignant transformation of epithelial cells and
tumor growth, or on the contrary, inducing apoptosis, and inhibit-
ing tumor progression. The consequences might be dependent
on complex signaling networks triggered by TLRs activation and
tumor microenvironment. Genetic variations and polymorphisms
of TLRs have been associated with prostate cancer; however, the
results are inconclusive and need further validation (75, 76). The
ability of boosting immune responses but with less serious side
effect makes TLRs a good target to treat cancers. A wave of pre-
clinical and clinical studies showed the potential of developing
treatment targeting TLRs against prostate cancer. Based on these
researches, one of the most probable approaches is to use agents
targeting TLRs as adjuvants along with other treatments (67, 68,
71, 77, 78). Above all, elucidation of the mechanisms of cancer cell
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TLR signaling and crosstalk with other signaling pathways as well
as the mechanisms of cancer progression will definitely provide a
promising novel strategy for cancer treatment.
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