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INTRODUCTION
Macrophages were initially described as
“big eaters” due to their phagocytic nature.
It is now clear that macrophages have
many diverse functions not only in innate
immunity and tissue homeostasis but also
in metabolism, development, and regen-
eration. Macrophage functions are dri-
ven largely by tissue-derived and path-
ogenic microenvironmental stimuli that
help them adapt to changing condi-
tions within tissues and tailor an appro-
priate response. The heterogeneity of
macrophages has resulted in their classifi-
cation into subtypes based on their pheno-
type and function (1). One major classifi-
cation, based on function, is M1 and M2
macrophages, with destructive and healing
properties, respectively (2, 3). As imbal-
ances between M1 and M2 states have been
observed in a number of diseases, an under-
standing of the molecular mechanisms, sig-
naling pathways, and transcription factors
controlling their polarization has obvious
therapeutic implications. Recent studies
have established strong potential for sup-
pressor of cytokine signaling (SOCS) pro-
teins to regulate M1 and M2 macrophage
polarization (4–7). Here, the focus will be
on the evidence for this, and the conse-
quences of altered SOCS expressions on
macrophage function in health and dis-
ease. Overall it is proposed that a high
SOCS1 to SOCS3 ratio could be a poten-
tial marker for M2 macrophages while
high SOCS3 expression is associated with
M1 cells.

SOCS PROTEINS
Suppressor of cytokine signaling proteins
are a family of intracellular cytokine-
inducible proteins, consisting of eight
members (CIS and SOCS1–SOCS7) (8, 9).

SOCS1 and SOCS3 are most widely
characterized regarding their roles in
shaping M1 and M2 macrophage polar-
ization (4–6). They show low expression
in resting macrophages, but are rapidly
induced on activation. All SOCS family
proteins contain an Src homology 2 (SH2)
domain, a variable length amino-terminal
domain and a conserved carboxy-terminal
SOCS box motif that interacts with
ubiquitin–ligase machinery (8, 9). SOCS
are induced by a variety of stimuli that
cause M1 and M2 activation, including
cytokines, toll-like receptor (TLR) lig-
ands, angiotensin II, immune complexes,
and high glucose (9). The most studied
signaling pathway regulated by SOCS is
JAK/STAT activation. SOCS negatively
regulate JAK/STAT signaling through asso-
ciation with key phosphorylated tyrosine
residues on JAK proteins and/or cytokine
receptors, and by degradation of signaling
molecules mediated via the ubiquitin–
proteasome pathway (8, 9). SOCS1 and
SOCS3 contain a kinase inhibitory region
(KIR) that directly suppresses JAK tyro-
sine kinase activity. SOCS proteins also
influence ERK (10), PI3K (11), Notch (12),
MAPK (13), and NF-κB (14) signaling
cascades that directs M1 and M2 functions.

SOCS1
SOCS1 regulates M1-macrophage acti-
vation by inhibiting the interferon
gamma-induced JAK2/STAT1 pathway and
TLR/NF-κB signaling (9, 15) (Figure 1). To
suppress the latter pathway, SOCS1 binds
to the p65 subunit of NF-κB and the TLR
adaptor molecule Mal/TIRAP as well as
IRAK, facilitating its ubiquitin-mediated
proteolysis via ubiquitin ligases recruited
by the SOCS box (8, 14–17). SOCS1
indirectly inhibits TLR4 signaling through

secondary mechanisms targeting IRF3 and
IFN-β induced JAK/STAT pathways (18,
19). Thus, SOCS1 mediates a negative feed-
back mechanism during TLR4 signaling,
via control of both MyD88-dependent and
MyD88-independent signaling. SOCS1-
deficient mice succumb to severe systemic
autoimmune and inflammatory disease
(14, 16) and their M1-macrophages display
an increased capacity to kill intracellular
bacterial pathogens, presumably due to
unrestrained IFN-γ/STAT1 and p65 sig-
naling. In line with this, SOCS1 knockout
or knockdown M1-activated macrophages
show enhanced levels of IL-6, IL-12, MHC
class II, and nitric oxide suggesting SOCS1
sustains the properties of M1 macrophages
at a less destructive level to prevent over-
shooting inflammatory responses (4, 18).
This explains why SOCS1 promoter hyper-
methylation, which results in loss of
SOCS1 expression leads to enhanced secre-
tion of lipopolysaccharide (LPS)-induced
pro-inflammatory cytokines (20). Micro
RNA-155 (miR-155) is a critical regulator
of innate immunity and TLR signaling
(21–23); miR-155 targets and degrades
SOCS1 in M1-activated macrophages (21),
thus miR-155 induction during activa-
tion serves to maximize and extend the
inflammatory process.

SOCS1 also regulates M2 macrophage
polarization. Expression of macrophage
SOCS1, but not SOCS3, is strongly upreg-
ulated in an M2 polarizing environ-
ment in vitro and in vivo, where it has
an important role in acquisition of M2
functional characteristics, such as a high
arginase I/low inducible nitric oxide syn-
thase (iNOS) expression ratio (4). Strik-
ingly, this contrasts with macrophages infil-
trating an in vivo inflamed M1-activating
environment, where macrophages with
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FIGURE 1 | Role of SOCS1 and SOCS3 in macrophage activation. STAT1 and NFκB drive M1
polarization and SOCS1 can inhibit these pathways. SOCS3 can regulate TLR signaling and inhibits
IL-6-induced STAT3 activation and SMAD3 and PI3K activity to action an appropriate destructive effect.
STAT3, STAT6, and PI3K can drive M2 activation and SOCS3 inhibits STAT3 and PI3K. Pathways that
trigger SOCS1 in macrophages include STAT1 and NFκB, while SOCS3 expression can be induced by
STAT3, NFκB, NOTCH1, PI3K, and MAP kinase activation.

enhanced SOCS3 but not SOCS1 expres-
sion are prominent (5). This suggests
that exclusive upregulation of SOCS1, or
indeed, a high SOCS1/SOCS3 expression
ratio, has potential as a useful and addi-
tional in vivo biomarker for M2 (see
later). Arginase I expression, as an M2
macrophage marker, can be mediated via
activation of either STAT6 (24) or PI3K
(25). SOCS1 is important in control-
ling PI3K activity, supporting a mech-
anism for regulating arginase I expres-
sion in M2 cells; SOCS1 also regulates
STAT6 phosphorylation (26). Following
activation, SOCS1 knockdown or SOCS1-
deficient macrophages show a recipro-
cal upregulation of SOCS3 expression.
SOCS3 inhibits PI3K activation (27), and
so the expression of high SOCS1 and
low SOCS3 in M2 macrophages could
result in greater PI3K activity and more
arginase I induction in these cells. An
elevated expression of SOCS1 is impor-
tant for the arginase I-induced suppres-
sive nature of M2 macrophages that
attenuate lymphocyte proliferation (28).
Moreover, siRNA-mediated knockdown of
SOCS1 results in the induction of iNOS
in IL-4-pretreated cells stimulated with
IFN/LPS (4). Thus, SOCS1 regulates the
iNOS/arginase I expression ratio in both
M1 and M2 macrophages and helps fine-
tune key signaling pathways to mount an
appropriate response to changes within the
microenvironment.

SOCS2
An important role for SOCS2 in dri-
ving M2 polarization and limiting M1
polarization has been shown, with IL-
4 activation of macrophages, resulting
in enhanced SOCS2 expression (27).
Macrophages from SOCS2-/- mice display
increased secretion of IFN-γ, IL-1β, and
TNF-α in response to LPS in parallel to
an increased pro-inflammatory cytokine
mRNA expression (29). These BMDMs
have higher basal levels of p65–NF-κB
compared with macrophages from wild-
type mice (29). In another study, SOCS2-
deficient macrophages were hyper respon-
sive to IFN-γ, produced more NO and
dealt with infection more efficiently (30).
SOCS2 has also been described as a feed-
back inhibitor of TLR-induced activation
in dendritic cells (31).

SOCS3
In contrast with SOCS2, a key role
for SOCS3 in M1 polarization is pro-
posed (Figure 1). The majority of
macrophages activated within an in vivo
pro-inflammatory conditioning environ-
ment show strong upregulation of SOCS3
expression and this cell population
co-express the M1 marker, iNOS (5,
6). Without SOCS3, both human and
rodent macrophages have a reduced abil-
ity to develop pro-inflammatory fea-
tures but instead display immunoregula-
tory characteristics (5, 6). Notably, mice

with a targeted deletion of SOCS3 in
macrophages and neutrophils demonstrate
a reduced IL-12 response and succumb
to toxoplasmosis (32). SOCS3 binds to
and inhibits gp130-related cytokine recep-
tors and consequently this abrogates IL-6-
induced STAT1 gene expression and IL-6-
induced STAT3 anti-inflammatory effects
(33–35). Therefore, in SOCS3-deficient
macrophages, IL-6 signals in a similar man-
ner to the immunosuppressive cytokine
IL-10, through prolonged STAT3 activa-
tion and dampening of LPS signaling (33).
As a result, mice deficient in SOCS3 in
myeloid cells are resistant to endotoxic
shock (35) with reduced production of
pro-inflammatory cytokines. However, one
report in the same mice suggests SOCS3
deficiency promotes M1 macrophage acti-
vation in spite of enhanced STAT3 acti-
vation (7). The reasons for this discrep-
ancy in findings are unclear but could
relate to differences in dose and purity
of the LPS used in the different studies,
as well as and the genes and time-points
analyzed after macrophage activation (7,
35). Moreover, the conflicting results for
the role of SOCS3 in M1 polarization in
isolated macrophages in vitro (5–7) could
result from the different technologies and
species used (siRNA-mediated knockdown
in rat and human macrophages, which
avoids the risk of compensatory effects
of other SOCS genes (5, 6) versus cells
from macrophage-specific SOCS3 knock-
out mice) (7). Resolving these issues should
establish the importance of SOCS3 in mod-
ulating macrophage function in vivo.

Studies of SOCS3-deficient
macrophages confirm that SOCS3 pos-
itively regulates TLR4 signaling and
M1 activation by inhibition of IL-6R-
mediated STAT3 activation, as well as
TGF-β-mediated SMAD3 activation,
which is critical for the negative regulation
of TLR-induced TNF-α and IL-6 produc-
tion (5, 6, 33, 36). Since SOCS3 blocks PI3K
that feeds and inhibits TLR responses, this
could be an alternative mechanism by
which SOCS3 augments TLR signaling
in M1 macrophages (6). Forced activa-
tion of Notch signaling enhances both
M1 polarization and anti-tumor activ-
ity via SOCS3 induction (12). In line
with this, macrophage-specific SOCS3
knockout animals are resistant to tumor
transplantation due to reduced secretion
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of tumor-promoting TNF-α and IL-6,
together with elevated MCP2/CCL8 that is
anti-tumorigenic (37).

Regulation of SOCS3 in innate cells
influences downstream T cell fates. The
presence of SOCS3 in macrophages is
important in fine-tuning downstream T
effector cell priming due to both influ-
ences in expression of presenting mole-
cules and altered secretion of T cell polar-
izing cytokines (6, 7). Mouse SOCS3-
deficient dendritic cells display an analo-
gous reduced potential to drive T effector
cell responses and a tolerogenic pheno-
type as a result of enhanced TGFβ pro-
duction and expansion of Foxp3-positive
regulatory T cells (38). These dendritic
cells reduce the severity of experimen-
tal autoimmune disease. Therefore, regula-
tion of intracellular signaling pathways by
SOCS3 in innate cells is critical for the deci-
sion of adaptive responses such as T cell
fates. The depletion of macrophage SOCS3
in a clinical situation would thus be pre-
dicted to dampen both pro-inflammatory
innate and adaptive immune responses.

The above studies suggest that
macrophage SOCS3 is associated with
M1 macrophages and pro-inflammatory
responses and is a potential therapeutic
target in inflammatory diseases. However,
a word of caution should be introduced as
this may not be the case in all inflamma-
tory conditions. In diseases, where STAT3
activation exerts a profound inflammatory
and pathogenic response (39, 40) then the
effects of SOCS3 targeting may not be
beneficial. For example, in an IL-1/STAT3
model of chronic arthritis where SOCS3
was deleted in hematopoietic and endothe-
lial cells, animals exhibited more severe
disease. Thus, the pathology needs first to
be assessed before SOCS3 manipulation as
a therapy is considered (37).

MACROPHAGE SOCS EXPRESSION
AND PATHOLOGY
The heightened expression of macrophage
SOCS1 and SOCS3 proteins have been
demonstrated in many pathologies in vivo
where this has been proposed, through the
molecular mechanisms described above, to
enhance or inhibit pathogenesis.

SOCS AND GLOMERULONEPHRITIS
Macrophages are an important fea-
ture in glomerulonephritis pathology.

Macrophages infiltrating inflamed
glomeruli in experimental models are
rapidly polarized to express either SOCS1
or SOCS3, but rarely both, with most
exclusively expressing SOCS3 (5, 6). The
proportion of these SOCS3-expressing
macrophages correlates strongly with the
severity of immune-mediated injury. Local
delivery of IL-4 to inflamed glomeruli
has a major effect on reducing the num-
ber of SOCS3-expressing glomerular
macrophages, and this is reflected by
a decrease in the severity of nephritis,
supporting a role for SOCS3 in driving
M1-mediated injury (5).

SOCS AND ATHEROSCLEROSIS
Human atherosclerotic plaques exhibit a
high expression of macrophage SOCS1 and
SOCS3 in unstable inflammatory shoul-
der regions as compared to stable fibrous
area (41). SOCS1 and SOCS3 expression
is increased in aortic lesion macrophages
from apoE(−/−) mice (42). In human tis-
sue, the percentages of SOCS1-positive,
M2 macrophages are decreased in mor-
phologically stable atherosclerotic plaques,
whereas percentages of SOCS3-positive,
iNOS positive, macrophages are increased
in unstable, rupture-prone plaques, sug-
gesting targeting macrophage SOCS3
would be beneficial to dampen inflamma-
tion and plaque vulnerability (43). The dif-
fering expression ratio of SOCS1:SOCS3
in atherosclerotic plaques again suggests
that the ratio could be an indicator
of the inflammatory status of human
macrophages in vivo. SOCS1 was athero-
protective in mouse models (44) while
the absence of macrophage SOCS3 of
apoE(−/−) mice attenuates disease, con-
firming a causal link between macrophage
SOCS3 and atherosclerosis (45).

SOCS AND INFLAMMATORY BOWEL DISEASE
Beneath the gut epithelia, lamina pro-
pria macrophages phagocytose bacteria
and maintain an M2 phenotype in the
steady state. Approximately 10% of these
macrophages express SOCS3 in healthy
individuals, whereas in inflammatory
bowel disease (IBD) patients this increases
to 40%, again suggesting SOCS3 expres-
sion relates to M1-activated macrophages
(46). Peroxisome proliferator-activated
receptor-γ (PPARγ) agonists demon-
strate efficacy in ameliorating intestinal

inflammation associated with IBD. PPARγ

expression is upregulated in M2 but not
M1 macrophages. In macrophages lack-
ing PPARγ, a significant upregulation of
SOCS3 was noted and this could be impor-
tant if treating IBD with PPARγ ago-
nists (47).

SOCS AND TUMORS
In human tumors, SOCS3 expression
identifies macrophages with enhanced
tumor killing, whereas SOCS1 express-
ing macrophages (M2) favor tumor sur-
vival (48). Macrophage-specific deletion
of SOCS1 leads to reduced susceptibil-
ity to melanoma growth and colon car-
cinogenesis through increased anti-tumor
responses (49) and a switch to M1 polar-
ization of tumor-associated macrophage.
In contrast, mice with a macrophage-
specific deletion of SOCS3, subcutaneously
implanted with melanoma cells, did not
show a difference in tumor size, although
the number of metastasis increased in
these mice (37). These SOCS3-deficient
macrophages produce less IL-6 and TNF-α
upon stimulation with tumor lysates due
to aberrant STAT3 activity, again showing
a positive link of SOCS and macrophage
polarization (37).

SOCS AND OBESITY
SOCS3 restrains macrophage responses to
IL-6 and leptin that are systemically upreg-
ulated in obesity (50). SOCS1 inhibits
insulin signaling and macrophage cytokine
secretion, resulting in insulin sensitivity
in spite of an obese state (17). More-
over, an increase in SOCS1 expression
in mouse macrophages inhibits LPS- and
palmitate-induced TLR4 signaling and in
so doing prevents systemic inflammation
and hepatic insulin resistance (17).

CONCLUSION AND PERSPECTIVES
Given the broad role of SOCS in regulat-
ing macrophage functions in health and
disease, the modulation of macrophage-
specific SOCS1 and SOCS3 expression pro-
vides new opportunities for therapeutic
manipulation of immune and inflamma-
tory responses. However, it is not only
macrophages that are affected by SOCS
proteins. Other cell types upregulate and
react to SOCS proteins to shape cellular
functions. Targeting SOCS specifically in
macrophages is therefore important as an
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efficient means of changing the inflamma-
tory response.
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