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Functional and effective immune response requires a metabolic rewiring of immune cells
to meet their energetic and anabolic demands. Beyond this, the availability of extracellular
and intracellular metabolites may serve as metabolic signals interconnecting with cellu-
lar signaling events to influence cellular fate and immunological function. As such, tumor
microenvironment represents a dramatic example of metabolic derangement, where the
highly metabolic demanding tumor cells may compromise the function of some immune
cells by competing nutrients (a form of intercellular competition), meanwhile may support
the function of other immune cells by forming a metabolic symbiosis (a form of intercellular
collaboration). It has been well known that tumor cells harness immune system through
information exchanges that are largely attributed to soluble protein factors and intercel-
lular junctions. In this review, we will discuss recent advance on tumor metabolism and
immune metabolism, as well as provide examples of metabolic communications between
tumor cells and immune system, which may represent a novel mechanism of conveying
tumor-immune privilege.
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INTERCELLULAR METABOLIC INTERACTION
The intercellular communication largely relies on the information
exchange via soluble factors (e.g., proteins and microRNAs) and
direct cell–cell contacts. Beyond this, the shuttling of metabolites
may serve as an additional form of intercellular communication
and a high degree of intercellular coordination in various physio-
pathological situations. As an intensive energy-consuming organ,
brain efficiently utilizes nutrients/metabolites via organizing a
complex intercellular shuttle of glucose, glutamine, glutamate,
pyruvate, and lactate between neurons and astrocytes (1). Similar
metabolic coordination exists in retina between glial cells and pho-
toreceptor cells, in muscle between fast white fibers and slow red
fibers, and in testis between sertoli cells and spermatogenic cells (2,
3). Also, emerging evidences have shown that various pathogen-
derived metabolites mediate an intercellular host–pathogen inter-
action and critically impact on homeostasis and pathogenesis dur-
ing pathogen invasion (4–7). Tumor microenvironment represents
a dramatic example of metabolic derangement, where tumor-
surrounding cells may either compromise or support highly meta-
bolic demanding tumor cells by competing nutrients (a form of
intercellular competition) or by forming a metabolic symbiosis
(a form of intercellular collaboration), respectively. Amino acids,
lactate, and lipids derived from stromal cells, adipocytes, mes-
enchymal stem cells, epithelial cells, or tumor cells from hypoxic
regions can modulate tumor cell growth and their responses
to therapy (8–15). Beyond this, the immune system, a pivotal
cellular compartment presented in tumor microenvironment, is

intimately involved in tumor initiation, progression, and responses
to therapy.

TUMOR IMMUNITY
Interaction of immune system with tumor is a complex and
dynamic process. As the major component of anti-tumor immu-
nity, tumor antigen-specific cytotoxic T (CTL) and T effector
(Teff) cells together with antibody-producing B cells and antigen-
presenting dendritic cells (DC) elicit adaptive anti-tumor activity
through direct recognizing and killing tumor cells and orches-
trating a plethora of adaptive and innate immune responses.
Also, macrophages, natural killer (NK) cells, and NK-T cells
form an important layer of non-specific innate immunity to
suppress tumor progression. However, tumor often co-opts and
manipulates its microenvironment favoring the development of
immunosuppressive cells, such as myeloid-derived suppressor
cells (MDSC) and regulatory T (Treg) cells. In addition, tumor-
associated macrophages (TAMs), a pivotal immune population
within the tumor microenvironment, are composed of multiple
distinct pro- and anti-tumoral subpopulations. Mounting evi-
dence indicates that strengthening the amplitude and quality of
T cell-mediated adaptive response is one of the most promising
approaches to enhance therapeutic anti-tumor immunity (16–19).

METABOLIC REPROGRAMING IN TUMOR
The shift from glucose oxidation toward aerobic glycolysis, also
termed “Warburg effect,” and heightened glutamine catabolism
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are characteristic hallmarks of cancer cells. The metabolic rewiring
of cancer cells supporting tumor growth and survival relies on a
hierarchical oncogenic cascade involved in Akt/mTOR, MAPK,
and essential transcriptional factors, such as HIF1α- and Myc-
dependent metabolic transcriptome. Secretion of metabolic end
products, such as lactate from glycolysis and glutaminolysis and
CO2 from the pentose phosphate pathway, often result in an
extracellular acidification in tumor microenvironment. Hence,
the Na+/H+ exchanger, the H+-lactate co-transporter, monocar-
boxylate transporters, and the proton pump (H+-ATPase) that are
frequently activated in cancer cells play essential role in modulat-
ing the pH and ionic compositions in tumor microenvironment
(20–22). Also, elevated expression of phosphoglycerate dehydroge-
nase (PHGDH) and it-mediated diversion of glycolysis into serine
biosynthetic pathway have been found to be essential for the pro-
liferation of certain tumor cells, such as breast cancer cells and
melanoma cells (23, 24). Beyond being key precursors for biosyn-
thesis, metabolic products of tryptophan, cysteine, serine, and
glycine also contribute to tumor homeostasis through modulat-
ing anti-oxidative response and anti-tumor immunity (8, 25–28).
Together, the metabolic reprograming in tumor contributes to its
growth either by directly supporting cancer cell proliferation or
by shaping the microenvironment potentially favoring tumor cell
survival.

METABOLIC REPROGRAMING IN IMMUNE SYSTEM
Recent studies from us and others have indicated that metabolic
regulation and cell signaling are tightly and ubiquitously linked
with immune responses (29–34). The distinct metabolic profiles
of lymphocytes are intimately linked to their status and func-
tion (Table 1). Naïve T lymphocytes rely mainly on fatty acid
oxidation and some glycolysis to fulfill their energy demand for
survival. Upon stimulation, activated T lymphocyte “reprograms”
its metabolism, by dramatically increasing aerobic glycolysis and
glutaminolysis meanwhile decreasing lipid oxidation to meet its
requirements for cell size growth, cell division, and cytokine pro-
duction (35–38). In contrast, stimulation of B lymphocytes leads to
a balanced increase in aerobic glycolysis and oxygen consumption
(39, 40). As T lymphocytes begin to proliferate, they also undergo
differentiation into functional subsets in response to extracellular
signals, and these subsets determine the nature of the immune
response. According to the nature of initial antigen challenge
and specific cytokine signals, activated CD4 T cells differentiate
into Teff , including T helper Th1, Th2, Th9, and Th17, follicular
helper Tfh, and Treg. Th1 cells mediate responses to intracellu-
lar pathogens. Th2 cells control responses to extracellular bacteria
and helminthes. Th9 cells play a role in the pathogenesis of asthma
and resolution of parasitic infections. Th17 cells are important in

anti-fungal defense and inflammation. Tfh cells are the specialized
B cell helper. Treg cells dampen immune responses by suppressing
T cell activation and inflammatory response. The predominant
metabolic program in Treg cells is mitochondrial-dependent oxi-
dation of lipid and potentially other mitochondrial-dependent
metabolites. It has been indicated that forcing proliferating T
cells to utilize free fatty acids for energy tends to drive enhanced
Treg differentiation (41). In contrast, increased aerobic glycolysis
is seen in Th1, Th2, and Th17 cells, and partially due to activa-
tion of PI3K/Akt/mTOR pathway. The transcription factor HIF1
(hypoxia-inducible factor 1) has also been characterized as a key
regulator of the anabolic metabolism in differentiating Th17 cells
(42, 43). Similar to CD4 T cells, CD8 T cells also switch from fatty
acid oxidation to aerobic glycolysis upon activation. The glycolysis
and anabolic metabolism are essential for CD8 T cell growth and
differentiation into cytotoxic T cells (34). After the peak of the
primary T cell response, the metabolic state in CD8 T cells shifts
from glycolysis back to lipid oxidation, which is pivotal for cell
survival and the generation of CD8 T memory cells (44, 45).

Dendritic cells and macrophages are first-line effectors of innate
immunity. DC maturation is concomitant with a metabolic switch
to aerobic glycolysis (46, 47). Aerobic glycolysis fulfills bioener-
getic need and also provides building blocks for the biosynthe-
sis of macromolecules, such as lipids, a proper balance between
uptake and synthesis of which is required for immunogenicity
of DCs (48, 49). As functionally plastic cells, macrophages are
capable of tightly coordinating their metabolic programs with
their functional properties. This allows macrophages to grow,
survive, and properly respond to a variety of pathophysiolog-
ical signals in their changing microenvironments. Within the
tumor microenvironment, TAMs are often identified as pro-
tumoral M2 type macrophage (50, 51). Mounting evidences have
showed that switching the TAM phenotype from M2 to M1 may
promote anti-tumor activity, implicating a phenotypic plastic-
ity of TAM (52–57). To mount a rapid inflammatory response,
M1 macrophages coordinately engage aerobic glycolysis, pentose
phosphate shunt (PPP), glutamine, and arginine catabolism to
produce nitric oxide (NO) and reactive oxygen species (ROS)
(58–60). However, anti-inflammatory M2 macrophages largely
utilize lipid oxidation (61–63) meanwhile shift arginine catab-
olism from iNOS-mediated production of NO to the produc-
tion of urea and ornithine (64–68). Similar to macrophage, the
polarization of MDSC, a heterogeneous immunosuppressive pop-
ulation in tumor microenvironment, toward a pro-inflammatory
phenotype (often referred as M1) is associated with heightened
glycolysis meanwhile reduced immunosuppressive function (69).
Beyond this, metabolic regulation in NK and neutrophils are
largely unknown.

Table 1 | Metabolic profiles of immune cells.

Immune

cells

NaïveT cells ActivatedT cells Teff cells Treg/T memory

cells

Activated

dendritic cells

M1 macrophages M2 macrophages

(TAM)

Metabolic

profile

fatty acid

oxidation and

some glycolysis

Glycolysis and

glutaminolysis

Glycolysis Fatty acid

oxidation

Glycolysis Glycolysis, pentose phosphate

shunt (PPP), glutamine, and

arginine catabolism

Lipid oxidation

Frontiers in Immunology | Inflammation July 2014 | Volume 5 | Article 358 | 2

http://www.frontiersin.org/Inflammation
http://www.frontiersin.org/Inflammation/archive


Wang et al. Metabolic antagonism and symbiosis in tumor microenvironment

METABOLIC ANTAGONISM AND SYMBIOSIS IN TUMOR
MICROENVIRONMENT
Aerobic glycolysis and glutaminolysis are dominant cancer meta-
bolic routes. Heightened glucose and glutamine consumption
often results in the depletion of nutrients (glucose, glutamine, etc.)
whereas accumulates metabolic end- or by-products (lactate, pro-
ton, etc.) in tumor microenvironment (70, 71). In addition to the
above general metabolic features that are required to support the
needs of proliferation and other neoplastic features, tumor cells
also exhibit diverse metabolic phenotypes that are often due to
the adaptation of pre-existing cell/tissue lineage specific metabolic
network. It is well documented that in tumor cells, biosynthesis,
and catabolism of glycine and serine, as well as catabolism of tryp-
tophan and cysteine, are essential to support tumor cell survival
(25, 72–74). Acidic extracellular pH, which is resulted from the
accumulation of lactate and CO2 production, has been demon-
strated to be important for cancer progression (75, 76). Recent
studies have demonstrated that anti-tumoral immune population,
such as CTL and Teff cells, engage robust aerobic glycolysis and glu-
taminolysis, suggesting a potential metabolic antagonism (compe-
tition) for nutrients between tumor and those immune cells. On
the contrary, pro-tumoral immune suppressive cells may prefer-
entially utilize metabolic products of tumor to form a potential
metabolic symbiosis in tumor microenvironment (Figure 1).

ANTAGONISM
Glucose and glutamine
The similarity of metabolic programs between tumor and T cells
(CTL and Teff) leads to fierce competition for limited source of
glucose and glutamine in local environment. The restriction of
glucose and glutamine to fast proliferating cells could result in
metabolic stress on both tumor and immune cells. Nutrient depri-
vation elicits signaling responses through AMP-dependent kinase
(AMPK), mammalian target of rapamycin (mTOR), transcrip-
tional factor p53, and other unknown signaling modulators to
confer metabolic plasticity allowing cancer cells survive under low
glucose and low glutamine condition (77–81). Furthermore, lac-
tate and CO2 produced from glycolysis and glutaminolysis lead
to microenvironment acidification, favoring the development of
more aggressive and invasive tumor cells (75, 76). Unlike tumor
cells, metabolic stresses are less tolerated in non-malignant cells,
such as T cells, and are often immune suppressive, partially due
to a preferential development of Treg cells following nutrients
restriction (41, 42). Several studies also indicated that nutrient
starvation perturbs Teff cytokine production, macrophage phago-
cytic activity, and superoxide production. Therefore, metabolic
microenvironment may render tumor cells a selective advantage
due to their resistance to apoptosis and rapid adaptation under
metabolic stress.

Tryptophan catabolism
The catabolism of the essential amino acid tryptophan has been
reported to be a biomarker of tumor tissues in various stud-
ies. In tumor cells, the conversion of tryptophan to kynure-
nine is primary mediated by two dioxygenases, indoleamine-2,3-
dioxygenase (IDO) and tryptophan-2,3-dioxygenase (TDO). IDO
is expressed in many types of tumor cells and antigen-presenting

FIGURE 1 | Metabolic interplay in tumor immunity. Metabolic interplay
through shuttling of metabolites among different cell compartments in
tumor microenvironment serves as a form of intercellular communication
and intercellular coordination. T effector cells (Teff), cytotoxic T cells (CTL),
dendritic cells (DC), and tumor-associated macrophage (TAM-M1) may form
a potential metabolic antagonism (red color marked) with tumor cells. On
the contrary, T regulatory cells (Treg), myeloid-derived suppressor cells
(MDSC), and TAM-M2 may preferentially utilize metabolic products of tumor
to form a potential metabolic symbiosis (blue color marked) in tumor
microenvironment.

cells, whereas TDO exists in certain IDO-negative tumor cells,
such as malignant gliomas and hepatocellular carcinoma (82–85).
The breakdown of tryptophan has been shown to dramatically
affect the function of T cells against tumor cells. On one hand,
upregulated tryptophan catabolism in tumor tissue resulted in
the depletion of tryptophan in the extracellular space, which
causes Teff cells anergy and apoptosis and, in turn, suppresses
anti-tumor-immune responses. On the other hand, kynurenine
and potentially other catabolic metabolites of tryptophan are
nature ligands of aryl hydrocarbon receptor (AHR), which plays a
broad role in modulating immunity (86, 87). As such, extracellu-
lar accumulation of kynurenine elicits an AHR-mediated response
to reciprocally enhance function of Treg and suppress function
of Teff and immunogenicity of DCs (88–90). Thus, tryptophan
depletion and kynurenine accumulation cooperatively create an
immunosuppressive microenvironment in tumor (25, 90).

Cysteine and glycine
Physiological levels of ROS play essential roles in various signaling
cascades for cell survival and proliferation, whereas excess ROS
causes cell injury and tissue damage (91, 92). The thiol group
in glutathione (GSH) acts as a reducing agent that can quench
the cytotoxic ROS, and thus GSH is considered as an essen-
tial cellular antioxidant system to maintain redox homeostasis.
Heightened GSH level is observed in numerous types of cancers,
and the enriched GSH improves tumor cell survival by protecting
them against oxidative stress (73, 74). Tumor cells uptake cys-
teine and cystine from the local environment and convert them
into GSH together with glutamate and glycine, which are often
derived from glutamine and glucose. Similarly, T cell prolifera-
tion depends on the uptake of exogenous cysteine. T cells lack
cystathionase enzyme that converts methionine to cysteine and
xc-transporter that imports cystine as an alternative source of
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cysteine (93). Thus, the competition between tumor cells and T
cells for cysteine and glycine may lead to the suppression of T cell
activation and proliferation.

Arginine catabolism
As another form of free radical, NO plays multifaceted roles in
cancer initiation, progression, differentiation, and angiogenesis
(94–96). In mammals, NO is converted by a family of nitric oxide
synthases (NOS) from arginine. It has been reported that arginine
depletion retards the growth of some types of tumor, whereas
other studies demonstrated that arginine supplementation assists
anti-tumor treatment possibly by enhancing immune function
(97, 98). As such, arginine has been discovered to stimulate T cell
and NK cell activity and promote production of pro-inflammatory
cytokines (99, 100). Also, tumor-derived NO may elicit cytotoxic
effects on tumor-associated immune cells. However, the intrin-
sic resistance to NO-mediated cytotoxicity of tumor cells with
mutated p53 offers a selective growth advantage of cancer cells
over normal cells (101–104).

Proton and sodium ion
It has been known that the acidification of microenvironment
caused by the accumulation of lactic acid and CO2 enhances tumor
radioresistance and favors tumor cell migration and invasion (75,
76, 105). Beyond this, acidic environment decreases the activity of
NK cells, suppresses T cell proliferation, and impairs cytokine pro-
duction and cytotoxic activity of T cells. Accumulating evidences
also suggest that acidic microenvironment has a profound impact
on monocytes differentiation and cytokine release (106–108). As
one of the key inorganic ions in our body, cross-membrane trans-
port of sodium ion is intimately coupled with proton and amino
acids transport and also profoundly impact on tumor microenvi-
ronment (75, 109). Recent studies show that high-sodium chloride
conditions induce the development of pathogenic Th17 cells with
elevated release of pro-inflammatory cytokines (GM-CSF, TNF-α,
and IL-2) and thus promote tissue inflammation, which may either
promote or suppress tumor formation. While some of the effects
of sodium are mediated through serum/glucocorticoid-regulated
kinase 1(SGK1), further investigations are warranted to assess the
impact of sodium on proton and amino acids transport. As such,
a sodium ion-proton axis may coordinately modulate anti-tumor
response (110, 111).

METABOLIC SYMBIOSIS
In contrast to Teff cells, the enriched lactate and the acidic microen-
vironment do not have obviously suppressive effect on Treg cells,
as they have a different energy metabolism that relies on fatty
acid oxidation. The lactate accumulated in the microenvironment
is generally considered as metabolic “waste.” However, numerous
studies have indicated the possible function of lactate as a promi-
nent substrate in oxidative metabolism among various types of
cells such as muscle cells, neurons, and certain tumor cells (112–
114). Although, it has not been demonstrated, the preference of
mitochondrial-dependent oxidative metabolism of Treg indicates
the possibility that Treg may utilize lactate under nutrient scarcity,
which often happens in tumor microenvironment. The concen-
tration of lactate in vertebrate plasma ranges from 1 to 30 mM

under physiological and pathological conditions (2). Beyond serv-
ing as a potential alternative energy source, early studies suggested
that high lactate concentrations (2–30 mM) enhance Treg differ-
entiation through the stimulation of IL-2 production (115, 116).
Similarly, increased production of lactate by tumor cells promotes
the development of MDSC (117). Also, lactate and acidic envi-
ronment have a profound impact on secretory profile of TAM,
promoting tumor angiogenesis (108, 118, 119). Beyond lactate,
the catabolic metabolites of tryptophan, such as kynurenine, pro-
mote Treg differentiation and immune suppressive function (89).
Thus, tumor-derived lactate and tryptophan catabolic metabolites
may form a layer of metabolic symbiosis with various immune
cells to favor tumor growth.

CONCLUSION AND PERSPECTIVE
The metabolites that present in tumor microenvironment may
also have signaling functions independent of their roles of bioen-
ergetics fuels. This may represent a general feature of the inter-
cellular metabolic crosstalk mediated by metabolites. To fully
understand the underlying complexity of intercellular meta-
bolic interplay, new techniques that allow us to quantitative
measure metabolites, assess metabolic flux in situ, and detect
physical interaction between metabolites and cell surface pro-
teins are warranted. The fast moving cancer metabolism field
and immunotherapy field have generated tremendous excite-
ment regarding new therapeutic strategies and will likely change
the paradigm of therapeutic interventions for cancer. However,
the perturbed metabolic landscape of the tumor microenviron-
ment can have a profound impact on anti-tumor immunity. As
such, understanding the metabolic interplay between tumor and
immune system will guide the development of optimal meta-
bolic interventions on cancer without compromising anti-tumor
immunity. Beyond this, intercellular metabolic interplay may also
play an essential role in forming a pro-tumoral inflammatory
microenvironment.
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