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Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of granulocytic
or monocytic cells that suppress innate as well as adaptive immune responses. In healthy
adults, immature myeloid cells differentiate into macrophages, dendritic cells, and granu-
locytes in the bone marrow and MDSC are rarely detected in peripheral blood. However, in
certain pathologies, in particular malignancies and chronic infection, differentiation of these
cells is altered resulting in accumulation of circulating suppressive myeloid cells. MDSC
express suppressive factors such as arginase-1, reactive oxygen species, and inducible
nitric oxide synthase, which have the ability to inhibit T cell proliferation and cytoxicity,
induce the expansion of regulatory T cells, and block natural killer cell activation. It is
increasingly recognized that MDSC alter the immune response to several cancers, and
perhaps chronic viral infections, in clinically important ways. In this review, we outline the
potential contribution of MDSC to the generation of feto-maternal tolerance and to the
ineffective immune responses to many infections and vaccines observed in early post-
natal life. Granulocytic MDSC are present in large numbers in pregnant women and in cord
blood, and wane rapidly during infancy. Furthermore, cord blood MDSC suppress in vitro T
cell and NK responses, suggesting that they may play a significant role in human immune
ontogeny. However, there are currently no data that demonstrate in vivo effects of MDSC
on feto-maternal tolerance or immune ontogeny. Studies are ongoing to evaluate the func-
tional importance of MDSC, including their effects on control of infection and response to
vaccination in infancy. Importantly, several pharmacologic interventions have the potential
to reverse MDSC function. Understanding the role of MDSC in infant ontogeny and their
mechanisms of action could lead to interventions that reduce mortality due to early-life
infections.
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INTRODUCTION
Approximately, one million newborns die due to infection each
year worldwide (1). It is increasingly apparent that the extreme vul-
nerability to infections of neonates and young children is related
to substantial changes that the immune system undergoes dur-
ing early life (2–6). In order to suppress allogeneic responses and
pathologic inflammation due to antigenic differences between the
fetus and its mother, the feto-maternal environment evolved to
be immunosuppressive (7, 8), which likely influences post-natal
immune responses. Furthermore, specific antigenic exposures or
infectious risks that occur at different ages during childhood may
have shaped the observed transition to more adult-type immune
responses (9). It is clear that nearly all aspects of the neonatal innate
and adaptive immune response differ from those of older children
and adults; the underlying mechanisms for these differences are
multifactorial, and as yet incompletely understood. This review
will discuss the potential contribution of myeloid-derived suppres-
sor cells (MDSC) to the ontogeny of the human immune system
and early-life immunologic phenotype. MDSC are particularly

intriguing because of their plasticity and the availability of agents
to reverse their suppressive activity, which could prove valuable
for accelerating the ability of young infants to mount protective
immune responses to infection or vaccines. As such, we summa-
rize the evidence and outline a proposed agenda of future research
on MDSC with respect to newborn and infant immunity.

MDSC CHARACTERIZATION AND PHENOTYPES
Myeloid lineage progenitors generated in the bone marrow clas-
sically differentiate into macrophages, dendritic cells (DC), and
granulocytes. The ontogeny of myeloid cells is discussed in detail
elsewhere in this issue (De Kleer et al., submitted), and numerous
excellent reviews of MDSC in other contexts have been published
(10–15). MDSC are not a separate lineage of cells, but are rather a
heterogeneous population of activated myeloid cells with suppres-
sive functions. Although suppressive myeloid cells were described
more than 30 years ago (16–18), the diverse phenotypes of MDSC
and their biological roles have only recently begun to be character-
ized in detail. These cells are defined by having myeloid markers,

www.frontiersin.org August 2014 | Volume 5 | Article 387 | 1

http://www.frontiersin.org/Immunology
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/about
http://www.frontiersin.org/Journal/10.3389/fimmu.2014.00387/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2014.00387/abstract
http://www.frontiersin.org/people/u/138363
http://www.frontiersin.org/people/u/176284
http://www.frontiersin.org/people/u/49292
http://www.frontiersin.org/people/u/176579
mailto:sgantt@cfri.ca
http://www.frontiersin.org
http://www.frontiersin.org/Immunotherapies_and_Vaccines/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gantt et al. MDSC in immune ontogeny

potent immunosuppressive activity, and for monocytic MDSC,
the ability to differentiate into mature macrophages and DC. In
mice, there are two relatively distinct subsets of MDSC: mono-
cytic MDSC (CD11b+ LY6G− LY6Chigh) and granulocytic MDSC
(CD11b+ LY6G+ LY6Clow) (10, 13). Human MDSC are less easily
categorized into monocytic vs. granulocytic because of the lack of
a Ly-6G (Gr-1) gene homolog in humans. However, human MDSC
have been defined as CD33+ CD11b+ HLA-DRlow/−, with mono-
cytic MDSC being CD14± CD15low/− and granulocytic MDSC
being CD14− CD15+ CD66b+, which appears consistent with
hematologic morphology (10, 13). A population of promyelo-
cytic MDSC in bone marrow and several cancers has also been
defined by being CD33+ HLA-DR− CD11blow/− CD16− (15, 19).
MDSC populations appear to be predominantly of the granulo-
cytic type in the setting of cancer, as well as in early infancy, as
discussed below. In HIV and other chronic diseases, the relative
importance of monocytic and granulocytic MDSC is unclear (11,
20–22). These definitions and classifications are somewhat con-
troversial, however, given the heterogeneity of MDSC populations
and the variability in markers used by different groups, and the fact
that there may be overlap between MDSC phenotypes (23, 24).
Furthermore, it is not entirely clear whether or how granulocytic
MDSC differ from other subsets of activated mature neutrophils
with suppressive activity (25).

SUPPRESSIVE MECHANISMS
The hallmark of MDSC is their ability to suppress T cell and NK cell
responses. MDSC have been shown to suppress immune responses
through a variety of direct mechanisms, including arginase-1,
inducible nitric oxide synthase (iNOS), and production of reac-
tive oxygen species (ROS). Both arginase-1 and iNOS metabolize
arginine. In humans, arginase-1 is primarily expressed in granu-
locytic MDSC, whereas in mice, arginase-1 is expressed by both
monocytic and granulocytic MDSC (26). However, in both species,
the downstream effects of arginase-1 appear the same. l-arginine
is catabolized by arginase-1 to urea and l-ornithine. In humans,
arginine starvation inhibits T cell proliferation through decreas-
ing CD3ζ-chain expression (27) and preventing the expression
of cell-cycle regulators cyclinD3 and cdk4 (28). Taheri et al. first
demonstrated that Jurkat T cells cultured in medium with lev-
els of arginine <50 µM (normal levels of arginine in the serum
range between 50 and 150 µM) resulted in the loss of CD3ζ

expression (29). Down-regulation of TCR ζ-chain is known to
be critical for normal T cell function, including proliferation and
IFNγ production (30).

MDSC-derived iNOS converts l-arginine to citrulline and NO,
which suppresses T cell function through inhibition of Jak/STAT
signaling, reducing MHC class II expression and inducing T cell
apoptosis (31–34). ROS and NO produced by MDSC also result in
nitration of the T cell receptor, interfering with recognition of pep-
tide antigens presented by MHC (35). Because cysteine provided
by antigen-presenting cells (APC) is required for T cell activation,
MDSC also inhibit T cell responses by depleting the pool of cys-
teine available to APC (36). MDSC can also inhibit T cell responses
in a contact-dependent manner, such as through membrane-
bound TGF-β (37). Tumor models have also demonstrated direct
suppression of NK cell cytotoxicity, NKG2D expression, and IFN-γ

production by MDSC in a contact-dependent manner (37, 38).
Arginase-1 has also been shown to inhibit NK cell proliferation
and secretion of IFN-γ (39).

Other mechanisms of MDSC suppression in various models
and disease states include their expression of program death lig-
and 1 (PD-L1), CD80/86 (the ligand for CTLA4), and Galectin-9
(the ligand for Tim-3), as well as production of heme oxygenase-1,
IL-6, and IL-10 (40–43). In addition to acting on T cells directly,
as tolerogenic APCs, MDSC also suppress T cell responses indi-
rectly, through other suppressive cell populations. Regulatory T
cells (Tregs) are recruited and expanded by MDSC production of
TGF-β and IL-10 and through CD40–CD40L interactions (44–
46). In addition, IL-10 production by MDSC may also influence
T cell function via macrophages, which produce less IL-12 and
predispose to Th2-type responses (47).

EXPANSION AND ROLE IN PATHOLOGIC CONDITIONS
In healthy adults, immature myeloid cells that are generated in the
bone marrow differentiate into mature, functional macrophages,
DC, and granulocytes. However, in certain pathologic conditions,
in particular cancer, there is accumulation and activation of MDSC
that can potently suppress T cell and NK cell function (10, 12, 13).
In addition to their importance in cancer pathogenesis, studies
demonstrate a role for MDSC suppressive function during chronic
infections/inflammation, sepsis, transplant, and trauma (11, 22,
48–51). In particular, the suppressive effects of MDSC appear to
impair control of chronic viral infections, both in mouse models
using lymphocytic choriomeningitis virus and vesicular stomatitis
virus, as well as in observational human studies of HIV and hepati-
tis C virus infections (11, 52). MDSC expand and become acti-
vated in response to a variety of factors, including inflammatory
cytokines (IL-6, VEGF), other pro-inflammatory factors (COX2
and prostaglandin E2 (PGE2), GM-CSF, M-CSF, stem cell factor
(SCF)-1 (10, 12, 13). In addition, MDSC may also be increased in
elderly mice (53) and humans (54), which might be involved with
the phenomena of immunosenescence and “inflammaging.”

Although induction of MDSC may be a normal physiologic
response to inflammation, there is convincing evidence that they
can be deleterious in malignant conditions (12–14). A number
of chemotherapeutic interventions that target MDSC are being
studied. Agents that decrease MDSC number include sunitinib,
gemcitabine, and docetaxel; other drugs, such as COX-2 inhibitors
and the phosphodiesterase-5 inhibitor sildenafil, appear to inhibit
MDSC function (12, 14, 15). Perhaps most interestingly, use of
ATRA (all-trans retinoic acid) (55, 56) or vitamin D3 (57, 58) has
been shown to drive maturation of MDSC into fully functional
stimulatory monocytes and DC.

ROLE IN FETO-MATERNAL TOLERANCE AND IMMUNE
ONTOGENY
There are clear differences in both innate and adaptive immune
responses between neonates and older children or adults (2–6,
59). The fetus is antigenically different from its mother, and is
thus analogous to a semi-allogeneic transplant, with the risk of
immunologic rejection (7, 8). The fetal immune system is biased
toward tolerogenic responses, as is that of the pregnant woman.
Thus, the immune response during pregnancy appears to have
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evolved to prevent potentially damaging inflammation that may
result in abortion or pre-term delivery. Furthermore, early post-
natal tolerance might prevent damaging inflammation due to
microbial colonization or environmental antigens in extrauter-
ine life (60). Although the immunologic state of the fetus and
newborn might be evolutionarily advantageous, evidence suggests
that it predisposes to severe infections, especially those due to
intracellular pathogens, and impairs responses to vaccinations in
post-natal life (9, 59, 61). Innate immune cells – monocytes, DC,
NK cells – respond differently in neonates compared to later in
life, and this contributes to their vulnerability to infection (9, 62–
66). In addition to altered innate immunity, adaptive responses are
also qualitatively different in early life (61, 67–70). These differ-
ences likely in part reflect the innate neonatal response. However,
neonatal T cells may also have intrinsic differences, with CD4+ T
cell being biased toward Th2 responses and CD8+ effector T cells
may be particularly short-lived (71, 72). As described elsewhere in
this issue, multiple interrelated mechanisms likely contribute to
the quality of the immune responses observed in utero and during
early life. Included among them are suppressor cell populations,
such as Tregs in the fetus (73), a novel immunosuppressive CD71+

erythroid cell type in newborns (60), and others (74). Preliminary
findings suggest that MDSC may also contribute to feto-maternal
tolerance and infant immune ontogeny.

Recent studies by Rieber et al. and by our own group have found
that MDSC are present in high numbers in cord blood (75–77).
As opposed to healthy adults, in whom <1% of PBMC are MDSC,
CBMC of healthy neonates has a median of approximately 5%
MDSC, comparable to frequencies observed in PBMC of cancer
patients. Of note, there is substantial variation between individ-
ual neonates, suggesting that observational studies to determine
associations between MDSC frequency or activity and clinical out-
comes, such as response to vaccines or infection, are feasible. Cord
blood MDSC are predominantly of the granulocytic type, based
on CD66b and/or CD15, arginase-1 expression, and lack of CD14
expression, as well as by microscopic examination of purified cord

blood MDSC, which demonstrated the appearance of neutrophils
at various stages of maturation (75–77). Furthermore, granulo-
cytic MDSC in cord blood were shown to potently suppress both
T cell and NK cell responses in vitro, using depletion and add-back
experiments. We and Rieber et al. also examined MDSC levels
during infancy and early childhood by cross-sectional sampling
of healthy pediatric subjects and found that MDSC likely decay to
adult levels within the first few months of life (75–77).

These findings raise the possibility that MDSC are at least one
of the mechanisms by which feto-maternal tolerance is maintained
and that may underlie why neonates have impaired T cell and NK
cell immunity (Figure 1). Although the possibility that MDSC
suppress infant immune responses in vivo is highly speculative at
this time, it is notable that the neonatal immune environment may
be particularly prone to support the generation of MDSC. Multiple
factors implicated in the expansion or activation of MDSC, includ-
ing IL-10, IL-6, and TGF-β, are all increased in neonates (65, 78, 79)
or fetal tissue (73). In addition, MDSC have been demonstrated
to promote the development of Tregs (44–46), which are highly
prevalent in the fetus and have documented importance in feto-
maternal tolerance (73, 80–82). On the maternal side, higher rates
of metastasis during gestation in a mouse model of melanoma was
attributed to an accumulation of MDSC and their inhibition of NK
cell activity (83). The potential importance of maternal MDSC in
the mouse is also highlighted by studies indicating that proges-
terone increases MDSC (84) and that Tim-3 blockade experiments
that result in fetal rejection lead to MDSC expansion (85). Finally,
preliminary studies in humans have found high frequencies of
MDSC in the placenta and in peripheral blood of pregnant women
compared to non-pregnant controls (86, 87).

CONCLUSION AND SUGGESTIONS FOR FUTURE RESEARCH
The specific limitations of the neonatal immune response have
been implicated in the high rate of morbidity from infections in
newborns and young infants. Thus, in order to reduce the enor-
mous global burden of infant mortality due to infection, it is

FIGURE 1 | Proposed roles of myeloid-derived suppressor cells
(MDSC) during gestation and early post-natal life. We hypothesize that
an increased frequency of MDSC promotes feto-maternal tolerance during
gestation. Very little is known about the expansion of maternal or fetal
MDSC, or how this may be affected by the degree of HLA discordance or
other factors. High levels of MDSC persist in the infant at birth, and may
suppress harmful inflammation due to microbial colonization and exposure

to environmental antigens. However, this may also impair the generation
of protective immune responses against infections. Images by Egon
Schiele (1890 – 1918), obtained through Wikimedia Commons
(http://commons.wikimedia.org). Left, Red nude, pregnant (Roter akt,
schwanger) 1910, private collection. Right, Newborn hiding its face with its
hands (Neugeborenes die hände vor das gesicht haltend) 1910, Leopold
Museum, Vienna.
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critical to define the mechanisms behind reduced neonatal immu-
nity, and to identify new ways of enhancing protective immune
responses in early life. Undeniably, any interventions along these
lines must be approached with extreme caution in order to ensure
the safety of this vulnerable population. MDSC are unambigu-
ously important in suppressing immune responses in a variety of
pathological conditions. As detailed above, it appears possible that
MDSC also contribute to feto-maternal tolerance. Furthermore,
MDSC may modulate early-life immune responses. We speculate
that MDSC may be beneficial post-natally for preventing inflam-
mation during colonization and microbiome establishment. How-
ever, this dampened immunity may be detrimental for mounting
protective responses to vaccination and pathogenic infection. The
potential of MDSC to modulate immunity in premature or young
infants is particularly intriguing given the availability of drugs –
e.g., retinoids, vitamin D3, sildenafil – that might be able to coun-
teract the suppressive effects of MDSC. Indeed, if MDSC suppress
protective immune responses in early infancy, it is conceivable that
interventions already in wide use, e.g., vitamin A supplementation
(88, 89) might affect infant health through effects on MDSC. It is
also interesting to speculate that MDSC contribute to the decreased
risk of graft-vs.-host disease in stem cell transplant recipients of
cord blood compared to bone marrow grafts (90) or might have
other therapeutic uses.

Much additional study is needed to determine whether MDSC
are important in immune ontogeny, and if they might be use-
ful targets for therapies to reduce infectious mortality in infants.
Longitudinal studies of premature and term neonates are required
to define the natural history and, imperatively, the physiologi-
cal relevance of MDSC during early life. These cohort studies
should assess not only the frequency of MDSC at different ages, but
measure clinically important outcomes, such as vaccine responses
and/or infectious outcomes. Importantly, such work should be
performed in populations with high rates of infection and infant
mortality, to ensure generalizability, and public health relevance.
These studies are made more challenging by the fact that MDSC are
cryosensitive, which currently necessitates testing fresh blood (91).
Mouse or other animal models may also be especially useful to
help evaluate the potential importance and mechanism of MDSC
immune suppression during gestation and early post-natal life.
Though much is known about the mechanisms of action of MDSC
in cancer and other pathologic states, many questions remain, and
it is unknown whether these same mechanisms can be extrap-
olated to MDSC functions during fetal or early post-natal life.
Work is also needed to better understand the potential relationship
between MDSC and neonatal APC responses, and whether MDSC
interact with other suppressor cell populations of importance in
immune ontogeny (Tregs, CD71+ erythroid cells, etc.).

In summary, recent studies suggest that MDSC are prevalent
and may suppress immune responses in early life. If so, MDSC
could represent one important part of the complex process of
immune ontogeny and feto-maternal tolerance. In addition to
their fundamental biology, these cells are of particular interest
because their function can be modulated with several drugs that
are widely used, whose effects on MDSC are already being evalu-
ated in other clinical contexts. As such, future research in this field
holds substantial promise.
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